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1 Introduction

Grazing incidence fast atom diffraction: general
considerations, semiclassical perturbation
theory and experimental implications

E. Pollak, @22 P. Roncin, @ ° W. Allison @2 < and S. Miret-Artés (2 *°

Using semiclassical methods, an analytical approach to describe grazing incidence scattering of fast
atoms (GIFAD) from surfaces is described. First, we consider a model with a surface corrugated in the
scattering plane, which includes the surface normal and the incidence direction. The treatment uses a
realistic, Morse potential, within a perturbation approach, and correctly reproduces the basic GIFAD
phenomenology, whereby the scattering is directed primarily in the specular direction. Second, we treat
the more general case of scattering from a surface corrugated in two-dimensions. Using time averaging
along the direction of fast motion in the incidence direction, we derive a time dependent potential for
the GIFAD scattering away from a low index direction. The results correctly describe the observation
that diffraction is seen only when the scattering plane is aligned close to a low-index direction in the
surface plane. For the case of helium scattering from LiF(001) we demonstrate that the resulting
theoretical predictions agree well with experiment and show that the analysis provides new information
on the scattering time and the length scale of the interaction. The analysis also gives insights into the
validity of the axial surface channeling approximation (ASCA) and shows that within first order
perturbation theory, along a low-index direction, the full 3-dimensional problem can be represented
accurately by an equivalent 2-dimensional problem with a potential averaged along the third dimension.
In contrast, away from low-index directions, the effective 2-dimensional potential in the projectile frame
is time-dependent.

dynamics into a fast-direction, parallel to the surface, and a
slow-direction, normal to the surface. Motion in the fast-

Grazing incidence, fast-atom diffraction (GIFAD) has emerged
as a tool with a particular sensitivity to both the structural
corrugation of electron density at the surface (see e.g. ref. 1 and
2 for reviews) and to the details of the van der Waals forces
between the incident particle and the surface.>” The informa-
tion provided by these experiments is complementary to that
obtained from thermal-energy experiments®” as, in both cases,
the classical turning point occurs above the outermost atomic
layer. The similarity between the two different scattering
approaches arises from the particular scattering geometry in
GIFAD, and especially a high incident energy along a direction
close to grazing incidence, which leads to a separation of the

@ Chemical and Biological Physics Department, Weizmann Institute of Science,
76100 Rehovoth, Israel. E-mail: eli.pollak@weizmann.ac.il

b Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS-Université Paris-Saclay,
Orsay, France. E-mail: philippe.roncin@universite-paris-saclay.fr

¢ Cavendish Laboratory, J.J. Thomson Avenue, Cambridge, UK.
E-mail: wal4@cam.ac.uk

9 Instituto de Fisica Fundamental, Consejo Superior de Investigaciones Cientificas,
Serrano 123, 28006 Madrid, Spain. E-mail: s.miret@iff.csic.es

This journal is © the Owner Societies 2024

direction leads to averaging of the interaction where the
dynamics in the slow-direction can be treated using methods
developed for thermal energy scattering,®'? or alternatively by
treating the coupling between fast and slow variables as one of
quasi-resonance.”® In experiment, similar effects have been
seen when scattering molecular hydrogen at large angles of
incidence;'*"* however, experiments close to grazing incidence
show that averaging leads to extinction of in-plane diffraction
in almost every case, though counter examples have been
observed."®"”

In the scattering plane, defined to include the surface
normal and the incidence direction, the transition from fast
to slow atom diffraction has been addressed with quantum
techniques®'" confirming the suppression of in-plane diffrac-
tion. The presence of strong out of plane diffraction is observed
only when a low-index direction in the surface plane is closely
parallel to the scattering plane giving rise to the typical, high-
symmetry diffraction pattern recorded at once and responsible
for the initial interest into the GIFAD method.'®'® However, in
the general case of arbitrary surface orientation, only the
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specular peak is present and the rapid attenuation of the
diffraction when the scattering plane is at an angle with the
crystal axis has also been investigated with quantum
theory.'®?® In this manuscript we present a general description
of both characteristics of GIFAD quoted above; the disappear-
ance of in-plane diffraction at grazing incidence and the rapid
attenuation of out of plane diffraction when the angle between
the low-index direction and the scattering plane increases. We
quantify these effects using a semi-classical approach, which
offers a number of advantages in understanding the basic
phenomenology and has been used widely to describe GIFAD
scattering.®'>*"*?> Not only are classical trajectories relatively
easy to determine, the essential aspects of the quantum beha-
viour are included through interference effects between the
relevant classical trajectories. The method becomes particularly
advantageous when combined with perturbation methods and
a Morse-type potential®*>** as analytic results can then be
derived. One key result of this general analysis is that when
the scattering plane is parallel to a low-index direction of the
surface the three-dimensional scattering potential is reduced to
a two-dimensional effective potential, the well known axial
surface channeling approximation (ASCA),"*?> while away
from low-index directions, diffraction is suppressed and the
effective potential becomes time-dependent.

Fig. 1 illustrates the scattering geometry for the case when
the scattering plane is misaligned by a small angle, ¢, with

Fig. 1 Schematic diagram showing the scattering geometry, and defining
some of the variables used in the text. The incident direction for scattering
is in the plane containing the laboratory coordinate, u, and the surface
normal, z. It is conventionally referred to as the scattering plane. In the
diagram, the specularly scattered beam (red line) is the only scattered
component that lies entirely in the scattering plane (lightly shaded). Other
directions for elastically scattered particles lie on the Ewald sphere (green
shading) according to the projection of the reciprocal lattice, G;, (indi-
cated by blue lines of constant j and k) onto the sphere. The scattering
geometry shown corresponds to a rotation, ¢, of the surface about its
normal, z. Angles in the diagram have been exaggerated for clarity; for
example, the grazing angle of incidence 0; is typically a few milli-radians.
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respect to a low index direction of the surface (y in Fig. 1). The
scattering plane itself is defined by the incident direction and
the surface normal, z. By definition it also includes the spec-
ularly scattered beam (shown red). Other directions for elastic
scattering lie on the Ewald sphere, of constant wavevector
modulus (shaded green) at points corresponding to changes in
wavevector AK = Gy, where Gy are the reciprocal lattice vectors.
Fig. 1 indicates the projection of the reciprocal lattice through
lines of constant j and k, where the intersections define the
G-vectors. In grazing incidence fast atom diffraction (GIFAD), the
basic phenomenology is that diffraction in the scattering
plane is suppressed compared with diffraction out of the scatter-
ing plane. Furthermore, diffraction out of the plane is only
observed when a low index direction is closely aligned with the
scattering plane. In the latter case, as sketched in Fig. 1,
diffraction peaks with k = 0 and j # 0 are observed, as shown
by the dots in the figure. These two aspects of the phenomen-
ology are the subject of the present work, where we derive
analytic results within a semi-classical analysis using a
scattering potential of Morse form, coupled with first-order
perturbation theory. The validity of our approach is confirmed
by comparison with experimental results for the scattering of He
from LiF(001).

2 Semiclassical perturbation theory.
Grazing incidence and specular
scattering

One of the features of grazing incidence scattering along a low
index direction is that, in the scattering plane, one observes
only a single elastic scattering peak. There are no observable
Bragg peaks other than the specular one. With high incident
energies, the extremely fast motion along the incident direction
underlies this phenomenon. The purpose of this Section is to
demonstrate qualitatively and quantitatively how this comes
about, using a semi-classical scattering theory within a frame-
work of time-dependent perturbation theory.

For this purpose we first define the conditions of the
“standard” scattering experiment in three degrees of freedom.
One is the vertical coordinate z (with conjugate momentum p,)
describing the distance of the atom from the surface, the other two
are the horizontal coordinates x and y (with conjugate momenta p,
and p,) for motion parallel to the surface. The Hamiltonian for an
atom of mass M colliding with a corrugated surface is

_pitpl+p?

H
2M

+ V(x,»,2). )

Assuming that the symmetry axes of the surface are along the
horizontal x and y coordinates, and that the potential is periodic
along these coordinates with periods I, and [, allows us to write the
potential as

> 2nk 21j
V(r7.2) = Voolo) + S V() x cos (lix) cos (%7),
X y

J.k
(2)
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where the prime in the sum implies that the summation does not
include the case thatj = k = 0. We have introduced the “corrugation
heights” Ay which are assumed to be much smaller than the
respective lattice lengths and so play the role of the perturbation
parameters. At a later stage we will compare the theory with
experiments involving LiF(001) and, for that purpose, we set Vj(z) =
Vif(z) and [, = [, and, in the spirit of earlier work,*® we take the
Vie(z) = Vyo(z). The hjy parameters are typically unequal and
define the corrugation of the potential.

For the zero-th order dynamics, the only potential governing
the dynamics is the vertical potential Vyo(z). In the general
scattering case, the particle is initiated at the time —¢, with initial
vertical (negative) momentum p. and horizontal momenta p, and
Dy, To zero-th order, at ¢ = 0 the particle impacts the surface. We
are then interested in the final momenta of the particle at the time
+ty, which is taken to be sufficiently large to assure that the
scattering event is over. In the analytical formalism developed
below, we then take the limit ¢, — oo.

At this point we identify the GIFAD direction to be along the
y axis. The scattering plane is then defined by the y and z
coordinates. The angle of incidence

tan 0; =22, (3)

zi

is close to —m/2 since the central property of GIFAD scattering is
that the incident momentum p,_ along the horizontal y direc-
tion is much larger than the magnitude of the (negative)
momentum p. in the vertical direction. Most often, in GIFAD
the small complementary angle 0; = /2 — 0; is used to describe
the grazing angle of incidence referred to the surface plane.

The exact quantum final momentum distribution for an
initial state characterized by the initial momenta py, p, and
ending with the final momenta p,,, p, with amplitude W; for a
transition to the k-th Bragg channel is

P(pyf7p_7f§pynpzi) = Z 5|:pi _pz,o (le)]
= (4)

x ‘5(1’J"r — Py *Pk)|Wk|27

where in the argument of the second delta function we have
used the notation

pr = (5)
1
to express the Bragg condition and k is referred to as the Bragg
index. The final angular distribution is obtained by integrating
the momentum probability over all final momenta subject to
the condition that 6y = tan™! (p,, /p-,).

The central purpose of this Section is to use semiclassical
perturbation theory to understand why one observes experi-
mentally only the & = 0 (specular) Bragg peak. For this purpose,
we summarize the first and second-order semiclassical pertur-
bation theory results derived previously,>*>”*® for a single sine
corrugation function such that 7;, = & and all other corruga-
tion amplitudes vanish. This implies that the effective two
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dimensional GIFAD Hamiltonian, takes the form
2 2
Dy +p-
Hg(x=p,=0) =———
alr=pr=0) oM
(6)

. (2
+ Vio(z)hsin < lny)
where the corrugation height % is assumed to be much smaller
than .
The first-order expression for the probability of observing
the k-th Bragg peak is**

4\ inX 4\ Ay
4=l (F) - (3))

where J. denotes the k-th order Bessel function, the action
A, being

2

|Wk4,1 }2: ) (7)

00

Ay = h[ dtVlO(ZO,r) COS(OJyl), (8)

—00
where 2z, is the zero-th order trajectory in the vertical direction
that hits the turning point at the time ¢ = 0. The central object
for our purpose is the horizontal frequency w, defined as

2np,,.
oy = AZ (9)

Due to the fast GIFAD motion along y (also following the spirit
of ASCA), this frequency is much larger than the inverse of the
collision time, implying that many cycles along y are traversed
during the collision. In other words, as we shall also see below,
the time averaging implied in eqn (8) causes the action A, to
essentially vanish, leaving a contribution in eqn (7) only for
k = 0. The term in the pre-factor, X;, is

_ [ _ Py
X, = “_Oodt[Fc(z) 2460)]
(10)
20, py-z
+ MF(00)—( 1+~
Pz Pz
with
2 r
0 :th A Vio(zor) cos(oy’) (1)
lyM . ) ]
and
hM [ dVlo(Z()’,r) .
Gs(1) :Pz,,ozj_oodt/ a7 sin(w,1'). (12)

Here too, due to the fast GIFAD motion, we expect X; to be
extremely small.

2.1 First order perturbation theory treatment for a Morse
potential model

Beyond the general observation that the fast oscillation due to
oy, causes all quantities to vanish, it is of interest to understand
analytically, the (small) magnitudes involved in the various
parameters. It is possible to do this analytically if one specifies
the interaction potential to have the Morse form

Vu(2) = Dl(exp(—oz) — 1)* — 1], (13)
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which is defined through the physisorption well depth D and
the stiffness parameter o. In order to simplify the final expres-
sions, the following notations are used

20%E.
@ = : 14
Y (14)

D
o =— 15
D (15)

and
_ o, 2n

Q="2=""|tan 6], 16
o =y landi (16)

where E, = pZ[Z/ZM and 6; is the (negative) angle of incidence.
When applied to GIFAD, the first order treatment leads to
the following analytical results:

4n’hp., Q cosh(PQ)

F.(00) = oY) 17
(00) ML,  sinh(nQ) (17)
Qcosh((bf))

A, =2nhp, ———F—=—+ 18
e (n) (18)

M Dy —cos

i = el ){ (1 +p)--2) . {2 sin’ @}
I B (19)

+p}, 5[1+cos dﬂ}
y 2

Zi

The GIFAD limit, in which the horizontal incident momentum
is much larger than the vertical implies that the “frequency”

Q> 1. (20)

In this limit then

8mh p_, 2n(m— @)

F (o0 2

) —

|tan0 |exp |— [tan 0] | . (21)
Since the angle @ is always less than n (see eqn (15)) we find
that F.(o0) is exponentially small in the GIFAD limit and the
same will be the case for the parameter X; which has the
dimensions of length. In this limit, the action appearing in
the expression for the scattering amplitude is

{ 2n(n —

an’hp..
mhp ] )\tan()@
i

A, —

tan 0;| exp (22)

and it is also exponentially small. Noting the series expansion
of the Bessel functions

7\ k& 2\"
Ji(z) = (5)/; (7) T

=0

(23)

one finds that the first non-zero diffraction peaks will be given
approximately by
Xi|P 47
i P Y +
4n?

()£
N\ 7 )T
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while the specular peak will be given by
2 2
2 A, Ay
o~ — || . 2
‘Wm! Jo( 7 ) 4h2 (25)
we then note from eqn (22) that
A} 4n4h2p ) 4n(n — D)
W A 2 ———5—tan” 0; exp{ T|tan0 |} (26)
while from eqn (19) and (21)
nhX, 5 Tt (E-+D)D D
~ Q0 In 1 . 27
1A, 2p., 2E. Hi E.+D 27)

The non-zero Bragg components are truly exponentially small.
Interestingly, in the GIFAD limit, irrespective of the value of the
energy in the vertical (z) direction, the reduced prefactor (X;/I)
is larger than the reduced action (A4,/h); however, it is also
exponentially small.

The second order treatment for a Morse potential model is
presented in Appendix A, the conclusions are the same.

2.2 First order perturbation treatment for a repulsive
potential model

These results may be even further simplified by assuming that
the central contribution to the action comes from motion close
to the turning point of the unperturbed vertical trajectory. If we
ignore the well and only assume an exponential wall

V(2) = Ve exp(—2a2),

then we readily find that

(28)

21Q

A, = hp. —————
v =g (nQ)

4 2 2
- hpzi%han 0| exp (—:—l\tan 9i|) . (29)
8] g

the Morse potential result for A, reduces to the same in the

limit that the vertical momentum is much larger than the well-

depth, since in this limit the angle & — m/2. We also find that
nhX, —, ho D

D
~ —in(——
E:;%l—»() lyAy vV 2MD 4Ez n<4E:) - 07

and the prefactor term, X;, is no longer important. However,
this will be the case only if

| D < 1
4E. Q2

so that for most physical cases, it is the prefactor (X;) that will
dominate. This is important since most implementations of
semiclassical theory ignore this prefactor.

Finally, let us compare with the result (eqn (38)) derived
by Henkel et al.,>® for cold atoms reflected/diffracted on an
evanescent standing light-wave and recently adapted to
GIFAD.*® In their notation,

(30)

A1PE?
— D<K ——%F,,

4n'E? (1)

Jan = 5,2 (sBew (0152, (32)
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ng tan(6)
Bew(0) = ——— >~ (33)
o sinh (71% tan(@))
o
the identification of their notation with ours is that
. 2
Q@i@",a@a,q@l—:,sﬁha, (34)
so that
2n? tan(6) nQ
Bew (0) = = ——, 35
Pew(0) . (2752 tan(@)) sinh (nQ) (35)
aly sinh | ————
ol
- nQ  hp. A,
efew (002 = = L) (36)

e sinh(nQ) h %

As commented above, their theory does not take the prefactor
into consideration. However, qualitatively the result is the
same, the ratio of the lowest diffraction peaks to the specular
one is exponentially small.

3 General theory for GIFAD

The purpose of this Section is to understand what the implica-
tions of a GIFAD scattering experiment are for theoretical
analysis. We will distinguish between a GIFAD experiment in
which the GIFAD direction is along one of the low-index
directions in the surface and when it is at an angle (necessarily
small) to it. To simplify, we will assume a surface with a square
unit-cell so that [, = [, = [, but the same considerations are
applicable to other geometries.

In the GIFAD experiment, there is a direction in which the
momentum parallel to the surface is very large. We thus trans-
form from the x, y coordinates which characterize the surface to
the coordinates u and v where by construction the fast GIFAD
direction is along u

u=xsing +ycos e, (37)

Vv =xcos¢ — ysing. (38)

In the GIFAD experiment, the velocity in the GIFAD direction
is extremely fast, such that it creates an effective Hamiltonian
for the other two degrees of freedom. This assumption of fast
motion implies that one could first time average over the fast
motion, and this leads to the following relations

<cos (ﬁu) > = ko

<cos <¥u> cos <2$u>> = %5;‘7(1 —6k0) + Ok0d70,  (40)

where Jy; is the Kronecker delta function. The averaging is such
that the motion along the two degrees of freedom v, z perpendi-
cular to the GIFAD direction u is much slower than the GIFAD

(39)
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motion, so the time average implied by the brackets is identical
to a spatial averaging over the GIFAD coordinate.

The potential as given in eqn (2) in terms of the three
coordinates x, y, z is also rewritten in terms of the coordinates
u,v,zas

Viuv,z) = Z Vi (2)hy cos {ﬁlkv cos go} cos {?u sin go}
I

oo eo[Frane
X COS TL{COS([) COoS TV sSin @

2 2
_ Z Vi (2)hj sin {%kv cos qo} sin {%ku sin w}
J.k
. {27;/‘ } . {27:] . }
X sin|=Zucos ¢ | sin| —Zvsing |
(41)

to implement the necessary averaging we note, using the
standard trigonometric identities®' that the averaging as in
eqn (39) and (40) implies that

(o (Frusing s (ucons) )
sin| —~using | sin| —~ucos ¢

=3 (eos P wsing —jeosa)| ) 2
AN
and
=3 (eosPrwsing —yeosa]) )

+<cos [g(k sin ¢ + j cos (p)} >} .

From these results, one readily deduces that, with the
exception of the specular channel, j = k = 0, the averages vanish
unless tang = 4j/k. The most important cases are the low index
directions with ¢ = 0, £n/2, £mn/4, corresponding to j, k €
{0,+1}, which we discuss below. The scattering is particularly
interesting near to these low index directions as we show.

3.1 Scattering along a low-index direction

Having in mind a surface such as LiF(001), and a square unit
cell, we consider the two low directions namely: [110] and [100].
For the [110] case, we may assume that the GIFAD coordinate
u =y so that time averaging of the GIFAD fast motion over the
full potential as in eqn (2) one readily finds that the dynamics is
reduced to two degrees of freedom.

U[ll()] (X, Z) = (V(X,y, Z))
= Voo(2) + Y Vio(2)ho cos (ﬁx) : (44)
k
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The 100 case would then correspond to the choice ¢ = /4 so
that from eqn (42) and (43) we have

<cos (gu sin <[>) cos (?u cos ([)) > = 0k,00/,0

1 R
+ 5[%‘ + 0] (1 = dk0),

and

<sin (%u sin q’)) sin (z%u cos <j>) > = %[5;(,,« —Ok—].  (46)

This implies that after averaging over the GIFAD coordinate

T 2nk
U[IOO] <V, zZ, ¢ = Z) = VOO(Z) + Z ka (Z)hAA Cos f\) .
k —
()

(47)

Eqn (44) and (47) have two consequences. One is that the
uncoupled component of the vertical potential (Voo(z)) must
be the same for scattering in both the [110] and [100] direc-
tions. Secondly, the potentials Vi,(z), which determine the
diffraction along [110] are, in general, different from the Vi(z),
which affect scattering along [100]. The two azimuths provide
complimentary information and, as we shall see in the next
subsection, knowing these potentials puts some clear limita-
tions on the effective equations of motion when the GIFAD axis
is no longer a low-index direction.

3.2 Scattering close to a low-index direction

Here we consider scattering when the incident azimuth is
close to, but not exactly parallel with, a low-index direction in
the crystal plane. Our analysis shows that the magnitude of the
deviation from the low-index direction, as expressed in the
angle 8¢ is critical. As already discussed above, if it is too large,
then one remains only with specular scattering from the zero-th
order scattering potential Vio(z). It follows that measurements
of the diffraction pattern as a function of the angle ¢ will
provide information on the surface averaged potential potential
Voo(z). The two lowest index directions, (100) and (110), are
considered separately.

3.2.1 Close to the (100) direction. Let us consider first
when the GIFAD direction is close to the 100 direction,
such that

p=2-50, Sp<1. (a8)

It is then a matter of straightforward algebra to show that the
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potential as in eqn (41) is rewritten as

2k

V(uyv,z) = Z Vi (z)hj cos [v(cosd¢ + sin §¢)]
Jk

\/zlnk[u(cos d¢p —sind¢)]

\/énj(v(cos d¢p —sind))

\/?nj(u(cos 3¢ +sind¢))

V2rk
+ Z Vie(2)hjx cos[ ;
Jik

X COS

X COS

X COS

[v(cos d¢ + sin 64))]]

X sin [\/?Ej(v(cos d¢ — sin Sd)))}

2y

X sin [\/; v(u(cos 3¢ + sin 845))}

27k

X COS

[u(cos 3¢ — sin 6¢)]}

— > Vil2)hjsin {\/Zlnk["(cos 8¢ + sin 5(’5)]}
TE

\/?U(v(cos d¢ — sin 8(1)))}

x cos
s sin [ﬁ”"wcos 56 sinw}

% cos [@nj (u(cos 3¢ + sin 6(1)))]

_ zk: Vi ()l sin {ﬁ”k[v(cos 3¢ + sin sqﬁ)]}

Js

X sin _‘[?”-’ (4(cos5 — sin9)|

X sin _\/ilnk[u(cos 8¢ — sin 8</>)}-

X sin _\[?nj(u(cos 3¢ + sin 54’))_ :

(49)

In Appendix B, the angular average over the GIFAD motion is
carried out. The interaction potential is then written in terms
of the v and z variables, leading to the conclusion that V(v, z)
is a time-dependent effective potential with two degrees of
freedom.
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3.2.2 Close to the (110) direction. Here we assume that the
azimuthal angle of incidence is 3¢ so that following the same
kind of derivation, one finds after some algebra that the GIFAD
averaged potential is

U(V7 Z) = V()()(Z) + Z VkO(Z)hkO
k#0

X [cos (ﬁv cos 6q5) cos (?u, sin qu) (50)

— sin (?v cos BQS) sin (?u, sin B(b)] ,

and here too the scattering problem is reduced to two degrees
of freedom but with a time-dependent potential.

4 Perturbation theory for scattering
close to low-index directions

Here we make a connection between the time-dependent
potentials, derived in the previous section, and experiments
that reveal the dependence of the diffraction pattern on the
deviation in angle from the the low-index directions.> For this
purpose, we calculate the distributions of diffraction intensities
using first-order perturbation theory. We then use the second-
moment of that distribution, its variance, as a measure of the
width of the pattern in order to make a direct comparison with
experiment.’

Analytic results may be obtained if we restrict the potential
to the first term in each Fourier series giving

IJ(V7 Z) = Voo(Z)
V11(Z)h]1 cos 2n
2 1/V2

for incidence close to the (100) direction and

(vcosd¢p — uysin 6(/))] . (51)

U(v,z) = Voo(2)
2n .
+ Vio(z)hyo cos {T(v cos d¢p + u, sin 6(/))} , (52)
for incidence close to (110).

In the zeroth order motion, the particle moves only along
the GIFAD direction u so that the perpendicular surface coor-
dinate v is static. Without loss of generality, we may set it as v =
0. From eqn (44) and (45) we then conclude that x, = u,sin 3¢.
The free motion along u, is

Pu

1+t
M( + 0)3

Uy =u_ + (53)

so that the velocity along the x direction is (p,/M)sin 8¢ and this

identifies the frequency in the x direction w, (see eqn (9)) as
TPy .

2
Wy = — —sin d¢.

i (54)

The significance of the lateral frequency w, is the same as in
Section 2. Note that w, establishes a connection to the simpli-
fied ASCA formalism where the angle §¢ is reduced to an initial
momentum p, = p,sind¢ in an approximate stationary
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Hamiltonian.'® Ignoring the prefactor, the k-th diffraction peak
is given within first order perturbation theory, as before, by

A,
‘Wklzz sz (7)7

where J is the integer Bessel function and the action, 4,, is

(55)

Ax = hllJ dl/Vll (Z(),[f) COS(CUXI/) (56)
for the (100) direction and
A, = hmf dr'Vio (20.7) cos(nt’) (57)

for the (110) direction, which we evaluate below. When the
incident direction is a low-index direction, 8¢ = 0, we have
w, = 0 so that Q = 0 and the action is 2hp,. The diffraction
pattern along the x direction will be symmetric and its
width will depend on the incident vertical momentum. Well
away from a low-index direction, when the offset angle is such
that Q » 1, the action will be exponentially small and only
specular scattering is possible. This condition implies that (v, =
|p-/M| is the magnitude of the incident velocity in the vertical
direction)

Wy 2Mvg

Q===
Q lo v,

sind¢ > 1.

(58)

if 2n/lo is of the order of unity, the inequality is satisfied when
8¢ > 0, the grazing angle of incidence, since Vy, = Vg Sin 0.

Between these two limits (i.e. when 3¢ ~ 0), the action is a
decreasing function of the offset angle 3¢ and we expect the
width of the diffraction pattern to decrease as a function of
increasing offset angle ¢.

The manner in which the diffraction shrinks towards the
specular peak offers a direct point of comparison between the
predictions of first-order perturbation theory and the measure
of the angular width of the diffraction pattern obtained in
experiment.®

For a measure of the “width” of the diffraction pattern we
use the second moment, or variance, of the diffraction inten-
sities, which within the first order perturbation theory, is
given by

0% = Ik = 2T A = (A)%12, (59)

where the final equality comes from a standard result.*>

The variance, ¢” is readily converted to an experimental,
angular width ¢4 using g, = ¢go, where the Bragg angle, ¢p =
arctan(G | /py), is that for the respective low-index scattering
geometry and is given by G | =2mn/a, . The linear distance, a |, is
that separating identical atomic rows, more commonly known
as the width of the scattering channel (see, for example ref. 2, 9
and 22).

For a potential of the Morse form (see Section 2.1), values for
the action follow from eqn (56) and (57), which lead to expres-
sions identical to eqn (18). The angular standard deviation
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(04 = o¢p) is then

nQ cosh(PQ)

%= ¢Bﬂp2ik x sinh (nQ)

(60)

The first term describes the scattering width in the well-aligned
condition (3¢ = 0 giving Q = 0) while the second term can be
considered as the oblique incidence factor, f(nQ). It has a value
of 1 for Q = 0 and governs the evolution with 3¢. It can be
written in a form directly adapted to GIFAD coordinates by
noting that close to a low index direction (8¢ « 1), Q = (G /a)-
(sin 8¢)/(sin 0;) ~ (G . /)-(3¢/0;). Values for ¢y and k depend on
the relevant low-index direction, while D and « define the mean
planar potential (eqn (13)).

5 Comparison with experiment

The results of the previous section make the general phenom-
enology clear: when aligned with a low index direction, w, = 0
and the action 4,, given by eqn (56) and (57) is maximal. As the
misalignment increases, so does w, and oscillation of the
cos(w,t) terms reduces the value of the action leading to weaker
diffraction as seen earlier in eqn (22).

We now compare the expression for the angular width of the
diffraction pattern using eqn (60) with experiment at a quanti-
tative level. Results from the helium LiF(001) system, recorded
by Debiossac and Alaréon®® provide what is required. The
experiment employed helium atoms whose incident energy is
E, = 460 eV with a grazing angle of incidence of 0; = 0.9° where
the azimuth 8¢ was varied in steps of 0.08° around the [100]
and [110] directions using a setup described in ref. 33. As in the
theory, the angular spread of the experimental diffraction
pattern is obtained from the variance of the diffracted
intensities

0'2 = Zklk(k - IZ)Z with IE = Zkklk. (61)

Note that the experimental variance is calculated without
assuming symmetry of the diffraction pattern, I = I_, which
is implicit in first-order perturbation theory in eqn (55). For
each value of 3¢, diffracted intensities have been evaluated
after correction for inelastic and Debye-Waller effects, as
detailed in ref. 34.

Fig. 2 and 3 show the experimental behaviour (discrete
data points), compared with the results of first-order pertur-
bation theory (solid and dashed lines). The diffraction
width, shown in Fig. 2, decreases as the azimuthal misalign-
ment, d¢, increases, while the corresponding changes to the
specularly scattered intensity can be seen in Fig. 3. In both
azimuths, the diffraction width decreases uniformly towards
zero and the specular intensity increases towards unity,
though not monotonically in the case of the [110] azimuth,
where the behaviour can be related to the supernumerary
rainbow structure.®®

In the calculations we use eqn (60) to generate the curves in
Fig. 2, and eqn (55) to generate the curves in Fig. 3. To illustrate
the robustness of the perturbation analysis, we choose
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Fig. 2 Evolution of the relative scattering width o4/0; (eqn (61)) with the
azimuthal misalignment angle 8¢ around the [100] (A) and [110] (O)
directions.?° The red lines result from egn (60) ie. without use of the
Bessel function. The corrugations hy; and hjg are derived at 8¢ = 0 while a
and D are taken from literature and reported in Table 1. The inset shows a
¢-scan taken from ref. 5 where both peaks appear at their absolute
location.

o Specular peak Intensity |,

3 2 414 0 1 2 3
Azimuthal misalignment 5¢; (deg)

Fig. 3 Evolution of the specular beam intensity /o for the azimuthal
direction close to the [100] and [110] directions. The red lines are for
JolA,) with A, given in egn (60) and h measured at 8¢ = 0°. The full line
corresponds to h derived from ¢ (egn (61)) as in Fig. 2 and Table 1. The
dotted lines correspond to h’ derived from the fit of all the measured
intensities /, by Bessel functions in egn (54) giving h{l =0.32A and

hyy = 0.07 A.

Table 1 Parameter values used in the calculation shown in Fig. 2 and 3.
The values for h are within a few percent from those measured in ref. 1, 2
and 36, D is consistent with precise measurements via bound state
resonances>® while values of « are rarely reported (see text)

Direction a /A h/A D/meV a/At
100 2.01 0.07 8.6 1.95
110 2.86 0.28 8.6 1.95
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parameters close to ones derived from earlier work (see
Table 1), rather than simply fitting eqn (55) and (60) to the
experimental data.

In Fig. 3, the experimental data for the [110] azimuth,
shows the specular intensity having local maxima and minima.
These correspond to interference effects due to the surface
corrugation and, as expected, they are sensitive to the precise
value of the parameters %, and %, corresponding to the [110]
and [100] directions respectively. The solid curve in Fig. 3
corresponds to hy; = 0.28 A, the same value as in Fig. 2, while
the dashed line corresponds to a value of h'Il =0.32 A. The 12%
greater corrugation of the dashed curve illustrates the sensitivity
of the diffraction intensities to the precise value of the
corrugation.

Our analysis shows that the theory and experiment are in
close agreement throughout, demonstrating that first-order
perturbation theory provides a useful and quantitative descrip-
tion of GIFAD scattering.?”*® In addition, the analysis confirms
the origin of the phenomena in terms of the time averaging of
the potential over the collision time along the grazing incidence
trajectory.

6 Discussion and conclusions

In the present manuscript we have demonstrated that semi-
classical perturbation theory provides a semi-quantitative
description of fast atom diffraction near grazing incidence
(GIFAD). We have considered two related situations. In the first
case (Section 2), the surface corrugation is restricted to lie in
the scattering plane and we showed that first-order perturba-
tion theory correctly reproduces the basic phenomenology of
GIFAD, whereby the scattering is directed exclusively into the
specular channel. The effect is well known and arises from time
averaging, of the corrugation in the surface potential during the
interaction. Our model describes the averaging in the classical
action (eqn (8)) in terms of a horizontal frequency (eqn (9)),
which is zero at normal incidence, and increases with the angle
of incidence 0; which is to say as grazing incidence is
approached. The derivation also provides a prefactor, which
was absent in previous work.>®

Our analysis of the more general case where the potential,
V(x, ¥, 2), is fully 3-dimensional (Section 3) shows that, along
low-index directions, the 3D potential reduces to a static
2D potential V(x, z), where x is the coordinate perpendicular
to the plane of the incident motion. Our derivation provides
an origin for ASCA,” which was developed initially using
classical mechanics as an evolution of the axial channeling
approximation in crystals®® and has been verified quantum
mechanically.*®

When the scattering plane is not aligned exactly with a low-
index direction, an attempt to reduce the 3D potential to an
effective 2D case is only possible if the 2D potential has a time
dependence (eqn (89) and (50)). That time dependence implies
another horizontal frequency, in this case along a direction
perpendicular to the low-index direction. The phenomenology,
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and the quantitative estimates of changes to the scattering, are
closely related to those discussed above. The horizontal frequency
(eqn (54)) is zero when 8¢ = 0 and the scattering plane is aligned
exactly with a low-index direction. The alignment maximises the
action (eqn (56)) and the out-of-plane diffraction. Increasing the
value of ¢ leads to an increase in the horizontal frequency, wy,
and reduced diffraction. Eventually all of the scattering is directed
into the specular peak, as illustrated in Fig. 2 and 3, as observed
in experiment.’® In effect, the corrugations in the surface plane
are averaged in both directions and the surface appears as a
perfect mirror.

It is remarkable how well the first-order theory reproduces
the experimental observations in Fig. 2 and 3. Also, we note that
the numerical values used for the parameters are similar to
those found in earlier work.>>***7%° For example, the corruga-
tion amplitudes 4,4 and %4, are close to those obtained from an
analysis of the relevant low-index diffraction.””*® The well-
depth, D, is taken from the best theoretical estimates*'** using
bound-state resonance measurements in the thermal energy
regime. The range of the potential, as measured by the Morse
parameter, o, is more difficult to pin down and it may be that
the analysis we describe here offers a more direct route to
obtain experimental values for this quantity. Theoretical esti-
mates for « can be extracted from the same work that gives the
well-depth. The Fowler, Hutson potential,** for example, is
consistent with a value of o = 1.4 A™*, which is 28% less than
the value used in Fig. 2 and 3. Second-order perturbation theory
corrections may contribute to these differences in «. However,
we also note that the theoretical potentials are optimised in the
low energy regime (E, = E;cos>0; < 50 meV), rather than being
specifically tuned to the normal-energies in GIFAD, which may
be an order of magnitude greater.

Fig. 3 shows that measurements of the specular intensity
are well reproduced by first-order theory. As we have noted,
first-order theory generates a scattering distribution that is
symmetrical, whereas the experimental distribution shows
some asymmetry. The first-order theory also reproduces the
width of the scattering distribution extremely well, as can be
seen in Fig. 2. Second order perturbation theory, as shown for
example in Pollak and Miret-Artés,>* is required to reproduce
the observed asymmetry in the diffraction pattern.

Our analysis in Fig. 2 and 3 illustrates the sensitivity of such
measurements to the range of the repulsive potential as defined
by o and suggests a new avenue to extract such information
from experiment. For example, the width of the bell-shaped
peaks, in Fig. 2 is directly related to the range of the potential as
can be seen by evaluating the variance of the incidence factor,
B(nQ), in eqn (60). Considering the case where E > D, so that
& = 1/2, the width of the obliquity function is analytic by noting

that j(nf))zﬂ(nf))d(nf)) =1 so that in the GIFAD coordinates,
the width takes a remarkably compact form.

OCO,'
= . 62
or TEGL ( )
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Notice that the width scales with /G ; and that is precisely
what is seen in Fig. 2 when the widths of the two azimuths
are compared, since o is defined from the mean planar
potential, Vyo, and is identical in both azimuths (eqn (51)
and (52)).

We have given a general derivation of the GIFAD Hamilto-
nian, which turns out to be time dependent. To gain a more
intimate understanding of the processes involved we limited
ourselves, in the present work, to first order perturbation
theory. In principle, the diffraction patterns for the resulting
time dependent Hamiltonian may be computed numerically
exactly. There is no need to limit oneself to perturbation theory.
However, it is gratifying to see that first order perturbation
theory does account for the main experimental features, espe-
cially away from the symmetry axis.

The theoretical analysis presented in this paper is based on
some assumptions. One is a Morse potential interaction along
the vertical direction. The Morse potential captures two impor-
tant effects — the short range repulsion and the existence of a
physisorption well. It does not have the very long range attrac-
tive properties of the vdW potential. For the phenomena
considered here, it is these first two factors which significantly
affect the measured diffraction pattern. Only at very low energy
should one expect that the exact shape of vdW long range
attractive potential becomes important. Secondly, we assumed
that the next order vertical interaction terms are given by the
derivative of the Morse potential (Vio(z) = Vii(z) = Vy,(2)).
Thirdly, we limited ourselves to first order perturbation theory.
All of these limitations may be relaxed but perhaps most
prominently is the fact that second order perturbation theory
can account for the asymmetry in the diffraction pattern when
measured away from the symmetry direction. This remains a
topic for future consideration.

In summary, the present work reinforces the value of
perturbation theory, combined with a semi-classical analysis,
as a quantitative description of GIFAD scattering.*® Our meth-
ods emphasise the origin of the averaging of the lateral
potential that takes place, through expressions for the classical
action such as eqn (8), (55) and (56). The first-order theory
provides simple analytic expressions, which provide an excel-
lent, quantitative description of the width o4 of the azimuthal
diffraction pattern and its evolution with the angular deviation
8¢ away from the low symmetry direction. It gives the triangu-
lation technique a quantitative basis. The widths measured
during a ¢-scan (see inset in Fig. 2 and ref. 44 and 45) show
peaks indicating low-index directions, where their height and
width are given by a,/0; = vV2G, h and ¢4/0; = 2/G, T (eqn (60)
and (62)) respectively. The analysis outlines, as simply as
possible, the role of the corrugation amplitude % and stiffness
o. We note that second-order theory, which we describe in
Appendix A, allows the discussion to be extended to the observed
asymmetries in the diffraction pattern.*® Perturbation theory can
also address more complex forms of the interaction potential
allowing, for instance the investigation of the effect of the location
of the attractive well."?
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Appendices

A review of semiclassical second order perturbation treatment.
Application to a Morse potential model

The second-order expression for the diffraction intensities® is
similar in form to eqn (7):

S iy (%)

m=-—0o0

A ¥ 19,6 1
X |:JV(/(—2m) (f) + Tll

A},. Ay
X J”(/{—I—Zm) 7 _JV(kJrl—Zm) 7

Here, J,(x) is no longer the Bessel function but the Anger
function of order v. The argument R, is

}Wka}z =

(63)

2

1Py MF.(0)X,

R. = e + — a1 (64)
with
o - 02 [Gs(1)Gs(—1) + G2(¢
P, — _ﬂj dz(”~"° [Gs(1) (2 ) + GE(1)]
L)y M
+ Fe(t)Fe(—1) + F2(1)) (65)
K2 (0 ,
— n_[ diV o (zo0,) cos(2my1).
l}’ J—tp
we also used the notation
P,
V(/() =k n—hc, (66)
with
M [ 207
ro="" a|RoE0 B owen]. @
v J—oo
and
2 1
Fs(l) = LhJ dt’ V]()(ZO ,/) sin(wvt’) (68)
LM) k ’
hM (! dVl()(Zo",/)
G(1) :pZ,‘Oz.[—oo t a7 cos(w,1'). (69)
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For the Morse potential model, one finds the explicit

expressions
M?F2(oc0) tan?|0;|
P, =
4py,
y cos?|0;| + QP tan%l(zf)d)) — nQcoth(nQ) 0)
sin”|0;|
— %tanh(ﬁ@) sin 2@),
and
P, = (1+p"2)MF( 20)Fan(cc)
pZi p)/‘,‘
02 5 = = = oahMF.(c0)
— 4+ ¢Qtanh(PQ) — nQcoth(nQ2 _—
X (61+ tanh(®Q) — nQ coth(n ))+[1+cosd>]
_ o o i}
X {@Q tanh(®Q) — Esm(2¢) tanh(®Q) — nQ coth(nQ)}
M?F(00)Fy(c0) p,,2
Tt 2
p-’v’i pZi
(o208 oo cos P[1 — cos(P)]
= sin(a@)T0 4 S0 U — cos(P)]
X {2 sin( )Gl + %
Q _ v
— Esin(2<l>) tanh Q) +%Vsc,27
(71)
and
Vo 321K cosh(20Q)
2T TR sinh(2nQ)
_ (72)
_4nhta sinh (20Q)
—td @ co tei
I E inh(2n0)

Compared to the first order treatment, one finds the same
conclusion when considering the second-order perturbation
theory results. In the GIFAD limit one readily finds that

Fu(o0) = 4TEth;nQ exp[—(n — @)@, (73)
Ml
A, = 2hp,nQ exp[—(n — D)Q] (74)
P, = tanl0; |# 20? CXP[—Z(TE - (D)Q]
(75)
X (QS 2_ m) flsin2<1> ,
sin’|6;] 2

X, = %tanz\(%hf)exp[—(n - 0)Q]

(76)

P
{ln {&] + 1+ cos <D}
2sin’> @
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with
1P,
R.=— 77
CT 4’ (77)
and
Py = ahMF.(00)2Q%0,
L @ ®[1 — cos(®
< {20 4 (0 = m) 4 Tainao) 0 4 2L el
g1 g1

{((D —-m) — %sin(2(D)

_ %sin(ﬂb)} + ahMF,(c0)Q

[1+ cos @] ’
(78)
and
- - sin(k®)
Z Qz +k2) (79)
N~ q\kkcos(k®) oy

n=2 Ve " e (80)

s o2
oy = Z _q 2Q kcos(kdﬁ). (81)

=1 (@ + k2)2

Since P, is exponentially smaller than F(co
and in this limit

) it can be set to 0,

[P,
=k—— —k,

s (82)

and the Anger function becomes the integer Bessel function

A, A,
3, (k—2m) (7) = Ji—2m (7}) :

The second-order expression is then

m=—0o0

A- TEX1 A A}.
(Jl 2m<r)+2_ll|:-] 2m<h) JZ 2m<h):|)
Ay KX]
- J1<7)+W
(84)

and perhaps as might be expected, this leading order term is
precisely the same as in the first-order perturbation theory.

To summarise this Appendix, we have shown that the very
fast motion in the GIFAD direction leads to an exponentially
small probability for measuring a nonzero diffraction peak
in this direction, as also observed experimentally. From the
analysis above, it is clear that adding in the second horizontal
coordinate y which is perpendicular to the GIFAD plane will not
change this conclusion. The very large frequency w, leads to the
same physics.

The principal difference between the second and first order
theories is that away from the GIFAD direction, the second

(83)

Wil =

2
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order theory diffraction pattern is not necessarily symmetric
about the elastic peak, in qualitative agreement with experi-
mental observations.

B Angular averaging

In this Appendix we detail some of the derivation leading to the
time dependent GIFAD Hamiltonian. To perform the average
over the fast GIFAD motion, let us consider the various terms

(7
Cos /

1
=98¢, 0¢+ z&/),‘,k

X <<cos {\/i?nku cosd¢

Similarly, one has that

[u(cosd¢ —sin 6¢)]} cos [ﬁn](u(cos 8¢ +sin 6(1)))} >

/

> + <cos {\/EIan
[\/ﬁnk
cos 7

ﬁlznku(cos 6(1))} >,

<sin {\/?tj(u(cos 3¢ +sindg))

1 22k
—(3_1-,,(§<sin {\[ T usind¢

[u(cosd¢ —sin 64))]] >

i -+ sin

(86)

and

<sin {\/ilnk[u(cos d¢ —sin 6(,1))]} cos {\/?U(u(cos S+ sin6¢))] >

= O,k;< sin [\/ilznkusin&b u(cos 8(;5)] >7

(87)

V221k

+sin

and finally

(cosd¢ —sin 8q§)]} sin {\/?U(u(cos 3¢ +sin 64)))] >

- |V2rk
<sm|: 7 [u

1
=0;x0k0+ 55,/:,/( (1—0k0)
X <—<cos [ﬂlznkucoséqb > + <cos {ﬁ?nk

As before, since cosd¢p =~

{\/527[/{
cos

1 the averaging of the terms

_\/§2nk
/

averaging over

/

vanish. However,

{\/527[/(
cos ]

nitude of 6¢. Due to the fast GIFAD motion, one could assume
that the time dependence of the GIFAD coordinate is known.
So, if the scattering process starts at the time —t, we know that

ucos&j}} and sin ucos&p} will make them

the terms such as

u(sin&b)} is no longer clear due to the small mag-
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the motion along the GIFAD direction is the free particle
motion as given in eqn (53). and therefore averaging over the
fast motion will leave us with

U(V,Z) = V()()(Z)

1 V22nk
+ 5};} Vi (Z)hk/( cos

(vcosd¢p —usinde) |,

(89)

leading to a time-dependent effective potential with two
degrees of freedom.
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