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pH-Controlled enzymatic computing for digital
circuits and neural networks†

Ahmed Agiza, *a Stephen Marriott,b Jacob K. Rosenstein, c Eunsuk Kim b

and Sherief Redac

Unconventional computing paradigms explore new methods for processing information beyond the

capabilities of traditional electronic architectures. In this work, we present our approach to digital

computation through enzymatic reactions in chemically buffered environments. A key aspect of this

approach is its reliance on pH-sensitive enzymatic reactions, with the direction of the reaction

controlled by maintaining pH levels within a specific range. When the pH crosses a defined threshold,

the reaction moves forward and vice versa, akin to the switching action of electronic switches in digital

circuits. The binary signals (0 and 1) are encoded as different concentrations of strong acids or bases,

offering a bio-inspired method for computation. The final readout is done using UV-vis spectroscopy

after applying detection reactions to indicate whether the output is 1 (indicated by the presence of the

enzymatic reaction’s product) or 0 (indicated by the absence of the enzymatic reaction’s product).

We build and evaluate a set of digital circuits in the lab using our proposed methodology to model the

circuits using chemical reactions. In addition, we demonstrate the implementation of a neural network

classifier using our framework.

Introduction

The evolution of computing technology has experienced several
paradigm shifts, transitioning from the initial mechanical
systems to the current advancements in electronic computing.
These developments have paved the way for exploring uncon-
ventional methods of information processing. Unconventional
computing explores novel computing mechanisms, often
inspired by biological, chemical, or physical phenomena.1–5

While some advancements, such as DNA computing and quan-
tum computing, utilize the intrinsic capabilities of DNA mole-
cules for data storage and the principles of quantum mechanics
for enhanced computational power,6–10 there remains a vast
potential in other biological systems. Among these, we observe
that enzymes offer a unique opportunity for developing com-
putational systems due to their inherent biological properties
and behaviors.

In this work, we introduce a computational model based on
enzymatic reactions. Enzymes are catalysts that accelerate
biochemical reactions and offer a high degree of specificity.11

They are not only environmentally benign but also demonstrate
energy-efficient characteristics.12 Additionally, their kinetic
properties can be influenced and controlled by external factors
such as pH levels, which motivates our approach to using
pH-controlled enzymatic reactions for information processing.
Building on this premise, we use the enzyme fumarase to build
our system.

Fumarase is an enzyme involved in the citric acid cycle,
catalyzing the hydration of fumarate to L-malate, as shown in
Fig. 1. This reaction is a critical step in the metabolic processes
that contribute to energy production within cells. Fumarase’s
activity is influenced by the pH of its environment,13 a feature
that allows for the regulation of the reaction’s direction based
on pH levels. The enzyme’s response to pH changes enables a
degree of control over its catalytic function, making it a subject
of interest for applications extending beyond its biological role.
In this study, we utilize the pH-sensitive nature of fumarase to
develop a computational model. In our system, we promote the
forward reaction by elevating the buffer’s pH above 7.2, while
lowering the pH results in inhibition or reversal of the reaction.
We use acids and bases for signal encoding to modulate the
pH of the reaction medium, ensuring controlled activation or
inhibition of fumarase activities to model computational logic.

Building on this foundation, we propose a new class of
digital logic circuits and analog computing. A major advantage
of our proposed method compared to many existing appro-
aches14,15 is decoupling the propagated supply signal (modeled
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as enzymatic reaction’s substrate) and the input signals
(encoded as acids and bases), providing extensibility in modeling
logic functionalities and cascading computations. Moreover, in
computational systems, it is often preferred to have a non-
linear relation between the inputs and the outputs for its ability
to enable functions beyond what is achievable with simple
linear operations, such as the mere addition of two inputs or
reagents. In digital circuit design, the ability to incorporate
non-linear relationships between inputs and outputs facilitates
the creation of more complex and adaptable computing
architectures.16,17 Our model introduces non-linearity through
two components. The first involves chemical buffers that host
the enzymatic reactions. These buffers are characterized by
attributes such as buffering capacity and range, which impart
a non-linear relationship with the input that affects the solu-
tion’s pH. Additionally, the enzymatic reactions themselves
contribute to the non-linearity of the system. The activity of
enzymes, including fumarase, demonstrates a non-linear rela-
tion to the pH of the medium.13 We provide more details about
the non-linearity of our system in the ESI.† Our contributions
can be summarized as follows:
� We introduce a novel computational paradigm that uses

pH-sensitive enzymatic reactions in a chemical buffer to model
digital logic gates. Fig. 1(b) shows that traditional logic circuits

are comprised of a supply signal (e.g., power signal) that gets
propagated through electronic switches controlled by the input
signals. Similarly, in our model, the enzymatic reaction models
a switching mechanism; the substrate acts as the supply signal,
while the acid/base encoding models the input signal that
controls the pH of the chemical buffers, which regulates the
direction of the enzymatic reaction (supply signal). For the final
readout, we apply an established detection method to generate
NADH if the forward enzymatic reaction is successful. We use
UV-vis spectroscopy to detect the presence or absence of NADH
(which indicates an output of 1 corresponding to the success of
the enzymatic reaction or 0 otherwise).
�We formulate the problem of finding the proper encoding

for the input signals (the acids and bases that are used to
represent the signal), and we propose a corresponding optimi-
zation approach. Our method identifies the concentrations of
acids and bases to control pH levels in the buffer solution
(promoting or inhibiting enzymatic reactions) to align with the
behavior of the digital design.
� We experimentally model different logic circuits as enzy-

matic computation using our framework. We also demonstrate
examples of cascading logic gates. We implemented and eval-
uated the different circuits in the laboratory conducted using
chemical reactions.

Fig. 1 (a) Enzymatic reaction for converting fumaric acid to L-malic acid. (b) Overview of modeling logic circuits using enzymatic reaction showing a
traditional circuit for an OR gate comprised of two switches compared to the same circuits modeled using enzymatic reactions. The enzymatic reaction
and the buffer provide the switching mechanism; the substrate represents the supply signal, the acids and bases are used to model the input signal, and
the reaction product models the output signal. The final readout is done using UV-Vis spectroscopy to detect the presence or absence of the product of
the enzymatic reactions (indicating an output of 1 or 0, respectively).
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� We extend our enzymatic computation framework to
design and model a machine-learning classifier that we carry
out through chemical reactions conducted in the laboratory.
The implemented model performs binary classification of data
points into positive or negative groups based on their respective
coordinates. Our framework translates the traditional weights
and inputs of a neural network perceptron into concentrations
of chemical buffers while the acids and bases are used to
encode the input coordinates.

Related work & preliminaries
Molecular computation

Molecular computation extends beyond DNA computing to
encompass a broad spectrum of molecular interactions used
for computational tasks. This field exploits the specific and
affinity-driven interactions of various molecular substrates,
including peptides, proteins, and small molecules like neuro-
transmitters, to perform complex computations.18–20 While
these molecules offer unique computational capabilities due
to their inherent properties, they often lack the robustness or
flexibility required for complex computational architectures.

For instance, peptides and proteins are particularly notable
for their structural versatility, which allows them to fold into
specific three-dimensional shapes that can act as molecular
computing devices. Researchers have utilized these properties
to develop protein-based logic gates and self-assembling pep-
tide structures, which respond to external stimuli to execute
computational operations.18,21 However, these systems typically
face challenges in stability and complexity, which are crucial for
computing applications.

Intrinsically disordered proteins (IDPs) showcase another
avenue for unconventional computing, offering unique features
due to their conformational heterogeneity. Unlike structured
proteins, IDPs lack a rigid 3D structure and exist as dynamic
ensembles capable of sampling a range of conformations. This
flexibility allows IDPs to exhibit context-dependent behavior
and physicochemical multiplicity, features that are particularly
suitable for implementing fuzzy sets and processing fuzzy
logic.22,23 The ability of IDPs to adapt their conformation in
response to environmental factors provides flexibility and
adaptability in computing systems, suggesting a promising
direction for further exploration in molecular computing.

Another example is small molecules, including neurotrans-
mitters, which have been used to mimic neural network beha-
viors in bio-inspired computing systems.24 These molecules
can participate in signal transduction pathways, serving as
messengers that relay information within and between cells.
By harnessing these signaling molecules, researchers have
developed computational models that mimic neural networks,
leveraging the natural communication pathways of the brain
for information processing. This approach highlights the com-
putational capacity of small molecules and their potential
for creating bio-inspired computing systems that emulate the
efficiency and complexity of biological processes. Nevertheless,

the complexity and control of these molecular interactions
remain limited, restricting their application to simple signal-
processing tasks.

Moreover, the field of molecular computing has been
enriched by the integration of synthetic biology techniques,
which enable the design and construction of novel biological
circuits with predefined functionalities. This has led to the
development of biosensors, memory storage devices, and even
computational systems capable of decision-making processes
based on molecular inputs.25–30

Enzymes, such as fumarase, provide a promising alternative
to other biomolecules due to their specificity and efficiency.
Enzymes are highly specific to their substrates, which reduces
the likelihood of side reactions and allows for precise control
over the biochemical reactions necessary for computation.11

Additionally, enzymes operate effectively under controlled con-
ditions where parameters such as temperature, pH, and ionic
strength can be regulated to enhance their activity and
stability.31 This specificity and controllability make enzymes
suitable for constructing logic gates and performing complex
computational tasks. However, the use of enzymes as practical
components in computing devices also presents challenges.
Enzymes can be sensitive to environmental changes, leading to
issues with stability and consistency over long periods. How-
ever, there are also techniques to chemically modify enzymes to
enhance their stability, which remains a potential avenue for
future research to further improve enzyme stability for practical
applications.32

While there are some criticisms of molecular computing
based on chemical inputs, such as the progressive dilution
of solutions and the difficulty in cascading logic gates, our
approach tries to mitigate these issues. The use of buffered
solutions maintains consistent pH levels, minimizing the
impact of dilution. Additionally, the non-linearity in our model
makes the threshold values more reliable. By decoupling the
supply signal from the input signal using enzymatic reaction
substrates and acids/bases, our method mitigates signal neutrali-
zation, facilitating the construction of more complex binary
circuits. For example, existing work14,15 demonstrates modeling
a single gate or a decoder circuit (which does not involve cascading
computation) since, beyond the first gate, the acid/base input/
supply signals can get neutralized (destroying the propagated
signal), and only the biasing input signal is left to represent the
output. However, in our method, we model the supply signal using
the enzymatic reaction’s substrate while the input signals are
encoded as variations in acid/base concentrations that modulate
the enzymatic activity by altering the buffer’s pH, which reduces
the effect of dilution or neutralization, providing further flexibility
and extensibility for the system as we demonstrate cascading more
than one gate.

Enzymatic reactions

Enzymes serve as biological catalysts, enabling chemical reactions
to proceed at rates that would otherwise be unattainable under
mild conditions. Governed by the principles of enzymatic kinetics,
these biomolecules have been widely studied in biochemistry and
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molecular biology. Their ability to facilitate reactions is controlled
by a range of factors, including but not limited to temperature,
ionic strength, and pH levels. However, their potential use in
computational systems has been less explored. While enzymes
offer the advantage of highly specific and energy-efficient catalytic
actions, their sensitivity to various environmental conditions
presents challenges that need to be carefully managed.

Digital circuits

Digital circuits serve as the fundamental infrastructure power-
ing all electronic systems. These circuits operate on the prin-
ciples of Boolean algebra, employing binary logic where signals
are designated as either ‘‘0’’ or ‘‘1’’. The elemental components
in these circuits are logic gates, such as AND, OR, and NOT
gates, which execute basic Boolean functions. These gates
accept binary signals as inputs and produce a binary output
based on predetermined logical operations.

Complex digital systems are constructed by assembling
these basic gates into hierarchical arrangements that can per-
form sophisticated computational tasks. Over the years, tech-
nological advancements have facilitated the miniaturization
and increased efficiency of these circuits, contributing to the
development of electronic devices that are both potent and
compact.

Although traditional digital circuits predominantly employ
silicon-based components, the limitations inherent to these
materials have spurred interest in alternative computational
paradigms.3,14,33,34 Among these alternatives, systems modeled
on biological or chemical phenomena are subjects of active
research, as they offer novel methods of signal processing and
computation.

Results & discussion
Modeling logic gates using enzymatic reactions

As mentioned earlier, our approach utilizes the enzymatic
conversion of fumarate to L-malate, catalyzed by the fumarase
enzyme as shown in eqn (1), as a biochemical proxy for switches
in digital logic gates. This enzymatic reaction offers a conve-
nient feature: its directionality is modulated by the pH level of
the chemical buffer in which it occurs.13

FumarateþH2O Ð
fumarase

L-malate (1)

The initial step is to map each switch in a conventional
digital logic gate to a chemical buffer. Each buffer, containing
the enzyme and its substrates, acts as a medium for the
enzymatic reaction (the supply signal). Initially, these buffers
are prepared with a pH value situated approximately at pH =
6.8, the midpoint of the ranges that favor forward and reverse
reactions. This intermediate pH serves as the starting point,
from which we can shift the reaction’s course by adding either
strong acids or bases (the input signals).

For the realization of these enzymatic gates, the con-
centration levels of strong acids and bases, corresponding to
the binary signals ‘‘0’’ and ‘‘1’’, are determined through an

optimization process that we explain in the following subsec-
tion. The concentrations thus derived serve as the inputs for
each chemical buffer. The introduction of these strong acids or
bases drives the enzymatic reaction either forward or backward,
in accordance with the pH-modulated reaction kinetics.

Subsequent to this input phase, the reactions are propa-
gated from one buffer to the next, following the switches’
connections in the original digital design. The enzymatic reac-
tions mimic the signal flow in digital design, moving from one
buffer to the next in a manner analogous to signal transmission
across switches in the conventional circuit.

The presence or absence of the malic acid at the terminal
buffer serves as the chemical analog of the binary output signal
(‘‘0’’ or ‘‘1’’) from the digital circuit.

Computing the concentrations for the input signals

An important aspect of our system is the computation of
concentrations necessary for representing the signals ‘‘0’’ and
‘‘1’’. The goal is to adjust the input signal, in terms of
concentration, to make the buffer fall within a pH range that
either promotes or inhibits the forward enzymatic reaction,
corresponding to the desired outputs of ‘‘1’’ or ‘‘0’’, respec-
tively. To model the buffer’s pH, we employ the Henderson–
Hasselbalch equation, shown in eqn (2), which serves to
calculate the expected pH of the buffers where pKa represents
the acid dissociation constant of the material forming the
buffer, [HA] is the concentration of the acid, [A�] denotes the
concentration of the conjugate base, and pH is the final buffer’s
concentration.

pH ¼ pKa þ log
A�½ �
HA½ �

� �
(2)

Determining the requisite concentrations is approached as a
linear programming problem, where the objective is to identify
values that satisfy a series of inequalities that describe the
target pH range for each input pattern. For instance, consider a
basic design incorporating a single buffer (switch) for an
inverter circuit, which necessitates that an input of ‘‘0’’ pro-
duces an output of ‘‘1’’, and an input of ‘‘1’’ results in an output
of ‘‘0’’. Let pHforward be the minimum pH required for the
enzymatic reaction to proceed (so we need the buffer’s pH to be
greater than pHforward to execute the forward reaction), and
pHreverse be the pH at which the reaction reverses. D[OH�]
represents the change in concentration of [OH�] ions when
applying the concentration of input signal 0, while D[H+]
represents the change in concentration of [H+] ions when
applying the concentration of input signal 1. The objective is
for a ‘‘0’’ signal to set the buffer’s pH within the pHforward range
and conversely for a ‘‘1’’ signal. To find these concentrations,
we solve the inequalities (3) and (4). Realizing the envisioned
enzymatic circuit relies on the feasibility of solving these
inequalities.

pKa þ log
A�½ � þ D OH�½ �
HA½ � � D OH�½ �

� �
� pHforward (3)
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pKa þ log
A�½ � � D Hþ½ �
HA½ � þ D Hþ½ �

� �
� pHreverse (4)

As the design complexity increases with additional buffers,
the inequalities are expanded to model the buffer states in
response to varying input patterns. While we can try to find the
concentrations experimentally, we prefer to formulate the
problem based on the characterization of the enzyme, making
it easier to design different gates. Using this formulation, the
concentrations are determined by solving the given inequali-
ties. One method to solve these inequalities is through iterative
optimization techniques through neural networks and gradient
descent, which are further detailed in the ESI.†

Signal readout

The output in our system is defined as the presence or absence
of the reaction’s product, which also acts as a thresholding
mechanism. Hence, we measure the system’s state by detecting
the presence or absence of the final output (as a binary state)
defined by the absorbance level at 340 nm. We use the common
method of detecting L-malic acid by applying assay reactions to
generate NADH (which can then be detected through UV-Vis
spectroscopy). The reaction details are highlighted in the ESI.†
After the reaction, an increase in absorbance at 340 nm serves
as a reliable proxy for the presence of L-malic acid and, by
extension, the binary output of the original logic gate. This
readout mechanism provides a quantifiable method for trans-
lating the chemical activity into discernable digital signals.
Moreover, alongside qualitative assessments derived from the
absorbance curve, we established a quantitative method to
analyze the presence of NADH. Considering the baseline absor-
bance at 340 nm typically sits at around 0.2, and NADH’s peak
absorbance occurs near 0.4 at 340 nm, our goal is to refine
these observations to binary-like values, closely mapping the
presence or absence of NADH to 1 or 0, respectively.
To facilitate this, we employ the following equation for quanti-
fying the output based on the absorbance at 340 nm:

Absorbance score = |A340 nm � 0.2| � 5.0 (5)

In this formula, A340 nm represents the measured absorbance
at the 340 nm wavelength. Applying a threshold value of
0.5 allows for a binary interpretation of the data: readings
below 0.5 are classified as indicating an absence of NADH
(quantified as 0), and those above 0.5 as indicating its presence
(quantified as 1). Thus, an absorbance measurement at 340 nm
close to 0.2 translates to an absorbance score near 0, reflecting
minimal or no NADH presence. Meanwhile, an absorbance
measurement at 340 nm around 0.4 results in an absorbance
score close to 1, indicating a significant presence of NADH.
This approach enhances the precision of our model’s output
interpretation by quantitatively reflecting the enzymatic
reaction outcomes.

Modeling switch mechanism

The concept of a digital switch is modeled by using a single
enzymatic reaction. In this model, the binary state of the switch

is determined by the presence or absence of L-malic acid, with
its presence indicating an ‘‘on’’ state (‘‘1’’) and its absence
denoting an ‘‘off’’ state (‘‘0’’). We use one buffer solution to
modulate the enzymatic reaction, where the application of a
strong base or acid determines the switch’s state. Specifically,
the introduction of a strong base into the buffer induces a pH
increase, catalyzing the enzymatic reaction to produce L-malic
acid and effectively turning the switch ‘‘on.’’ Conversely, adding
a strong acid decreases the pH, inhibiting the enzymatic
reaction and switching the device ‘‘off.’’ Fig. 2 demonstrated
the experimental validation of the model showcasing control-
ling the switch state, while Table 1 shows the corresponding
Absorbance scores.

Modeling NAND gate

The NAND gate, a fundamental two-input logic gate, is designed
to output a ‘‘1’’ for all input combinations except when both
inputs are ‘‘1’’. To model this behavior using our enzymatic
reaction framework, the input signals are configured to inhibit
the enzymatic reaction when both are ‘‘1’’, allowing the reaction to
proceed in all other cases. The encoding of binary signals into
chemical concentrations uses a pH of 14.27 for encoding a signal
of value ‘‘0’’ and a pH of 0.62 for encoding a signal of value

Fig. 2 UV-vis spectroscopy for the outputs of a switch mechanism
modeled using enzymatic reactions.

Table 1 Absorbance score for modeling a switch mechanism using
enzymatic reactions. The ‘‘state’’ column indicates the state of the switch
(on or off). The ‘‘pH encoding’’ column indicates the pH used to set the
switch into the corresponding state. The ‘‘abs.’’ column lists the measured
absorbance at 340 nm corresponding to NADH presence. The ‘‘abs. score’’
is calculated from the absorbance using the provided equation, and the
‘‘normalized’’ column presents the final binary output after applying the
thresholding value

State pH encoding Abs. Abs. score Normalized

On 14.00 0.427 1.137 1
Off 0.60 0.215 0.077 0
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‘‘1’’. This approach ensures that the enzymatic reaction is selec-
tively inhibited based on the input combination, mirroring the
logical function of a NAND gate. The reactions were carried out in
2.5 mL of phosphate buffer with an initial concentration of
1.01 gm mL�1 containing 100 mL of the fumarase enzyme and
128 mL of the Fumaric acid. The encoded signal was applied using
10 mL of the given concentration; we expect the pH of the buffer to
be above 7.2 (promoting the forward reaction) for all cases except
for the input signals of all ‘‘1s’’. Hence, Fig. 3 illustrates the
absorbance curves for the outputs generated by our enzymatic
NAND gate for various input patterns, demonstrating the gate’s
ability to replicate the expected logical outcomes through bio-
chemical means. Additionally, Table 2 shows the absorbance
score for the modeled computation and its alignment with the
expected output from the equivalent digital computation.
The table shows three entries only for the two-input function

(which should have four input patterns) because the missing
fourth entry is symmetric to the second entry.

Modeling NOR gate

The NOR gate, another essential two-input logic gate, outputs a
‘‘1’’ only when both inputs are ‘‘0’’. In our enzymatic model,
this principle is applied by configuring the input signals to
prevent the enzymatic reaction from proceeding unless both
inputs are ‘‘0’’. For the chemical encoding of binary signals,
we use a pH of 12.87 for encoding a signal of value ‘‘0’’ and a
pH of 0.3 for encoding a signal of value 1. This setup is
designed to ensure that the enzymatic reaction is inhibited in
the presence of any ‘‘1’’ input, effectively simulating the NOR
gate’s logical operation. Table 3 presents the absorbance scores
for outputs observed from our enzymatic NOR gate when
subjected to different input patterns. The corresponding UV-
vis absorbance curves are shown in the ESI.†

Modeling OR gate

The OR gate, fundamentally the inverse of the NOR gate,
outputs a ‘‘1’’ if at least one of its inputs is ‘‘1’’. To model this
gate effectively within our enzymatic system, we incorporate a
third buffer to model the additional computational stage. This
addition necessitates a re-evaluation of the concentration levels
for the signals ‘‘0’’ and ‘‘1’’, ensuring that the overall system
accurately reflects the OR gate’s logic. Hence, we use a pH of
0.6 for encoding a signal of value ‘‘0’’ and a pH of 14.39 for
encoding a signal of value ‘‘1’’, respectively. By adjusting these
concentrations, we align the enzymatic reactions to mirror the

Fig. 3 UV-vis spectroscopy for the outputs of the NAND circuit modeled
using enzymatic reactions.

Table 2 Quantitative analysis of NAND gate operation using enzymatic
reactions. The ‘‘digital output’’ column indicates the expected binary out-
put based on the input combinations ‘‘In 1’’ and ‘‘In 2,’’ while ‘‘input pH
encoding’’ represents the pH values used to encode the input signals. The
‘‘abs.’’ column lists the measured absorbance at 340 nm, which corre-
sponds to NADH presence. The ‘‘abs. score’’ is calculated from the
absorbance using the provided equation, and the ‘‘normalized’’ column
presents the final binary output after applying the thresholding value

In 1 In 2
Input pH
encoding

Digital
output Abs.

Abs.
score Normalized

0 0 (14.27, 14.27) 1 0.435 1.177 1
1 0 (14.27, 0.62) 1 0.406 1.030 1
1 1 (0.62, 0.62) 0 0.230 0.148 0

Table 3 Quantitative analysis of NOR gate operation using enzymatic
reactions. The ‘‘digital output’’ column indicates the expected binary out-
put based on the input combinations ‘‘In 1’’ and ‘‘In 2,’’ while ‘‘input pH
encoding’’ represents the pH values used to encode the input signals. The
‘‘abs.’’ column lists the measured absorbance at 340 nm corresponding to
NADH presence. The ‘‘Abs. score’’ is calculated from the absorbance using
the provided equation, and the ‘‘normalized’’ column presents the final
binary output after applying the thresholding value

In 1 In 2
Input pH
encoding

Digital
output Abs. Abs. score Normalized

0 0 (12.87, 12.87) 1 0.411 1.057 1
1 0 (12.87, 0.30) 0 0.223 0.116 0
1 1 (0.30, 0.30) 0 0.233 0.163 0
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expected behavior of an OR gate. Table 4 presents the absor-
bance scores for outputs observed from our enzymatic OR gate
when subjected to different input patterns. The corresponding
UV-vis absorbance curves are shown in the ESI.†

Cascading AND-OR gates

For the purpose of demonstrating the cascading capability of
2-input gates within our enzymatic system, we model a 3-input

circuit configuration as depicted in Fig. 4. This arrangement
consists of an AND gate followed by an OR gate. The AND gate
is realized through two buffers, whose output is subsequently
integrated with another input via a third buffer to emulate the
OR gate functionality. We used a pH of 0.3 for encoding a signal
of value ‘‘0’’ and a pH of 14.6 for encoding a signal of value ‘‘1’’.

Table 4 Quantitative analysis of OR gate operation using enzymatic
reactions. The ‘‘digital output’’ column indicates the expected binary out-
put based on the input combinations ‘‘In 1’’ and ‘‘In 2,’’ while ‘‘input pH
encoding’’ represents the pH values used to encode the input signals. The
‘‘abs.’’ column lists the measured absorbance at 340 nm corresponding to
NADH presence. The ‘‘abs. score’’ is calculated from the absorbance using
the provided equation, and the ‘‘normalized’’ column presents the final
binary output after applying the thresholding value

In 1 In 2
Input pH
encoding

Digital
output Abs. Abs. score Normalized

0 0 (0.60, 0.60) 0 0.235 0.175 0
1 0 (14.39, 0.60) 1 0.404 1.018 1
1 1 (14.39, 14.39) 1 0.419 1.094 1

Fig. 4 (a) Conventional digital circuit comprised of cascading AND gate with OR gate. (b) Representing the same circuit using the enzymatic reactions
model.

Fig. 5 UV-vis spectroscopy for the outputs of the AND-OR circuit modeled using enzymatic reactions.

Table 5 Quantitative analysis of the AND-OR circuit gate modeled using
enzymatic reactions. The ‘‘digital output’’ column indicates the expected
binary output based on the input combinations ‘‘A,’’ ‘‘B,’’ and ‘‘C,’’ where we
use a pH of 14.6 to encode a signal of value ‘‘1’’ and a pH of 0.3 to encode a
signal of value ‘‘0’’. The ‘‘abs.’’ column lists the measured absorbance at
340 nm corresponding to NADH presence. The ‘‘abs. score’’ is calculated
from the absorbance using the provided equation, and the ‘‘normalized’’
column presents the final binary output after applying the thresholding
value

A B C Digital output Abs. Abs. score Normalized

0 0 0 0 0.224 0.118 0
0 1 0 0 0.239 0.195 0
1 0 0 1 0.391 0.956 1
0 1 1 1 0.396 0.982 1
1 0 1 1 0.411 1.055 1
1 1 1 1 0.420 1.101 1
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Fig. 5 illustrates the resulting outputs from our enzymatic
cascaded gate system for two sample inputs, additional absor-
bance curves are provided in the ESI,† while Table 5 shows
Absorbance scores for different input points.

Enzymatic machine learning model

Building upon the foundational principles outlined in preced-
ing sections, we extend the application of enzymatic reactions
to the realm of machine learning, specifically for the task of
binary classification using a perceptron model. A perceptron is
a classification model that can decide whether or not an input

vector is a member of a specific class, as shown in Fig. 6(a).
Hence, we propose a model analogous to a neural network
perceptron, as illustrated in Fig. 6(b). In this model, what would
traditionally be weights of a perceptron are instead represented
by the concentration levels of chemical buffers. Input signals
are modeled through variations in the concentrations of acids
and bases within these buffers. The primary objective of this
model is to classify a set of data points (x, y) into either positive
or negative categories. For example, if a coordinate point (1, 1)
is represented by the acid/base concentrations (x, y), then the
point (2, 3) would be encoded with concentrations (2x, 3y)

Fig. 6 Enzymatic machine learning perceptron. (a) A conventional machine learning perceptron classifies points into positive and negative classes. (b) An
equivalent enzymatic machine learning perceptron for point classification. The chemical buffers encode the weights, while the acids/bases encode the
inputs. (c) Mapping of the input coordinates into pH values to be applied to the perceptron. (d) Sample absorbance curves for classifying the point (1, 1)
using the enzymatic machine learning perceptron.
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to reflect the proportional relationship between the points.
Additionally, if we use concentrations of bases to represent
positive coordinates, we choose acids with the same concentra-
tions to represent their negative counterparts. Fig. 6(c) shows
the mapping of different values into their corresponding pH
encoding. This transformation allows for a straightforward
mapping of input data into the biochemical domain, enabling
the enzymatic network to process the information. Similar to
how we compute the concentration for encoding the input
signal, we adopt the same logic to calculate the correct buffer
concentrations that mimic the neural network’s weights, where
we want to promote the forward reaction for positive samples
and inhibit it for negative samples. Once these concentrations
are computed, the model can classify data points based on the
presence or absence of L-malic acid, respectively, wherein
the presence of L-malic acid signifies a positive classification
outcome, whereas its absence denotes a negative classification.
To model our perceptron, two buffers were designated to
handle the x and y coordinates, with their pH levels adjusted
to 6.6 and 7.0 to model the network’s weights. We validated
100 sample points with in silico simulation of the reaction.
In addition, we evaluated four distinct points chemically,
encompassing two positive samples and two negative samples.
The positive samples were represented by coordinates (1, 1) and
encoded with pH values of (13.0, 13.0) for the first point and
(2, 3) encoded as (13.3, 13.48) for the second point, respectively.
Conversely, the negative samples were represented by coordi-
nates (�1, �1) and encoded with pH values of (1.0, 1.0) for the
first point and (1, �3) encoded with pH values of (13.0, 0.52) for
the second point. Fig. 6(d) provides a visual representation
of the classification outcome of a sample point, while Table 6
shows the absorbance scores for the four points, showcasing
the capability of our enzymatic model to distinguish between
positive and negative classes.

Conclusion

In this paper, we introduced our approach to digital computation
that utilizes enzymatic reactions to emulate the functionalities of
digital logic gates and machine learning neurons. Our method
leverages the pH sensitivity of the enzymatic reaction to encode

binary signals through the concentrations of strong acids or
bases. We explained the problem formulation to tune the con-
centrations of acids and bases to encode the input signals
properly. Our empirical evaluations demonstrated the capability
of our framework through the construction of digital gates and
machine learning perceptron in the laboratory setting, illustrating
the practical application of enzymatic reactions in computational
tasks. The potential of enzymatic reactions in computing opens
avenues for future research, including refining and exploring the
integration of biological and electronic components to enhance
computational performance or improve biomedical devices.

Methods

All solutions for the experiment were prepared using deionized
water as a solvent (Millipore Milli-Q). For the signal encoding,
we used 20 mL (per input) of hydrochloric acid (HCl, 36.5% to
38.0%, Fisher Chemical) and sodium hydroxide (NaOH, Z97%,
Fisher Chemical). The enzyme utilized was fumarase, obtained
from a porcine heart (Sigma Aldrich, Natick, MA) dissolved in
0.1% bovine serum albumin solution (Sigma Aldrich, Natick,
MA). The chemical buffers were based on a phosphate buffer
solution (pH 7.00, Fluka). pH Meter Kit (PH700, Apera) was
used to verify the pH across different reactions. Fumaric acid
(499.0%, Sigma Aldrich, Natick, MA) was used to prepare the
reagent solutions. To detect the enzymatic reaction outcomes,
we employed NAD+ and a glutamate-oxaloacetate suspen-
sion (Megazyme, Lansing, MI). The final measurements were
conducted using UV spectroscopy (Varian Cary 50 Bio UV-Vis
Spectrophotometer) to assess the success of the enzymatic
processes.
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Table 6 Absorbance score for classification results of 4 different coordi-
nate points using enzymatic machine learning classifier. The ‘‘input’’
column presents the input point coordinates, and the ‘‘abs.’’ column lists
the measured absorbance at 340 nm, which corresponds to NADH
presence. The ‘‘abs. score’’ is calculated from the absorbance using the
provided equation, and the ‘‘normalized’’ column presents the final label
after applying the thresholding value

Input
Input pH
encoding

Digital
label Abs.

Abs.
score

Normalized
label

(1, 1) (13.00, 13.00) 1 0.402 1.012 1
(�1,
�1)

(1.00, 1.00) 0 0.242 0.210 0

(2, 3) (13.30, 13.48) 1 0.425 1.124 1
(1, �3) (13.00, 0.52) 0 0.254 0.269 0
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