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Grazing incidence fast atom diffraction: general
considerations, semiclassical perturbation
theory and experimental implications

E. Pollak, a P. Roncin, b W. Allison c and S. Miret-Artés *d

Using semiclassical methods, an analytical approach to describe grazing incidence scattering of fast

atoms (GIFAD) from surfaces is described. First, we consider a model with a surface corrugated in the

scattering plane, which includes the surface normal and the incidence direction. The treatment uses a

realistic, Morse potential, within a perturbation approach, and correctly reproduces the basic GIFAD

phenomenology, whereby the scattering is directed primarily in the specular direction. Second, we treat

the more general case of scattering from a surface corrugated in two-dimensions. Using time averaging

along the direction of fast motion in the incidence direction, we derive a time dependent potential for

the GIFAD scattering away from a low index direction. The results correctly describe the observation

that diffraction is seen only when the scattering plane is aligned close to a low-index direction in the

surface plane. For the case of helium scattering from LiF(001) we demonstrate that the resulting

theoretical predictions agree well with experiment and show that the analysis provides new information

on the scattering time and the length scale of the interaction. The analysis also gives insights into the

validity of the axial surface channeling approximation (ASCA) and shows that within first order

perturbation theory, along a low-index direction, the full 3-dimensional problem can be represented

accurately by an equivalent 2-dimensional problem with a potential averaged along the third dimension.

In contrast, away from low-index directions, the effective 2-dimensional potential in the projectile frame

is time-dependent.

1 Introduction

Grazing incidence, fast-atom diffraction (GIFAD) has emerged
as a tool with a particular sensitivity to both the structural
corrugation of electron density at the surface (see e.g. ref. 1 and
2 for reviews) and to the details of the van der Waals forces
between the incident particle and the surface.3–5 The informa-
tion provided by these experiments is complementary to that
obtained from thermal-energy experiments6,7 as, in both cases,
the classical turning point occurs above the outermost atomic
layer. The similarity between the two different scattering
approaches arises from the particular scattering geometry in
GIFAD, and especially a high incident energy along a direction
close to grazing incidence, which leads to a separation of the

dynamics into a fast-direction, parallel to the surface, and a
slow-direction, normal to the surface. Motion in the fast-
direction leads to averaging of the interaction where the
dynamics in the slow-direction can be treated using methods
developed for thermal energy scattering,8–12 or alternatively by
treating the coupling between fast and slow variables as one of
quasi-resonance.13 In experiment, similar effects have been
seen when scattering molecular hydrogen at large angles of
incidence;14,15 however, experiments close to grazing incidence
show that averaging leads to extinction of in-plane diffraction
in almost every case, though counter examples have been
observed.16,17

In the scattering plane, defined to include the surface
normal and the incidence direction, the transition from fast
to slow atom diffraction has been addressed with quantum
techniques9,11 confirming the suppression of in-plane diffrac-
tion. The presence of strong out of plane diffraction is observed
only when a low-index direction in the surface plane is closely
parallel to the scattering plane giving rise to the typical, high-
symmetry diffraction pattern recorded at once and responsible
for the initial interest into the GIFAD method.18,19 However, in
the general case of arbitrary surface orientation, only the
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specular peak is present and the rapid attenuation of the
diffraction when the scattering plane is at an angle with the
crystal axis has also been investigated with quantum
theory.10,20 In this manuscript we present a general description
of both characteristics of GIFAD quoted above; the disappear-
ance of in-plane diffraction at grazing incidence and the rapid
attenuation of out of plane diffraction when the angle between
the low-index direction and the scattering plane increases. We
quantify these effects using a semi-classical approach, which
offers a number of advantages in understanding the basic
phenomenology and has been used widely to describe GIFAD
scattering.8,12,21,22 Not only are classical trajectories relatively
easy to determine, the essential aspects of the quantum beha-
viour are included through interference effects between the
relevant classical trajectories. The method becomes particularly
advantageous when combined with perturbation methods and
a Morse-type potential23,24 as analytic results can then be
derived. One key result of this general analysis is that when
the scattering plane is parallel to a low-index direction of the
surface the three-dimensional scattering potential is reduced to
a two-dimensional effective potential, the well known axial
surface channeling approximation (ASCA),1,9,25 while away
from low-index directions, diffraction is suppressed and the
effective potential becomes time-dependent.

Fig. 1 illustrates the scattering geometry for the case when
the scattering plane is misaligned by a small angle, f, with

respect to a low index direction of the surface (y in Fig. 1). The
scattering plane itself is defined by the incident direction and
the surface normal, z. By definition it also includes the spec-
ularly scattered beam (shown red). Other directions for elastic
scattering lie on the Ewald sphere, of constant wavevector
modulus (shaded green) at points corresponding to changes in
wavevector DK = Gjk, where Gjk are the reciprocal lattice vectors.
Fig. 1 indicates the projection of the reciprocal lattice through
lines of constant j and k, where the intersections define the
G-vectors. In grazing incidence fast atom diffraction (GIFAD), the
basic phenomenology is that diffraction in the scattering
plane is suppressed compared with diffraction out of the scatter-
ing plane. Furthermore, diffraction out of the plane is only
observed when a low index direction is closely aligned with the
scattering plane. In the latter case, as sketched in Fig. 1,
diffraction peaks with k = 0 and j a 0 are observed, as shown
by the dots in the figure. These two aspects of the phenomen-
ology are the subject of the present work, where we derive
analytic results within a semi-classical analysis using a
scattering potential of Morse form, coupled with first-order
perturbation theory. The validity of our approach is confirmed
by comparison with experimental results for the scattering of He
from LiF(001).

2 Semiclassical perturbation theory.
Grazing incidence and specular
scattering

One of the features of grazing incidence scattering along a low
index direction is that, in the scattering plane, one observes
only a single elastic scattering peak. There are no observable
Bragg peaks other than the specular one. With high incident
energies, the extremely fast motion along the incident direction
underlies this phenomenon. The purpose of this Section is to
demonstrate qualitatively and quantitatively how this comes
about, using a semi-classical scattering theory within a frame-
work of time-dependent perturbation theory.

For this purpose we first define the conditions of the
‘‘standard’’ scattering experiment in three degrees of freedom.
One is the vertical coordinate z (with conjugate momentum pz)
describing the distance of the atom from the surface, the other two
are the horizontal coordinates x and y (with conjugate momenta px

and py) for motion parallel to the surface. The Hamiltonian for an
atom of mass M colliding with a corrugated surface is

H ¼ px
2 þ py

2 þ pz
2

2M
þ V x; y; zð Þ: (1)

Assuming that the symmetry axes of the surface are along the
horizontal x and y coordinates, and that the potential is periodic
along these coordinates with periods lx and ly allows us to write the
potential as

V x; y; zð Þ ¼ V00 zð Þ þ
X1
j;k

0
Vjk zð Þhjk � cos

2pk
lx

x

� �
cos

2pj
ly

y

� �
;

(2)

Fig. 1 Schematic diagram showing the scattering geometry, and defining
some of the variables used in the text. The incident direction for scattering
is in the plane containing the laboratory coordinate, u, and the surface
normal, z. It is conventionally referred to as the scattering plane. In the
diagram, the specularly scattered beam (red line) is the only scattered
component that lies entirely in the scattering plane (lightly shaded). Other
directions for elastically scattered particles lie on the Ewald sphere (green
shading) according to the projection of the reciprocal lattice, Gj,k, (indi-
cated by blue lines of constant j and k) onto the sphere. The scattering
geometry shown corresponds to a rotation, f, of the surface about its
normal, z. Angles in the diagram have been exaggerated for clarity; for
example, the grazing angle of incidence ~yi is typically a few milli-radians.
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where the prime in the sum implies that the summation does not
include the case that j = k = 0. We have introduced the ‘‘corrugation
heights’’ hjk which are assumed to be much smaller than the
respective lattice lengths and so play the role of the perturbation
parameters. At a later stage we will compare the theory with
experiments involving LiF(001) and, for that purpose, we set Vjk(z) =
Vkj(z) and lx = ly and, in the spirit of earlier work,26 we take the

Vjk zð Þ ¼ V
0
00ðzÞ. The hjk parameters are typically unequal and

define the corrugation of the potential.
For the zero-th order dynamics, the only potential governing

the dynamics is the vertical potential V00(z). In the general
scattering case, the particle is initiated at the time �t0 with initial
vertical (negative) momentum pzi

and horizontal momenta pxi
and

pyi
. To zero-th order, at t = 0 the particle impacts the surface. We

are then interested in the final momenta of the particle at the time
+t0, which is taken to be sufficiently large to assure that the
scattering event is over. In the analytical formalism developed
below, we then take the limit t0 - N.

At this point we identify the GIFAD direction to be along the
y axis. The scattering plane is then defined by the y and z
coordinates. The angle of incidence

tan yi ¼
pyi
pzi
; (3)

is close to �p/2 since the central property of GIFAD scattering is
that the incident momentum pyi

along the horizontal y direc-
tion is much larger than the magnitude of the (negative)
momentum pzi

in the vertical direction. Most often, in GIFAD
the small complementary angle ~yi = p/2 � yi is used to describe
the grazing angle of incidence referred to the surface plane.

The exact quantum final momentum distribution for an
initial state characterized by the initial momenta pyi

, pzi
and

ending with the final momenta pyf
, pzf

with amplitude Wk for a
transition to the k-th Bragg channel is

P pyf ; pzf ; pyi ; pzi
� �

¼
X1

k¼�1
d pzf � pzt0 pzi

� �h i

� d pyf � pyi � pk
� �

Wkj j2;

(4)

where in the argument of the second delta function we have
used the notation

pk ¼ �hk
2p
ly

(5)

to express the Bragg condition and k is referred to as the Bragg
index. The final angular distribution is obtained by integrating
the momentum probability over all final momenta subject to
the condition that yf ¼ tan�1 pyf

�
pzf

� �
.

The central purpose of this Section is to use semiclassical
perturbation theory to understand why one observes experi-
mentally only the k = 0 (specular) Bragg peak. For this purpose,
we summarize the first and second-order semiclassical pertur-
bation theory results derived previously,24,27,28 for a single sine
corrugation function such that h10 � h and all other corruga-
tion amplitudes vanish. This implies that the effective two

dimensional GIFAD Hamiltonian, takes the form

HG x ¼ px ¼ 0ð Þ ¼ py
2 þ pz

2

2M

þ V10 zð Þh sin 2p
ly
y

� � (6)

where the corrugation height h is assumed to be much smaller
than ly.

The first-order expression for the probability of observing
the k-th Bragg peak is24

Wk;1

�� ��2¼ Jk
Ay

�h

� �
� ipX1

2l
Jk�1

Ay

�h

� �
� Jkþ1

Ay

�h

� �� 	����
����
2

; (7)

where Jk denotes the k-th order Bessel function, the action
Ay being

Ay ¼ h

ð1
�1

dtV10ðz0;tÞ cos oyt
� �

; (8)

where z0,t is the zero-th order trajectory in the vertical direction
that hits the turning point at the time t = 0. The central object
for our purpose is the horizontal frequency oy defined as

oy ¼
2ppyi
Ml

: (9)

Due to the fast GIFAD motion along y (also following the spirit
of ASCA), this frequency is much larger than the inverse of the
collision time, implying that many cycles along y are traversed
during the collision. In other words, as we shall also see below,
the time averaging implied in eqn (8) causes the action Ay to
essentially vanish, leaving a contribution in eqn (7) only for
k = 0. The term in the pre-factor, X1, is

X1 ¼
ð1
�1

dt Fc tð Þ � pyi
M

Gs tð Þ
h i�

þMFc 1ð Þ
z0;t

pzi
1þ pyi

2

pzi
2

� �	 (10)

with

Fc tð Þ ¼ 2ph
lyM

ðt
�1

dt 0V10 z0;t 0
� �

cos oyt
0� �

(11)

and

Gs tð Þ ¼
hM

pzt ;0
2

ðt
�1

dt 0
dV10 z0;t 0

� �
dt 0

sin oyt
0� �
: (12)

Here too, due to the fast GIFAD motion, we expect X1 to be
extremely small.

2.1 First order perturbation theory treatment for a Morse
potential model

Beyond the general observation that the fast oscillation due to
oy causes all quantities to vanish, it is of interest to understand
analytically, the (small) magnitudes involved in the various
parameters. It is possible to do this analytically if one specifies
the interaction potential to have the Morse form

%VM(z) = D[(exp(�az) � 1)2 � 1], (13)
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which is defined through the physisorption well depth D and
the stiffness parameter a. In order to simplify the final expres-
sions, the following notations are used

O2 ¼ 2a2Ez

M
; (14)

cosF ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

Ez þD

r
; (15)

and

�O ¼ oy

O
¼ 2p

aly
tan yij j; (16)

where Ez = pzi

2/2M and yi is the (negative) angle of incidence.
When applied to GIFAD, the first order treatment leads to

the following analytical results:

Fc 1ð Þ ¼
4p2hpzi
Mly

�O cosh F�O
� �

sinh p�O
� � ; (17)

Ay ¼ 2phpzi
�O cosh F�O

� �
sinh p�O

� � ; (18)

X1 ¼
M

apzi
Fc 1ð Þ 1þ pyi

2

pzi
2

� �
ln
� cosF

2 sin2 F

� 	�

þ pyi
2

pzi
2
1þ cos2 F
� �

:

(19)

The GIFAD limit, in which the horizontal incident momentum
is much larger than the vertical implies that the ‘‘frequency’’

�O c 1. (20)

In this limit then

Fc 1ð Þ !
8p3hpzi
Maly2

tan yij j exp �2p p� Fð Þ
al

tan yij j
� 	

: (21)

Since the angle F is always less than p (see eqn (15)) we find
that Fc(N) is exponentially small in the GIFAD limit and the
same will be the case for the parameter X1 which has the
dimensions of length. In this limit, the action appearing in
the expression for the scattering amplitude is

Ay !
4p2hpzi
aly

tan yij j exp �2p p� Fð Þ
aly

tan yij j
� 	

; (22)

and it is also exponentially small. Noting the series expansion
of the Bessel functions

Jk zð Þ ¼ z

2

� �kX1
n¼0

�z
2

4

� �n
1

n!ðnþ kÞ!; (23)

one finds that the first non-zero diffraction peaks will be given
approximately by

W�1;1
�� ��2’ J�1

Ay

�h

� �
� ipX1

2l

����
����
2

’ Ay
2

4�h2
1þ p2�h2X1

2

ly2Ay
2

� �
; (24)

while the specular peak will be given by

W0;1

�� ��2’ J0
Ay

�h

� �����
����
2

’ 1� Ay
2

4�h2
: (25)

we then note from eqn (22) that

Ay
2

4�h2
’ 4p4h2pzi

2

�h2a2ly2
tan2 yi exp �

4p p� Fð Þ
aly

tan yij j
� 	

; (26)

while from eqn (19) and (21)

p�hX1

lyAy
’ �O2 �ha

2pzi
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ez þDð ÞD

p
2Ez

 !
þ 1þ D

Ez þD

" #
: (27)

The non-zero Bragg components are truly exponentially small.
Interestingly, in the GIFAD limit, irrespective of the value of the
energy in the vertical (z) direction, the reduced prefactor (X1/l)
is larger than the reduced action (Ay/h�); however, it is also
exponentially small.

The second order treatment for a Morse potential model is
presented in Appendix A, the conclusions are the same.

2.2 First order perturbation treatment for a repulsive
potential model

These results may be even further simplified by assuming that
the central contribution to the action comes from motion close
to the turning point of the unperturbed vertical trajectory. If we
ignore the well and only assume an exponential wall

V(z) = Ve exp(�2az), (28)

then we readily find that

Ay ¼ hpzi
2p�O

sinh p�O
� �! hpzi

4p2

aly
tan yij j exp �p2

aly
tan yij j

� �
: (29)

the Morse potential result for Ay reduces to the same in the
limit that the vertical momentum is much larger than the well-
depth, since in this limit the angle F - p/2. We also find that

lim
Ez�D!0

p�hX1

lyAy
’ ��O2 �haffiffiffiffiffiffiffiffiffiffiffi

2MD
p

ffiffiffiffiffiffiffiffi
D

4Ez

r
ln

D

4Ez

� �
! 0; (30)

and the prefactor term, X1, is no longer important. However,
this will be the case only ifffiffiffiffiffiffiffiffi

D

4Ez

r
� 1

�O2
! D� a4ly2Ez

2

4p4Ey
2
Ez; (31)

so that for most physical cases, it is the prefactor (X1) that will
dominate. This is important since most implementations of
semiclassical theory ignore this prefactor.

Finally, let us compare with the result (eqn (38)) derived
by Henkel et al.,29 for cold atoms reflected/diffracted on an
evanescent standing light-wave and recently adapted to
GIFAD.30 In their notation,

anj j2¼ Jn
2 ebEW yð Þpzi

�ha

� �
; (32)
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where

bEW yð Þ ¼ pq tan yð Þ

a sinh
pq tan yð Þ

a

� �: (33)

the identification of their notation with ours is that

O, apzi
M

; a, a; q, 2p
ly
; e, ha; (34)

so that

bEW yð Þ ¼ 2p2 tan yð Þ

aly sinh
2p2 tan yð Þ

al

� � ¼ p�O
sinh p�O

� �; (35)

ebEW yð Þpzi
�ha
¼ p�O

sinh p�O
� � hpzi

�h
¼ Ay

�h
: (36)

As commented above, their theory does not take the prefactor
into consideration. However, qualitatively the result is the
same, the ratio of the lowest diffraction peaks to the specular
one is exponentially small.

3 General theory for GIFAD

The purpose of this Section is to understand what the implica-
tions of a GIFAD scattering experiment are for theoretical
analysis. We will distinguish between a GIFAD experiment in
which the GIFAD direction is along one of the low-index
directions in the surface and when it is at an angle (necessarily
small) to it. To simplify, we will assume a surface with a square
unit-cell so that lx = ly � l, but the same considerations are
applicable to other geometries.

In the GIFAD experiment, there is a direction in which the
momentum parallel to the surface is very large. We thus trans-
form from the x, y coordinates which characterize the surface to
the coordinates u and v where by construction the fast GIFAD
direction is along u

u = x sinj + y cosj, (37)

v = x cosj � y sinj. (38)

In the GIFAD experiment, the velocity in the GIFAD direction
is extremely fast, such that it creates an effective Hamiltonian
for the other two degrees of freedom. This assumption of fast
motion implies that one could first time average over the fast
motion, and this leads to the following relations

cos
2pk
l
u

� �� �
¼ dk;0 (39)

cos
2pk
l
u

� �
cos

2pj
l
u

� �� �
¼ 1

2
dk;j 1� dk;0
� �

þ dk;0dj;0; (40)

where dk,j is the Kronecker delta function. The averaging is such
that the motion along the two degrees of freedom v, z perpendi-
cular to the GIFAD direction u is much slower than the GIFAD

motion, so the time average implied by the brackets is identical
to a spatial averaging over the GIFAD coordinate.

The potential as given in eqn (2) in terms of the three
coordinates x, y, z is also rewritten in terms of the coordinates
u, v, z as

V u; v; zð Þ ¼
X
j;k

Vjk zð Þhjk cos
2pk
l
v cosj

� 	
cos

2pk
l
u sinj

� 	

� cos
2pj
l
u cosj

� 	
cos

2pj
l
v sinj

� 	

�
X
j;k

Vjk zð Þhjk sin
2pk
l
v cosj

� 	
sin

2pk
l
u sinj

� 	

� sin
2pj
l
u cosj

� 	
sin

2pj
l
v sinj

� 	
:

(41)

to implement the necessary averaging we note, using the
standard trigonometric identities31 that the averaging as in
eqn (39) and (40) implies that

sin
2pk
l
u sinj

� �
sin

2pj
l
u cosj

� �� �

¼ 1

2
cos

2pu
l

k sinj� j cosjð Þ
� 	� ��

� cos
2pu
l

k sinjþ j cosjð Þ
� 	� �	

(42)

and

cos
2pk
l
u sinj

� �
cos

2pj
l
u cosj

� �� �

¼ 1

2
cos

2pu
l

k sinj� j cosjð Þ
� 	� ��

þ cos
2pu
l

k sinjþ j cosjð Þ
� 	� �	

:

(43)

From these results, one readily deduces that, with the
exception of the specular channel, j = k = 0, the averages vanish
unless tanj = �j/k. The most important cases are the low index
directions with j = 0, �p/2, �p/4, corresponding to j, k A
{0,�1}, which we discuss below. The scattering is particularly
interesting near to these low index directions as we show.

3.1 Scattering along a low-index direction

Having in mind a surface such as LiF(001), and a square unit
cell, we consider the two low directions namely: [110] and [100].
For the [110] case, we may assume that the GIFAD coordinate
u = y so that time averaging of the GIFAD fast motion over the
full potential as in eqn (2) one readily finds that the dynamics is
reduced to two degrees of freedom.

U½110	 x; zð Þ � V x; y; zð Þh i

¼ V00 zð Þ þ
X
k

Vk0 zð Þhk0 cos
2pk
l
x

� �
: (44)
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The 100 case would then correspond to the choice j = p/4 so
that from eqn (42) and (43) we have

cos
2pk
l
u sinf

� �
cos

2pj
l
u cosf

� �� �
¼ dk;0dj;0

þ 1

2
dk;j þ dk;�j
� 

1� dk;0
� �

;

(45)

and

sin
2pk
l
u sinf

� �
sin

2pj
l
u cosf

� �� �
¼ 1

2
dk;j � dk;�j
� 

: (46)

This implies that after averaging over the GIFAD coordinate

U½100	 v; z;f ¼ p
4

� �
¼ V00 zð Þ þ

X
k

Vkk zð Þhkk cos
2pk
lffiffiffi
2
p
� �v
2
664

3
775:
(47)

Eqn (44) and (47) have two consequences. One is that the
uncoupled component of the vertical potential (V00(z)) must
be the same for scattering in both the [110] and [100] direc-
tions. Secondly, the potentials Vk0(z), which determine the
diffraction along [110] are, in general, different from the Vkk(z),
which affect scattering along [100]. The two azimuths provide
complimentary information and, as we shall see in the next
subsection, knowing these potentials puts some clear limita-
tions on the effective equations of motion when the GIFAD axis
is no longer a low-index direction.

3.2 Scattering close to a low-index direction

Here we consider scattering when the incident azimuth is
close to, but not exactly parallel with, a low-index direction in
the crystal plane. Our analysis shows that the magnitude of the
deviation from the low-index direction, as expressed in the
angle df is critical. As already discussed above, if it is too large,
then one remains only with specular scattering from the zero-th
order scattering potential V00(z). It follows that measurements
of the diffraction pattern as a function of the angle df will
provide information on the surface averaged potential potential
V00(z). The two lowest index directions, h100i and h110i, are
considered separately.

3.2.1 Close to the h100i direction. Let us consider first
when the GIFAD direction is close to the 100 direction,
such that

f ¼ p
4
� df; df� 1: (48)

It is then a matter of straightforward algebra to show that the

potential as in eqn (41) is rewritten as

V u; v; zð Þ ¼
X
j;k

Vjk zð Þhjk cos
ffiffiffi
2
p

pk
l

v cos dfþ sin dfð Þ½ 	
" #

� cos

ffiffiffi
2
p

pk
l

u cos df� sin dfð Þ½ 	
" #

� cos

ffiffiffi
2
p

pj
l

v cos df� sin dfð Þð Þ
" #

� cos

ffiffiffi
2
p

pj
l

u cos dfþ sin dfð Þð Þ
" #

þ
X
j;k

Vjk zð Þhjk cos
ffiffiffi
2
p

pk
l

v cos dfþ sin dfð Þ½ 	
" #

� sin

ffiffiffi
2
p

pj
l

v cos df� sin dfð Þð Þ
" #

� sin

ffiffiffi
2
p

pj
l

u cos dfþ sin dfð Þð Þ
" #

� cos

ffiffiffi
2
p

pk
l

u cos df� sin dfð Þ½ 	
" #

�
X
j;k

Vjk zð Þhjk sin
ffiffiffi
2
p

pk
l

v cos dfþ sin dfð Þ½ 	
" #

� cos

ffiffiffi
2
p

pj
l

v cos df� sin dfð Þð Þ
" #

� sin

ffiffiffi
2
p

pk
l

u cos df� sin dfð Þ½ 	
" #

� cos

ffiffiffi
2
p

pj
l

u cos dfþ sin dfð Þð Þ
" #

�
X
j;k

Vjk zð Þhjk sin
ffiffiffi
2
p

pk
l

v cos dfþ sin dfð Þ½ 	
" #

� sin

ffiffiffi
2
p

pj
l

v cos df� sin dfð Þð Þ
" #

� sin

ffiffiffi
2
p

pk
l

u cos df� sin dfð Þ½ 	
" #

� sin

ffiffiffi
2
p

pj
l

u cos dfþ sin dfð Þð Þ
" #

:

(49)

In Appendix B, the angular average over the GIFAD motion is
carried out. The interaction potential is then written in terms
of the v and z variables, leading to the conclusion that V(v, z)
is a time-dependent effective potential with two degrees of
freedom.
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3.2.2 Close to the h110i direction. Here we assume that the
azimuthal angle of incidence is df so that following the same
kind of derivation, one finds after some algebra that the GIFAD
averaged potential is

U v; zð Þ ¼ V00 zð Þ þ
X
ka0

Vk0 zð Þhk0

� cos
2pk
l
v cos df

� �
cos

2pk
l
ut sin df

� ��

� sin
2pk
l
v cos df

� �
sin

2pk
l
ut sin df

� �	
;

(50)

and here too the scattering problem is reduced to two degrees
of freedom but with a time-dependent potential.

4 Perturbation theory for scattering
close to low-index directions

Here we make a connection between the time-dependent
potentials, derived in the previous section, and experiments
that reveal the dependence of the diffraction pattern on the
deviation in angle from the the low-index directions.5 For this
purpose, we calculate the distributions of diffraction intensities
using first-order perturbation theory. We then use the second-
moment of that distribution, its variance, as a measure of the
width of the pattern in order to make a direct comparison with
experiment.5

Analytic results may be obtained if we restrict the potential
to the first term in each Fourier series giving

U v; zð Þ ¼ V00 zð Þ

þ V11 zð Þh11
2

cos
2p

l=
ffiffiffi
2
p v cos df� ut sin dfð Þ

" #
; (51)

for incidence close to the h100i direction and

U v; zð Þ ¼ V00 zð Þ

þ V10 zð Þh10 cos
2p
l

v cos dfþ ut sin dfð Þ
� 	

; (52)

for incidence close to h110i.
In the zeroth order motion, the particle moves only along

the GIFAD direction u so that the perpendicular surface coor-
dinate v is static. Without loss of generality, we may set it as v =
0. From eqn (44) and (45) we then conclude that xt = ut sin df.
The free motion along u, is

ut ¼ u�t0 þ
pu

M
tþ t0ð Þ; (53)

so that the velocity along the x direction is (pu/M)sin df and this
identifies the frequency in the x direction ox (see eqn (9)) as

ox �
2p
l

pu

M
sin df: (54)

The significance of the lateral frequency ox is the same as in
Section 2. Note that ox establishes a connection to the simpli-
fied ASCA formalism where the angle df is reduced to an initial
momentum px = pu sin df in an approximate stationary

Hamiltonian.10 Ignoring the prefactor, the k-th diffraction peak
is given within first order perturbation theory, as before, by

Wkj j2¼ Jk
2 Ax

�h

� �
; (55)

where Jk is the integer Bessel function and the action, Ax, is

Ax ¼ h11

ð1
�1

dt 0V11 z0;t 0
� �

cos oxt
0ð Þ (56)

for the h100i direction and

Ax ¼ h10

ð1
�1

dt 0V10 z0;t 0
� �

cos oxt
0ð Þ (57)

for the h110i direction, which we evaluate below. When the
incident direction is a low-index direction, df = 0, we have
ox = 0 so that �O = 0 and the action is 2hpzi

. The diffraction
pattern along the x direction will be symmetric and its
width will depend on the incident vertical momentum. Well
away from a low-index direction, when the offset angle is such
that �O c 1, the action will be exponentially small and only
specular scattering is possible. This condition implies that (vzi

=
|pzi

/M| is the magnitude of the incident velocity in the vertical
direction)

�O ¼ ox

O
¼ 2p

la
vG

vzi
sin df� 1: (58)

if 2p/la is of the order of unity, the inequality is satisfied when
df c ~y, the grazing angle of incidence, since vzi

= vG sin ~y.
Between these two limits (i.e. when df B ~y), the action is a

decreasing function of the offset angle df and we expect the
width of the diffraction pattern to decrease as a function of
increasing offset angle df.

The manner in which the diffraction shrinks towards the
specular peak offers a direct point of comparison between the
predictions of first-order perturbation theory and the measure
of the angular width of the diffraction pattern obtained in
experiment.5

For a measure of the ‘‘width’’ of the diffraction pattern we
use the second moment, or variance, of the diffraction inten-
sities, which within the first order perturbation theory, is
given by

s2 = Sk k2Ik = Sk k2Jk(Ax)2 = (Ax)2/2, (59)

where the final equality comes from a standard result.32

The variance, s2 is readily converted to an experimental,
angular width sf using sf = fBs, where the Bragg angle, fB =
arctan(G>/py), is that for the respective low-index scattering
geometry and is given by G> = 2p/a>. The linear distance, a>, is
that separating identical atomic rows, more commonly known
as the width of the scattering channel (see, for example ref. 2, 9
and 22).

For a potential of the Morse form (see Section 2.1), values for
the action follow from eqn (56) and (57), which lead to expres-
sions identical to eqn (18). The angular standard deviation
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(sf = sfB) is then

sf ¼ fB

ffiffiffi
2
p

pzi h�
p�O cosh F�O

� �
sinh p�O

� � : (60)

The first term describes the scattering width in the well-aligned
condition (df = 0 giving �O = 0) while the second term can be
considered as the oblique incidence factor, b(p �O). It has a value
of 1 for �O = 0 and governs the evolution with df. It can be
written in a form directly adapted to GIFAD coordinates by
noting that close to a low index direction (df { 1), �O = (G>/a)

(sin df)/(sin ~yi) C (G>/a)
(df/~yi). Values for fB and h depend on
the relevant low-index direction, while D and a define the mean
planar potential (eqn (13)).

5 Comparison with experiment

The results of the previous section make the general phenom-
enology clear: when aligned with a low index direction, ox = 0
and the action Ax, given by eqn (56) and (57) is maximal. As the
misalignment increases, so does ox and oscillation of the
cos(oxt) terms reduces the value of the action leading to weaker
diffraction as seen earlier in eqn (22).

We now compare the expression for the angular width of the
diffraction pattern using eqn (60) with experiment at a quanti-
tative level. Results from the helium LiF(001) system, recorded
by Debiossac and Alarćon20 provide what is required. The
experiment employed helium atoms whose incident energy is
E0 = 460 eV with a grazing angle of incidence of ~yi = 0.91 where
the azimuth df was varied in steps of 0.081 around the [100]
and [110] directions using a setup described in ref. 33. As in the
theory, the angular spread of the experimental diffraction
pattern is obtained from the variance of the diffracted
intensities

s2 = SkIk(k � %k)2 with %k = SkkIk. (61)

Note that the experimental variance is calculated without
assuming symmetry of the diffraction pattern, Ik = I�k, which
is implicit in first-order perturbation theory in eqn (55). For
each value of df, diffracted intensities have been evaluated
after correction for inelastic and Debye–Waller effects, as
detailed in ref. 34.

Fig. 2 and 3 show the experimental behaviour (discrete
data points), compared with the results of first-order pertur-
bation theory (solid and dashed lines). The diffraction
width, shown in Fig. 2, decreases as the azimuthal misalign-
ment, df, increases, while the corresponding changes to the
specularly scattered intensity can be seen in Fig. 3. In both
azimuths, the diffraction width decreases uniformly towards
zero and the specular intensity increases towards unity,
though not monotonically in the case of the [110] azimuth,
where the behaviour can be related to the supernumerary
rainbow structure.35

In the calculations we use eqn (60) to generate the curves in
Fig. 2, and eqn (55) to generate the curves in Fig. 3. To illustrate
the robustness of the perturbation analysis, we choose

Fig. 2 Evolution of the relative scattering width sf/yi (eqn (61)) with the
azimuthal misalignment angle df around the [100] ( ) and [110] ( )
directions.20 The red lines result from eqn (60) i.e. without use of the
Bessel function. The corrugations h11 and h10 are derived at df = 0 while a
and D are taken from literature and reported in Table 1. The inset shows a
f-scan taken from ref. 5 where both peaks appear at their absolute
location.

Fig. 3 Evolution of the specular beam intensity I0 for the azimuthal
direction close to the [100] and [110] directions. The red lines are for
J0(Ax) with Ax given in eqn (60) and h measured at df = 01. The full line
corresponds to h derived from s (eqn (61)) as in Fig. 2 and Table 1. The
dotted lines correspond to h0 derived from the fit of all the measured
intensities Ik by Bessel functions in eqn (54) giving h

0
11 ¼ 0:32 Å and

h
0
10 ¼ 0:07 Å.

Table 1 Parameter values used in the calculation shown in Fig. 2 and 3.
The values for h are within a few percent from those measured in ref. 1, 2
and 36, D is consistent with precise measurements via bound state
resonances3,6 while values of a are rarely reported (see text)

Direction a>/Å h/Å D/meV a/Å�1

100 2.01 0.07 8.6 1.95
110 2.86 0.28 8.6 1.95
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parameters close to ones derived from earlier work (see
Table 1), rather than simply fitting eqn (55) and (60) to the
experimental data.

In Fig. 3, the experimental data for the [110] azimuth,
shows the specular intensity having local maxima and minima.
These correspond to interference effects due to the surface
corrugation and, as expected, they are sensitive to the precise
value of the parameters h11 and h10, corresponding to the [110]
and [100] directions respectively. The solid curve in Fig. 3
corresponds to h11 = 0.28 Å, the same value as in Fig. 2, while

the dashed line corresponds to a value of h
0
11 ¼ 0:32 Å. The 12%

greater corrugation of the dashed curve illustrates the sensitivity
of the diffraction intensities to the precise value of the
corrugation.

Our analysis shows that the theory and experiment are in
close agreement throughout, demonstrating that first-order
perturbation theory provides a useful and quantitative descrip-
tion of GIFAD scattering.37,38 In addition, the analysis confirms
the origin of the phenomena in terms of the time averaging of
the potential over the collision time along the grazing incidence
trajectory.

6 Discussion and conclusions

In the present manuscript we have demonstrated that semi-
classical perturbation theory provides a semi-quantitative
description of fast atom diffraction near grazing incidence
(GIFAD). We have considered two related situations. In the first
case (Section 2), the surface corrugation is restricted to lie in
the scattering plane and we showed that first-order perturba-
tion theory correctly reproduces the basic phenomenology of
GIFAD, whereby the scattering is directed exclusively into the
specular channel. The effect is well known and arises from time
averaging, of the corrugation in the surface potential during the
interaction. Our model describes the averaging in the classical
action (eqn (8)) in terms of a horizontal frequency (eqn (9)),
which is zero at normal incidence, and increases with the angle
of incidence yi, which is to say as grazing incidence is
approached. The derivation also provides a prefactor, which
was absent in previous work.29

Our analysis of the more general case where the potential,
V(x, y, z), is fully 3-dimensional (Section 3) shows that, along
low-index directions, the 3D potential reduces to a static
2D potential V(x, z), where x is the coordinate perpendicular
to the plane of the incident motion. Our derivation provides
an origin for ASCA,9 which was developed initially using
classical mechanics as an evolution of the axial channeling
approximation in crystals39 and has been verified quantum
mechanically.10

When the scattering plane is not aligned exactly with a low-
index direction, an attempt to reduce the 3D potential to an
effective 2D case is only possible if the 2D potential has a time
dependence (eqn (89) and (50)). That time dependence implies
another horizontal frequency, in this case along a direction
perpendicular to the low-index direction. The phenomenology,

and the quantitative estimates of changes to the scattering, are
closely related to those discussed above. The horizontal frequency
(eqn (54)) is zero when df = 0 and the scattering plane is aligned
exactly with a low-index direction. The alignment maximises the
action (eqn (56)) and the out-of-plane diffraction. Increasing the
value of df leads to an increase in the horizontal frequency, ox,
and reduced diffraction. Eventually all of the scattering is directed
into the specular peak, as illustrated in Fig. 2 and 3, as observed
in experiment.40 In effect, the corrugations in the surface plane
are averaged in both directions and the surface appears as a
perfect mirror.

It is remarkable how well the first-order theory reproduces
the experimental observations in Fig. 2 and 3. Also, we note that
the numerical values used for the parameters are similar to
those found in earlier work.20,22,37,40 For example, the corruga-
tion amplitudes h10 and h11 are close to those obtained from an
analysis of the relevant low-index diffraction.1,2,36 The well-
depth, D, is taken from the best theoretical estimates41–43 using
bound-state resonance measurements in the thermal energy
regime. The range of the potential, as measured by the Morse
parameter, a, is more difficult to pin down and it may be that
the analysis we describe here offers a more direct route to
obtain experimental values for this quantity. Theoretical esti-
mates for a can be extracted from the same work that gives the
well-depth. The Fowler, Hutson potential,42 for example, is
consistent with a value of a = 1.4 Å�1, which is 28% less than
the value used in Fig. 2 and 3. Second-order perturbation theory
corrections may contribute to these differences in a. However,
we also note that the theoretical potentials are optimised in the
low energy regime (Ez = Ei cos2 yi r 50 meV), rather than being
specifically tuned to the normal-energies in GIFAD, which may
be an order of magnitude greater.

Fig. 3 shows that measurements of the specular intensity
are well reproduced by first-order theory. As we have noted,
first-order theory generates a scattering distribution that is
symmetrical, whereas the experimental distribution shows
some asymmetry. The first-order theory also reproduces the
width of the scattering distribution extremely well, as can be
seen in Fig. 2. Second order perturbation theory, as shown for
example in Pollak and Miret-Artés,24 is required to reproduce
the observed asymmetry in the diffraction pattern.

Our analysis in Fig. 2 and 3 illustrates the sensitivity of such
measurements to the range of the repulsive potential as defined
by a and suggests a new avenue to extract such information
from experiment. For example, the width of the bell-shaped
peaks, in Fig. 2 is directly related to the range of the potential as
can be seen by evaluating the variance of the incidence factor,
b(p �O), in eqn (60). Considering the case where E c D, so that
F = p/2, the width of the obliquity function is analytic by noting

that
Ð
p�O
� �2b p�O

� �
d p�O
� �

¼ 1 so that in the GIFAD coordinates,
the width takes a remarkably compact form.

sT ¼
a~yi
pG?

: (62)

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 8
:3

7:
42

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cp02183e


25510 |  Phys. Chem. Chem. Phys., 2024, 26, 25501–25513 This journal is © the Owner Societies 2024

Notice that the width scales with a/G> and that is precisely
what is seen in Fig. 2 when the widths of the two azimuths
are compared, since a is defined from the mean planar
potential, V00, and is identical in both azimuths (eqn (51)
and (52)).

We have given a general derivation of the GIFAD Hamilto-
nian, which turns out to be time dependent. To gain a more
intimate understanding of the processes involved we limited
ourselves, in the present work, to first order perturbation
theory. In principle, the diffraction patterns for the resulting
time dependent Hamiltonian may be computed numerically
exactly. There is no need to limit oneself to perturbation theory.
However, it is gratifying to see that first order perturbation
theory does account for the main experimental features, espe-
cially away from the symmetry axis.

The theoretical analysis presented in this paper is based on
some assumptions. One is a Morse potential interaction along
the vertical direction. The Morse potential captures two impor-
tant effects – the short range repulsion and the existence of a
physisorption well. It does not have the very long range attrac-
tive properties of the vdW potential. For the phenomena
considered here, it is these first two factors which significantly
affect the measured diffraction pattern. Only at very low energy
should one expect that the exact shape of vdW long range
attractive potential becomes important. Secondly, we assumed
that the next order vertical interaction terms are given by the

derivative of the Morse potential V10ðzÞ ¼ V11ðzÞ ¼ V
0
MðzÞ

� �
.

Thirdly, we limited ourselves to first order perturbation theory.
All of these limitations may be relaxed but perhaps most
prominently is the fact that second order perturbation theory
can account for the asymmetry in the diffraction pattern when
measured away from the symmetry direction. This remains a
topic for future consideration.

In summary, the present work reinforces the value of
perturbation theory, combined with a semi-classical analysis,
as a quantitative description of GIFAD scattering.38 Our meth-
ods emphasise the origin of the averaging of the lateral
potential that takes place, through expressions for the classical
action such as eqn (8), (55) and (56). The first-order theory
provides simple analytic expressions, which provide an excel-
lent, quantitative description of the width sf of the azimuthal
diffraction pattern and its evolution with the angular deviation
df away from the low symmetry direction. It gives the triangu-
lation technique a quantitative basis. The widths measured
during a f-scan (see inset in Fig. 2 and ref. 44 and 45) show
peaks indicating low-index directions, where their height and

width are given by sf=~yi ¼
ffiffiffi
2
p

G?h and sT/~yi = a/G>p (eqn (60)
and (62)) respectively. The analysis outlines, as simply as
possible, the role of the corrugation amplitude h and stiffness
a. We note that second-order theory, which we describe in
Appendix A, allows the discussion to be extended to the observed
asymmetries in the diffraction pattern.46 Perturbation theory can
also address more complex forms of the interaction potential
allowing, for instance the investigation of the effect of the location
of the attractive well.12
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Appendices
A review of semiclassical second order perturbation treatment.
Application to a Morse potential model

The second-order expression for the diffraction intensities24 is
similar in form to eqn (7):

Wk;2

�� ��2 ¼ X1
m¼�1

�ið ÞmJm
Rc

�h

� ������
� Jn k�2mð Þ

Ay

�h

� �
þ pX1

2il

�

� Jn k�1�2mð Þ

Ay

�h

� �
� Jn kþ1�2mð Þ

Ay

�h

� �� �����
2

:

(63)

Here, Jn(x) is no longer the Bessel function but the Anger
function of order n. The argument Rc is

Rc ¼
lPs

4p
þMFc 1ð ÞX1

4
; (64)

with

Ps ¼ �
pM
ly

ðt0
�t0

dt
pzt ;0

2 Gs tð ÞGs �tð Þ þ Gc
2 tð Þ

� 
M2

�

þ Fc tð ÞFc �tð Þ þ Fs
2 tð Þ
�

� ph2

ly

ðt0
�t0

dtV
0
10 z0;t
� �

cos 2oyt
� �

:

(65)

we also used the notation

n kð Þ � k� lPc

p�h
; (66)

with

Pc ¼
pM
ly

ð1
�1

dt Fc tð ÞFs tð Þ �
pzt;0

2

M2
Gc tð ÞGs tð Þ

� 	
; (67)

and

Fs tð Þ ¼
2ph
lyM

ðt
�1

dt 0V10 z0;t 0
� �

sin oyt
0� �

(68)

Gc tð Þ ¼ hM

pzt ;0
2

ðt
�1

dt 0
dV10 z0;t 0

� �
dt 0

cos oyt
0� �
: (69)
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For the Morse potential model, one finds the explicit
expressions

Pc ¼
M2Fc

2 1ð Þ tan2 yij j
4pyi

�
cos2 yij j þ �OF tanh �OF

� �
� p�O coth p�O

� �
sin2 yij j

 

�
�O
2
tanh �OF

� �
sin 2F

�
;

(70)

and

Ps ¼ 1þ pyi
2

pzi
2

� �
M2Fc 1ð ÞFs0 1ð Þ

pyi

� s2
s1
þ F�O tanh F�O

� �
� p�O coth p�O

� �� �
þ ahMFc 1ð Þ

1þ cosF½ 	

� F�O tanh F�O
� �

�
�O
2
sin 2Fð Þ tanh F�O

� �
� p�O coth p�O

� �� 	

þM2Fc 1ð ÞFs0 1ð Þ
pxi

pyi
2

pzi
2

�
�O2

2
sin 2Fð Þs0

s1
þ cosF 1� cos Fð Þ½ 	

2s1

�

�
�O
2
sin 2Fð Þ tanh F�O

� �	
þ pyi

2
Vsc;2;

(71)

and

Vsc;2 ¼ �
32p3h2

l2
cosh 2F�O

� �
sinh 2p�O

� �
� 4p2h2a

l

D

Ez
tanF cot yi

sinh 2F�O
� �

sinh 2p�O
� � :

(72)

Compared to the first order treatment, one finds the same
conclusion when considering the second-order perturbation
theory results. In the GIFAD limit one readily finds that

Fc 1ð Þ ¼
4phpzi
Ml

p�O exp � p� Fð Þ�O
� 

; (73)

Ax = 2hpzi
p �O exp[�(p � F) �O] (74)

Pc ¼ tan yij j
4p2h2 pzij j

l2
p2 �O3 exp �2 p� Fð Þ�O

� 

� F� pð Þ
sin2 yij j

� 1

2
sin 2F

 !
;

(75)

X1 ¼
4ph
al

tan2 yij jp�O exp � p� Fð Þ�O
� 

� ln
� cosF

2 sin2 F

� 	
þ 1þ cos2 F

� �
;

(76)

with

Rc ¼
lPs

4p
; (77)

and

Ps ¼ ahMFc 1ð Þ2�O2s1

� 2�O2 þ �O F� pð Þ þ
�O2

2
sin 2Fð Þs0

s1
þ cosF 1� cos Fð Þ½ 	

2s1

�

�
�O
2
sin 2Fð Þ

�
þ ahMFc 1ð Þ�O

F� pð Þ � 1

2
sin 2Fð Þ

� 	
1þ cosF½ 	 ;

(78)

and

s0 ¼
X1
k¼1
�1ð Þk sin kFð Þ

�O2 þ k2
� �; (79)

s1 ¼
X1
k¼1
�1ð Þkk cos kFð Þ

�O2 þ k2
� � ¼ @s0

@F
; (80)

s2 ¼
X1
k¼1
�1ð Þk2

�O2k cos kFð Þ
�O2 þ k2
� �2 : (81)

Since Pc is exponentially smaller than Fc(N) it can be set to 0,
and in this limit

n kð Þ � k� lPc

p�h
! k; (82)

and the Anger function becomes the integer Bessel function

Jn k�2mð Þ

Ay

�h

� �
¼ Jk�2m

Ay

�h

� �
: (83)

The second-order expression is then

W1;2

�� ��2 ¼ X1
m¼�1

�ið ÞmJm
Rc

�h

� ������
� J1�2m

Ay

�h

� �
þ pX1

2il
J�2m

Ay

�h

� �
� J2�2m

Ay

�h

� �� 	� �����
2

! J1
Ay

�h

� �
þ pX1

2il

����
����
2

(84)

and perhaps as might be expected, this leading order term is
precisely the same as in the first-order perturbation theory.

To summarise this Appendix, we have shown that the very
fast motion in the GIFAD direction leads to an exponentially
small probability for measuring a nonzero diffraction peak
in this direction, as also observed experimentally. From the
analysis above, it is clear that adding in the second horizontal
coordinate y which is perpendicular to the GIFAD plane will not
change this conclusion. The very large frequency ox leads to the
same physics.

The principal difference between the second and first order
theories is that away from the GIFAD direction, the second
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order theory diffraction pattern is not necessarily symmetric
about the elastic peak, in qualitative agreement with experi-
mental observations.

B Angular averaging

In this Appendix we detail some of the derivation leading to the
time dependent GIFAD Hamiltonian. To perform the average
over the fast GIFAD motion, let us consider the various terms

cos

ffiffiffi
2
p

pk
l

u cosdf� sindfð Þ½ 	
" #

cos

ffiffiffi
2
p

pj
l

u cosdfþ sindfð Þð Þ
" #* +

¼ dfj;kdfk;0þ
1

2
dfj;k

� cos

ffiffiffi
2
p

2pk
l

ucosdf

" #* +
þ cos

ffiffiffi
2
p

2pk
l

u sindfð Þ
" #* + !

:

(85)

Similarly, one has that

sin

ffiffiffi
2
p

pj
l

u cosdfþ sindfð Þð Þ
" #

cos

ffiffiffi
2
p

pk
l

u cosdf� sindfð Þ½ 	
" #* +

¼ dj;k
1

2
sin

ffiffiffi
2
p

2pk
l

usindf

" #
þ sin

ffiffiffi
2
p

2pk
l

u cosdfð Þ
" #* +

;

(86)

and

sin

ffiffiffi
2
p

pk
l

u cosdf� sindfð Þ½ 	
" #

cos

ffiffiffi
2
p

pj
l

u cosdfþ sindfð Þð Þ
" #* +

¼ dj;k
1

2
�sin

ffiffiffi
2
p

2pk
l

usindf

" #
þ sin

ffiffiffi
2
p

2pk
l

u cosdfð Þ
" #* +

;

(87)

and finally

sin

ffiffiffi
2
p

pk
l

u cosdf� sindfð Þ½ 	
" #

sin

ffiffiffi
2
p

pj
l

u cosdfþ sindfð Þð Þ
" #* +

¼ dj;kdk;0þ
1

2
dj;k 1�dk;0
� �

� � cos

ffiffiffi
2
p

2pk
l

ucosdf

" #* +
þ cos

ffiffiffi
2
p

2pk
l

u sindfð Þ
" #* + !

:

(88)

As before, since cos df C 1 the averaging of the terms

cos

ffiffiffi
2
p

2pk
l

ucosdf

" #
and sin

ffiffiffi
2
p

2pk
l

ucosdf

" #
will make them

vanish. However, the averaging over terms such as

cos

ffiffiffi
2
p

2pk
l

u sindfð Þ
" #

is no longer clear due to the small mag-

nitude of df. Due to the fast GIFAD motion, one could assume
that the time dependence of the GIFAD coordinate is known.
So, if the scattering process starts at the time �t0 we know that

the motion along the GIFAD direction is the free particle
motion as given in eqn (53). and therefore averaging over the
fast motion will leave us with

U v;zð Þ¼V00 zð Þ

þ1

2

X
ka0

Vkk zð Þhkk cos
ffiffiffi
2
p

2pk
l

vcosdf�ut sindfð Þ
" #

;

(89)

leading to a time-dependent effective potential with two
degrees of freedom.
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