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Dynamic nuclear polarization (DNP) experiments using microwave (mw) pulse sequences are one
approach to transfer the larger polarization on the electron spin to nuclear spins of interest. How the
result of such experiments depends on the external magnetic field and the excitation power is part of an
ongoing debate and of paramount importance for applications that require high chemical-shift
resolution. To date numerical simulations using operator-based Floquet theory have been used to
predict and explain experimental data. However, such numerical simulations provide only limited insight
into parameters relevant for efficient polarization transfer, such as transition amplitudes or resonance
offsets. Here we present an alternative method to describe pulsed DNP experiments by using matrix-
based Floquet theory. This approach leads to analytical expressions for the transition amplitudes and
resonance offsets. We validate the method by comparing computations by these analytical expressions
to their numerical counterparts and to experimental results for the XiX, TOP and TPPM DNP sequences.
Our results explain the experimental data and are in very good agreement with the numerical
simulations. The analytical expressions allow for the discussion of the scaling behaviour of pulsed DNP
experiments with respect to the external magnetic field. We find that the transition amplitudes scale

rsc.li/pccp

1 Introduction

Dynamic nuclear polarization (DNP) has become a routine
method to increase the nuclear polarization of solid samples
by transferring the higher electron polarization to the nuclei of
interest typically at cryogenic temperatures.””” Two different
implementations of DNP are currently in wide-spread use: (i)
magic-angle spinning (MAS) DNP operated typically at around
100 K to investigate materials, surfaces, and biomolecules.>™
(if) Dissolution DNP operated typically at around 1 K to gen-
erate highly polarized small molecules for metabolic imaging
or spectroscopic applications.®" Both modes of DNP use
continuous-wave (CW) irradiation of microwaves (mw) on the
sample to generate a high polarization on the nuclei. In MAS
DNP, polarization transfer to protons is the most common
mode followed by a subsequent polarization-transfer step to
other nuclei. In dissolution DNP, direct enhancement of *C is
quite common but transfer to protons with subsequent
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inversely with the external magnetic field.

polarization transfer to other nuclei has also been implemen-
ted. A number of different mechanisms (Overhauser effect
(OE),*? solid effect (SE),"**® cross effect (CE),""*° and thermal
mixing (TM)***') have been identified that explain the polar-
ization transfer. They all have in common that increasing static
magnetic fields lead to a decrease of the polarization transfer
efficiency. Typically, they are described in an incoherent way
using arguments that rely on the saturation of certain transi-
tions and relaxation properties.

Some time ago, the nuclear orientation via electron spin
locking (NOVEL) sequence was introduced where the micro-
wave nutation frequency is matched to the nuclear Zeeman
frequency.?>”*® Both fields modulate the pseudo-secular part of
the hyperfine coupling leading to a time-independent effective
Hamiltonian if the two frequencies are matched. A number of
additional pulsed polarization-transfer techniques for DNP
have been introduced recently that can also be described by a
coherent effective time-averaged Hamiltonian in a suitable
frame of reference.®*° They all rely on modulation by a pulse
sequence that in some way matches the nuclear Larmor fre-
quency, thus generating a time-independent part of the Hamil-
tonian from the pseudo-secular part of the hyperfine
interaction that promotes polarization transfer. Different irra-
diation schemes have been proposed but this principal mode of
operation is the same for all of them.
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In this publication, we analyze pulsed DNP sequences in
more detail, using two different approaches. In a first approach,
we use operator-based Floquet theory to calculate effective
Hamiltonians at the resonance conditions that drive the
double-quantum or zero-quantum polarization transfer.’*> This
provides theoretical understanding under which conditions we
can expect DNP to happen and allows to estimate the efficiency.
In a second, complementary approach, we use matrix-based
Floquet theory®*™® to connect the Fourier coefficients of the
pulse sequence to the various resonance conditions and to get a
better understanding of the scaling behavior of pulsed DNP as a
function of the static magnetic field.

2 Theoretical concepts

We will first discuss pulsed DNP sequences in the framework
of operator-based Floquet theory (Section 2.1) which gives
effective Hamiltonians that promote polarization transfer
at resonance conditions. These effective Hamiltonians can
be calculated only numerically due to the complexity of the
interaction-frame transformation that hides the direct connec-
tion between the Fourier coefficients of the microwave irradia-
tion and the transition probabilities. In a complementary
treatment in the framework of classical matrix-based Floquet
theory (Section 2.3), analytical diagonalization in connection
with perturbation theory can be used to establish this connec-
tion. This treatment allows a better understanding of transition
amplitudes and their dependence on the experimental para-
meters like microwave amplitude and static magnetic field.

2.1 Operator-based Floquet theory

In this section, we present an operator-based Floquet theory
formalism®' to describe pulsed DNP. The formalism introduced
in this section is similar to the one presented in ref. 29 and we
repeat some of the results but in a slightly different notation.
The two-spin Hamiltonian for a spin system consisting of one
electron spin (S) in the Zeeman rotating frame and one nuclear
spin () in the laboratory frame is given as

%A(l) = QO,SSZ + AZZSZiZ + Bgzix + wO,liz + %Li;)(t)a (1)

where Q5 = wo s — W, is the offset of the microwave irradiation,
A,, the secular and B = /4. + A.? the pseudo-secular part of
the hyperfine coupling. The electron resonance frequency is given
by wos = g:z%Bo and for the nucleus by w, ; = —yBo while w,,, is

the microwave frequency and B, is the external static magnetic
field applied along the laboratory z-axis. The orientation-
dependent g,, value determines the frequency offset from the
mw irradiation. For low static magnetic fields, the isotropic value
Ziso can be used instead. The Hamiltonian jffv)(z) refers to the
Hamiltonian of the uw irradiation and can be written as

A (1) = o1 s(0){cos|p(D]S +sin[d()]S,}, ()

where o, 5(¢) is the time-dependent pulse amplitude and ¢(t) the
time-dependent phase. To describe the effect of the microwave
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irradiation, it is best to transform the Hamiltonian of eqn (1) into

. . . 5 A(S
an interaction frame with respect to @ sS. + Jffm)(t) Such a
transformation can be analytically written as

NI . A8) )
H'(t) = Us 1(”—90.55: —Wflw)(l)> Us

o ) ®)
= Z a(S)(t)SX(A;:I;+BIx) +w0‘1127

zx
I=X.2

S - 5 A(S AL
with Ug = Texp<—ingo,SSz + fflw) (r)dt) where T is the Dyson
time-ordering operator’’ and ag)(t) are the time-dependent ele-
ments of a 3 x 3 rotation matrix. Note that in the following we
drop the “dash” on the S spin operators when referring to the

interaction frame. We consider time-periodic irradiation schemes

with a modulation period t,,, with J/E:;)(t) = ,%SSN)(I + T ). This
results in a modulation frequency
2n
m = - 4
o = Q

Operator-based Floquet theory can then be used to describe the
effect of the irradiation. The interaction-frame transformation, as
given in eqn (3), corresponds to rotation around an effective field
axis in the spin space of the electron spin. The effective
frequency is

:Beff S (5)

weir,s (Q0,5) = _—
m

where fi.s describes the rotation angle around the effective field
axis within one period 7,,,. Note the functional dependence of
et on the offset frequency Q, 5. The Fourier coefficients of the
Hamiltonian can be calculated from the rotation-matrix elements
a)(¢) as

k) _ V[ (8) otk ity st
s nmj_ooaéx (1) komtgiton st ©)

Now we transform the Hamiltonian into a frame rotating with the
nuclear Larmor frequency o, ; and insert the Fourier coefficient of
eqn (6) for the electron spin. This leads to

o0 1
£ =3 Z{{A;(agf”ﬁmgwgf+zag§z>§z)fz
k=—00 (=1

B/ e s . .
+ Z(a(l O§+ 1 k0§~ 1 24k SZ>

% (I“Jre—i\u)o,, [t + ifei\wo,, \t>:| eikwmreiéme‘y_st}

1 00 1
_ § E § e}f(n,k ) e"”‘“’().l |t ei/m)m le[é(/)eff_sz

n=—1k=—o0 l=—1
)

where alf) = a%) ¥ ia%”) and §* = §, + iS,. Please note that we
assumed a negative Larmor frequency for the nuclear spin
corresponding to a positive gyromagnetic ratio. The Hamiltonian
in eqn (7) contains three fundamental frequencies |wg |, wegr,s and
oy, and we can write it as a Fourier series (see last line in eqn (7)).
The first-order effective Hamiltonian based on triple-mode
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Floquet theory is, thus, given by
J/gf) — 3{5(0«00)_._ Z (noko.bo)
ng.ko Lo
_ Az ( (00) S+ 0.0) 8= 1 2,008 )} (8)
5 (a Y +a” + 2a;; 4) z
+ Z A mokoto)

ng.kolo

In eqn (8) no, ky and ¢, sum over only the values where the
resonance condition

no|wo 1| + kowm + LoWesr,s = 0 )

is fulfilled. Polarization transfer between the electron spin (S)
and the nuclear spin (I) can only be mediated by the double-
quantum (DQ) terms (S*I*) or the zero-quantum (ZQ) terms
(7). Therefore, if we now define a tuple (—1, ko, Z) and its
negative (1, —ko, —7,), we obtain a first-order effective Hamil-
tonian for the ZQ and DQ-transfer given by

B o Al
Hiy =7 (b S I e VSH)  (10)

B o .
#0) :Z<a$m,eo)s+,++a<:/xo,—zo>5—r) (11)

Note that for a negative gyromagnetic ratio (positive Larmor
frequency) for the nuclear spin the sign for the indices &, and ¢,
changes, e.g.,, a*o%)S~J* in case of a negative Larmor fre-
quency is ako—l)§- [+ in case of a positive Larmor frequency.
The polarization transfer p, — I, can be calculated following
ref. 29 by

(I.(1)) = j;f(ﬂo | $-)Tr{Uzq/poS-Uzqng 'I-}/Tr {1}

" " B N
= By | - psin (2 ),

(12)

where Uzq/pq = exp(#%%mQt) and the upper binary opera-

tor in this equation refers to the ZQ case and the lower one to
the DQ case, respectively. Again, eqn (12) is valid for the case of
a positive gyromagnetic ratio of the nuclear spin (negative
Larmor frequency). For the case of a negative gyromagnetic
ratio of the nuclear (positive Larmor frequency) the sign for the
indices k, and /, changes, e.g. for the ZQ case a([k‘“%)

change to a(++]‘°’+'ﬁ'°). Also note that in case of a positive gyro-

magnetic ratio of the nuclear spin the ZQ enhancement gets
negative and the DQ enhancement positive due to the ratio e

V1
However, for a negative gyromagnetic ratio of the nuclear spin
the ZQ enhancement is positive and the DQ enhancement is
negative. The factor (po|S,) takes into account that only the part
of the electron polarization that is along the effective field can
be transferred to the nuclei. For small times ¢ and using

(ko,bo) __
ai =

would

*
(a({k”’_[“)> the performance of a certain pulse

scheme can be roughly estimated by*’
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&zQ/pQ = F <p0|‘§z>aeff (13)
where
‘a(;k”’*[‘v ‘, for ZQ condition
deff = (ko.£o) L. (14)
‘a+”‘ o for DQ condition

For CW irradiation (time-independent pulse amplitude w; s
and phase offset ¢ in eqn (2)), we can calculate the Fourier
coefficients of the Hamiltonian of eqn (7) analytically which
leads to an effective Hamiltonian relevant for DNP of the form

B . NN ISP NP SN
Zsm(9) (STIH+ 8"~ =St —871"), (15)
where 0 = arctan (%) describes the direction of the effective
0,5

field in the electron spin coordinate system (see Fig. S1 in ESL, T
Section A). In case of the solid effect'® we can invoke the small-

angle approximation (2, s > w; s), where sin(0) ~ ﬁ leads to a

prefactor of BOLS por NOVEL?? 0 — T and the prefactor is B

4wz 2 4
Section A of the ESIt contains the derivation to calculate the
Fourier coefficients of the Hamiltonian analytically starting from
eqn (6). The effective Hamiltonian of eqn (15) as well as the
scaling factor for NOVEL and SE were already reported in ref. 38.

2.2 Microwave irradiation scheme

So far we did not specify the microwave irradiation scheme

. 5(S)
characterized by

(7) in eqn (1) in detail. In order to apply
Floquet theory the only requirement is that the mw irradiation
is time periodic with a modulation period 7, When we limit
the discussion to amplitude-modulated monochromatic pulses
(¢(t) = ¢), the pulse amplitude w, s(t) becomes the only para-
meter that has to fulfill the time-periodic restriction. In the
following we set ¢ = 0 for simplicity of the notation. Any time-
periodic amplitude modulation can then be represented as a
half-range Fourier expansion of the form

w15(f) = wgi';'x) % + Z{aq cos(qom?) + by sin(qwmt)}}
q=1
CU(max) 00 . .
=5 a3 oy =g (o i |
q=1

(16)

where ay, a, and b, are the Fourier coefficients of the microwave
irradiation scheme and g € N. w(f,';ax) is the maximum value of
the time-dependent pulse amplitude w, 4(t). Note the difference
between the Fourier coefficients of the microwave irradiation
scheme (a;, and b,) as given in eqn (16) and the Fourier
coefficients of the interaction-frame trajectory (ag‘;/)) as calcu-
lated in eqn (6). For CW irradiation all Fourier coefficients in
eqn (16) are zero except for a,, which is equal to 2 and w; 5(t) =
o™, For an even pulse amplitude function o, s(t) all odd

Fourier coefficients (b,) are 0. In contrast for an odd function

This journal is © the Owner Societies 2024
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w1,s (t) /w1,s Tp
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1
N
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-1
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wi,s (t) /wi g
N
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Fig. 1 Half-range Fourier expansion of (a) the TOP DNP pulse scheme and (b)
the XiX DNP pulse scheme according to egn (16). The DNP pulse sequence is
represented with a blue solid line. The TOP DNP sequence consists of a pulse
with length 7, and a delay 74, whereas the XiX DNP sequence consists of two
pulses with opposite phase. The different Fourier modes are shown with dashed
lines. In the TOP sequence the unmodulated Fourier mode described by the
Fourier coefficient aq is represented in dashed red. The first Fourier mode a; and
the second mode a, are represented by magenta and violet dashed lines

) . 2. ) .
respectively. A fraction H _ s used for this particular TOP sequence (see
Tm

Table 1). In the XiX case, the first Fourier mode by, the third mode bz and the fifth
mode bs are represented by red, magenta and violet dashed lines respectively.

w4,5(t) all even coefficients are 0, e.g. @, and a,. In the following
three sections we will discuss pulsed DNP schemes, first the
Time-optimized Pulsed (TOP) DNP*” sequence, second the XiX
(X-inverse-X) DNP sequence®®?® and last the Two-Pulse Phase
Modulation (TPPM) DNP sequence.’® We represent them by the
half-range Fourier expansion as given in eqn (16).

2.2.1 TOP pulse scheme. The TOP DNP sequence is pre-
sented in Fig. 1(a) and consists of a delay 74 and a pulse with
length 7,.>” In this representation, the TOP DNP sequence is an
even irradiation scheme in the sense of the half-range Fourier
expansion which means that all odd Fourier coefficients b, are 0.
The value of a, is given for arbitrary values of 74 and 7, as

2, 21,

ap = (17)

Tp + 14 Tm

The Fourier coefficients q, for the TOP sequence are obtained as

2 . <qm:d)
ay, = —sin{ —
qm Tm

One can clearly see from eqn (17) and (18) that the Fourier
coefficients of the microwave irradiation scheme depend on the

(18)
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Table 1 Fourier coefficients for different duty cycles for the TOP DNP
sequence. For certain combinations of 74, 7, and g some coefficients a, are
0. The first entry represents the case where t4 = 0 e.g. CW irradiation. The
Fourier coefficient ag is scaled by the maximal possible value obtained by
CW which is two

Taltp Tp/Tm Ta/Tm aol2 a,

0 1 0 1 0 for all g

1 1/2 1/2 1/2 0forallg=2,4,6,8,...

2 1/3 2/3 1/3 0forallg=3,6,9,12,...
3 1/4 3/4 1/4 o for all g = 4, 8, 12, 16,. ..

duty cycle 1/t of the TOP sequence. The coefficient a,
describes the average field and can have values between zero
(no pulse) and two (cw irradiation). The Fourier coefficients a,
for ¢ € N exhibit a much more complex behaviour. For certain
combinations of the parameters 14, 7, and g certain coefficients
aq can be 0. This is summarized in Table 1 and has important
consequences for the discussion in Section 3.3.

2.2.2 XiX pulse scheme. The XiX DNP sequence is shown
schematically in Fig. 1(b).>** Although XiX is a phase-modulated
pulse scheme, it can be considered as well as an amplitude
modulation scheme with equal pulse length 7, and inverted ampli-
tude. Such an amplitude modulation can be described by an odd
half-range Fourier expansion. The odd coefficients b, are given by

4
—, for odd
qTE’ or O q

by = (19)
0, forevengq
a)
Tp
—A
(max) -
wi's ¢ ¢
Tt
b) c)
Yy
v
....... : ¢ w(y)s :JI )
. 1’ . - X
i ; [ LS
T 1 T 7
: 1 1 t
. 1 1
....... —d) f 1
f 1

Fig. 2 (a) Schematic representation of the TPPM pulse sequence con-
sisting of two pulses of length 1, with opposite phases ¢ and —¢,
respectively. (b) Cartesian representation of the opposite phases in a TPPM
experiment. The x-part of the phase of the two pulses is identical. The y-
part of the phase of the two pulses changes sign and results in an XiX type
irradiation. (c) The TPPM sequence can be viewed as a combination of an
amplitude-modulated XiX pulse sequence with amplitude wiy’s and phase y
(blue dashed lines) and an additional orthogonal CW irradiation with
amplitude w{% and phase x (red dotted lines).
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and are independent of the pulse length and modulation period.
Another difference to the TOP sequence is that the Fourier coeffi-
cients b, are non-zero only for odd g.

2.2.3 TPPM pulse scheme. The TPPM pulse scheme con-
sists of two consecutive pulses with phases +¢ (see Fig. 2(a)
and (b)). This scheme can be considered as an amplitude-
modulated XiX sequence with an additional orthogonal CW
part as indicated in Fig. 2(c). This can be easily understood by

starting from the Hamiltonian /[;fi)(t) as given in eqn (2). By

inserting a function ¢(¢) switching from +¢ to —¢ at a modula-
tion frequency w,, we obtain

A(S) N N
H (1) = 013 + 0] 5(1)S, (20)

with
w(lYé) = Cos(qb)(u(]msux) (21)

and

a)%(z) = sin(¢) a)lngdx qu sin(qomt)
q=1
(22)
oo
_ wlrr;dx Z qwm

The coefficients b, in eqn (22) are the same as for the XiX case
as given in eqn (19). Please note that in the TPPM case we
multiply coefficients b, by a factor sin(¢) to account for the
phase modulation. This results in a new definition b, = sin(¢)b,
as performed in the last step of eqn (22). The amplitude of
the CW contribution is given by eqn (21). Hence, due to the
effective CW part in TPPM, the a, Fourier coefficient of the
microwave irradiation is

5= cos(@). (23)
This coefficient is not zero unless ¢ = Wthh corresponds to
the XiX limit of TPPM with phase y. Therefore, the TPPM
sequence can be viewed as a combination of the CW irradiation
and an orthogonal XiX DNP sequence. The time-dependent
modulation can be treated in a similar way as in the XiX
sequence with the exception that there is an additional time-
independent CW part.

2.3 Matrix-based Floquet theory

While operator-based Floquet theory can be used to calculate
effective Hamiltonians that describe the polarization transfer
in DNP, the direct connection to the various harmonics of the
mw irradiation is often lost in the complexities of the
interaction-frame transformation. In principle, the connection
can be recovered through an analytical Bessel function formu-
lation of the interaction-frame transformation®® but insights
are limited due to the complexity of the expressions. In this
section we consider matrix-based Floquet theory as an alter-
native description that provides a direct connection between
transition probabilities and the microwave irradiation scheme.
The Hamiltonian as defined in eqn (1) can be rewritten with the

17670 | Phys. Chem. Chem. Phys., 2024, 26, 17666-17683
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amplitude modulation of the mw irradiation schemes as dis-
cussed in Section 2.2 to

H(1) = Qo5S: + AwSd. + BS.I, + wo 1. + ™™ %5

(max) oo

+LTSZ[([‘I1*

g=1

. igwmt
iby)e

+ (ag + iby)e 1] S,
(24)

For the TOP- and XiX DNP sequence y = x. The analytical
expressions for the Fourier coefficients of the TOP sequence
can be found in eqn (17) and (18) and for the XiX sequence in
eqn (19), respectively. As shown in Fig. 2 the TPPM sequence
can also be regarded as an amplitude-modulated pulse
sequence with phase +y with an orthogonal CW part with phase

+x. Therefore, y = y in eqn (24) for the TPPM case. In TPPM

a . .
50 =cos(¢) and a;, = 0 V g # 0. The Fourier coefficients are

. 4 T
by = sin(¢)— for odd values of g. The Hamiltonian in eqn (24)
qn
can be expressed as a Fourier expansion

+00
E ’ 4 gid omt

¢'=—00

(25)

with the Fourier components

7/;(0) = QO,SSZ + Azzs‘:iz + BS;IAX + OJOJIAZ + wg?;ax)%ﬁx (26)
and

Al Al A l P A~
A = 0 =L a2 in,)S, ez @)
Be aware that in contrast to the expansion in eqn (16) and (24)
the Fourier index g’ of the Hilbert space Hamiltonian in
eqn (25) can also be negative while g = |¢’| is always limited

to positive values. Now we can use the Fourier components in

eqn (26) and (27) to express the Floquet matrix # . We thus
obtain the elements of the infinite-dimensional Floquet matrix

<1 )

<,u,y (,1‘/ l“”fﬂ +C1wm($qm5uhfsm7

02> =

In eqn (28) J; represents the Kronecker delta.

(28)
plc1—c2)

VK
specific element of the Floquet matrix, which can be obtained
from eqn (26) and (27). In the upcoming sections, we use Greek
letters to represent the eigenvalues of the spin operator in
Hilbert-space and Latin letters to denote the Fourier harmonics
of amplitude modulation of the pw irradiation scheme. Be
aware that in eqn (28) the difference ¢; — ¢, between two
Fourier indices in Floquet space has to match the Fourier index
g’ in eqn (25)—(27). According to eqn (28) the central blocks of
the infinite-dimensional Floquet matrix (blocks where ¢’ = ¢; —
¢, = 0) contain the Fourier component #© (eqn (26)) with
frequency offsets ¢; w1 (last term of eqn (28)). The off-diagonal
blocks (blocks where ¢’ = ¢; — ¢, # 0) contain the Fourier

is a

This journal is © the Owner Societies 2024
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HO | . . N . .
3w 1| HO | HS | AHG | 7HO | HO) | HO 13)
) HO | . ) . .
H(=1) 20,1 HO N HE | HO | H@D | #7O®) 12)
. . HO| . ) .
HE2) A7 (D 1y, 1 HO L HO | 7O | 7@ )

. R ) R HO | R )

Hr = HED =2 7D Oy 1 HO | 7@ | 7O 10)
. . . . HO | .
HED 7 ED 7 ED) 7D R HO | 12 -1)
. . NN I . HO |
HED|HED T HED 7D 7 ED 2 1 FH 1) 1-2)
R . R R . R )
HEOF D R D 7 D) |7 =2 | =D 3w [—3)

Fig. 3 Schematic representation of the infinite-dimensional Floquet
matrix. Each block is represented by the corresponding Fourier compo-
nent Jf(‘//), which is in case of a two-spin system consisting of spin 1/2
particles a 4 x 4 matrices. The expression ¢'w, 1 in red on the central block

(¢'|# 7|¢') results from last term of eqn (28).

components #@) as given in eqn (27). In the upcoming
sections we will use the Fourier index ¢’ of the Fourier expan-
sion in Hilbert space to denote connected Fourier states in
Floquet space. For a two-spin 1/2 system, the Fourier compo-
nents #?) are 4 x 4 matrices within the basis set |x, ) where
k € {os,fst and n € {a,f;}. Part of the infinite-dimensional
Floquet matrix # 7 is presented in Fig. 3.

As outlined in Section 2.2.1 in the TOP DNP sequence the
even Fourier coefficients a, and a, are non-zero (see eqn (17)
and (18)). Therefore, eqn (27) simplifies to

A 1 N
%7(11) = 7(1)(1123)()61"//‘5;( N ql eZ.

5 (29)

All diagonal blocks in the infinite-dimensional Floquet matrix
for the TOP DNP sequence contain the Fourier component #(©)
as given in eqn (26). In case of the XiX DNP sequence (see
Section 2.2.2) the odd Fourier coefficients b, are the non-zero
ones (see eqn (19)) resulting in

HO) = Qo sS. + A..S.0. + BS.I + wo 1. (30)
for eqn (26) and in
4 .
» A iwg“;ax)fo, for odd ¢'
D) — e — ] T2 g |n (31)
0, for even ¢

for eqn (27). According to Section 2.2.3, the TPPM sequence can
be regarded as a combination of the CW irradiation scheme
and the XiX DNP sequence. The diagonal and off-diagonal
blocks in Floquet space are given by the Fourier components
in eqn (26) and (27) with phase +y, respectively. Inserting the
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Fourier coefficients for the TPPM case leads to

HO) = Q¢S + A..S.1. + BS.I + wol.

+ 0¥ cos(¢) S« (32)

for the diagonal block and

i (max) _. 4 . ,
~ sin(¢)——S,, for odd
A — ) T35 (¢qun ) q |

0, for even ¢
(33)

for the off-diagonal block, respectively. Compared to the XiX
sequence, in the TPPM the phase of the off-diagonal block
changes from x to y and the block contains an additional factor
sin(¢) as mentioned in Section 2.2.3. The diagonal block #()
in the infinite-dimensional Floquet matrix is given in eqn (26)
in its most general analytical form. #® is similar for the TOP
and the TPPM sequence (except for the definition of Fourier
coefficient a,) and the XiX case differs by a missing term with
the S, operator due to a, = 0. However, we still can define a
general diagonalization of # () that is valid for all three pulse
schemes. This will be further discussed in Section 2.4.

2.4 Diagonalization of the central Floquet block

In order to apply perturbation theory for the side-diagonal parts
of the Floquet Hamiltonian that originate from the time-
dependent mw irradiation, we first diagonalize the spin-
degrees of freedom of the central blocks of the Floquet Hamil-
tonian #(*) which have the form
A = QusS. + AzS:d: + BS.A + wo L. + oY —S (34)

The offset terms ¢’ w1 do not influence diagonalization, since
the unit operator is invariant under rotation. Direct diagonali-
zation of eqn (34) leads to results that are very complex and not
easy to interpret. Therefore, #©) is approximately diagonalized
in a two-step approach like outlined in ref. 40. In the first step,
the reduced Hamiltonian

yffl = Q()'SSA‘Z + A;_,Sziz + BS‘_,IAX + (1)(),112- (35)
is diagonalized exactly and the additional term w<max 6120S

(contained in eqn (34)) is subjected to this first transformation
leading to a term of the form S, cos(n) + 28,1, sin(y). From this
resulting term S, cos(n) is treated as a perturbation in a second
unitary transformation (see Fig. S2 in ESI,} Section B). All the
details of this two consecutively applied unitary transforma-
tions are given in ESI, T Section B in much more detail and were
adapted from ref. 40. Here we present only the relevant results
needed for further discussion. The same set of transformations
is then applied to the off-diagonal parts of the Floquet Hamil-
tonian #@) with ¢’ # 0 (see eqn (27)). In a final step, we can
then apply second-order perturbation theory to calculate the
transition frequencies and probabilities enabled by the Fourier
components of the various mw irradiation schemes.
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The first unitary transformation that diagonalizes the
Hamiltonian in eqn (35) is given by

Uy = exp(—i(—n,571, + ns8"1)). (36)

Since the first diagonalization takes place in the I-spin sub
space, we have to distinguish between a positive Larmor
frequency w,; and a negative one to diagonalize eqn (35). In
the following we restrict our discussion to negative Larmor
frequencies (see Fig. S2 in ESI, T Section B). The angles 7, and 7
describing the first unitary transformation can be obtained
from Fig. S2 in ESIL,T Section B and are given as

(37)

—B
, = arctan| ———
n, = arctan (2w0,1 T A:z)

(38)

_arctan(— =5,
1’[/; arctan (Zwo,l — A:Z)

The angles are chosen such that 0° < #,, 1z < 90°. The
Hamiltonian 5 of eqn (35) after the first unitary transforma-
tion is given by

.-7[),1 = QO,SSZ + O‘)E],Iiz + A/S; z (39)
with

wpr = (01 + w34)/2 (40)
A = W1y — W34 (41)

and the nuclear frequencies

AZZ B .
Wiy = <a)o,1 + 7) cos(,) — Esm(nx) (42)
AZZ B .

w3 = (wos — > cos (nﬁ> - 5s1n <’1/3>~ (43)

The full diagonal block of the Floquet Hamiltonian (see
eqn (34)) contains in addition the spin operator S, which
transforms into

U, '8,0; = S, cos(n) + 28,1, sin(n), (44)

with = ;(‘n“ + n,;). The angle 27 is shown in Fig. S2 (ESIt) and
can take values from 0° to 180°. The case 25 < 90° is obtained
for spin systems in the weak coupling regime, where |4.,|,|B| <
|wo|. 27 > 90° is attained in the strong-coupling regime,
meaning that |A,,| > |wo,|. Near the weak-coupling limit, we
have 217 ~ 0° and near the strong-coupling limit, we have 25 ~
180°. In both these cases, siny ~ 0, meaning the excitation of
formally forbidden electron-nuclear transitions is weak. The
total Hamiltonian in eqn (34) after the first unitary transforma-
tion is thus given by

O = QysS. + ) 0.+ A'S..

+ wgtr;aX)%(Sx cos(n) + 28,1, sin(y)) (45)

Using eqn (27) and (44) the off-diagonal blocks containing the

Fourier components #¢) with g’ # 0 after the first
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diagonalization step can be written as

H) — ()

1 (max . A P
= Ewgsa )(a‘q,‘ F ibyy))(Sycos(n) + 28,1, sin(n))

1 (max) . S (46)
= 5015 (@) F i) (Sxcos(n)

| (PN PSS Gp G Py
+§(S+17 +S7IT — ST — ST )sin(n)).

As outlined later in more detail, for spin systems near the weak-
coupling limit, the angle # is very small. Therefore, we perform
the second diagonalization step only with respect to the S,
term, leaving the term 25, sin(y) in eqn (45) as a remaining off-
diagonal perturbation. We thus diagonalize the Hamiltonian

O}

J(;t: = QysS- + w{ufz +A'S.I. + a’ll,sgx (47)

with o} ¢ = wggax)%cos(n). Diagonalization of eqn (47) takes

place in the subspace of the S-spin. Thus, we need to take into
account the sign of Q, s (see Fig. S2 in ESL} Section B). The
upper binary operator in the following equations corresponds
to the +Q, s case and the lower one to the —, s case, respec-
tively. The unitary transformation to diagonalize eqn (47) is
given by

U, = exp(—i(£0,5,I" £ H/Syfﬁ)). (48)

The angles 0, and 0y as shown in Fig. S2 (ESIt) can be
calculated as

0, = arctan I’SA/ (49)
Qos + 5
*o ¢
0 = arctan — (50)
Qo5 — >

and can take any values from 0° to 90°. In the doubly tilted
frame the truncated Hamiltonian can be expressed as

5(0)" (0)

Hy =Us' Ay Uy =QS-+op,l.+A'S.I. (51)
with
Q5 = (013 + 24)/2 (52)
A" = w13 — Wy (53)
and the electronic frequencies
A .
w3 = Qs+ > cos(0;) + wj gsin(0,) (54)
A .
Wy = | Q25 — 5 COS(@/{) + g sm(@,;). (55)

The angle 20 = (0, — 0p) is depicted in Fig. S2 (ESI{). The spin

This journal is © the Owner Societies 2024
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operator S, from the off-diagonal parts of the Floquet Hamilto-
nian #¢) in the doubly tilted frame can be expressed as

"

A — )

1 (max .
= 305" (ayg| F ibyg)) [eos(n)

x {c08(0,)S,I* + cos(0) S, I”

+ sin(6,)S.1* + sin (0p) Sziﬁ}

+ sin(n) (28,1, cos(0) £ I, sin(0))]
In this doubly tilted frame, the total Hamiltonian including

also the term 28,i;sin(y) as given in eqn (45) can be
expressed as

tr.

]{3(0)” = 0271 (7/:(0) +2S'.‘,jy Sil’l(i’])) 02
=Qf oS-+ I.+A4"S.1.

0 gsin() (81§71 ST ~§ I )aos(0) & Fsin0)
(57)

Eqn (57) can be used to derive the Fourier coefficients of the
Hamiltonian for DNP experiments like solid effect DNP'° and
NOVEL**** (see eqn (15) and ESIL,1 Section B).

In case of TPPM, the diagonal blocks of the Floquet Hamil-
tonian in the doubly tilted frame have the same form as given
in eqn (57). The modulated part contained in the off-diagonal
parts of the Floquet Hamiltonian is phase shifted by 90° and

—XiX 7, =15ns —FS XiX 7, = 15ms, by =0V ¢\ {1}
* Theory

o Theory
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PCCP

contains the spin operator S, (see eqn (33)). In the doubly tilted
frame we obtain

# — =) OO A 0,0,

= F éb\(/\wl«s Sil’l((f)){COS(l’])Sy
(58)
— sin(n)[cos(01)28. 1,

+sin(0)28.1,]}

a
Please note, that we have to set 2=

2
ax) .
cos(¢) for the term o) ¢ = w(ligdx)io cos(n7) in the TPPM case, e.g.,

with ) = %(Ha + 0p).

in eqn (49) and (50) for the angles 0, and 04 and all other
equations containing o 5. The ZQ- and DQ terms are contained
in the operator 25}1} = %(S‘*IA* — S It—Stit+ S”f’). In
the ESI,T Section B we present a detailed step-by-step derivation
of this entire section.

3 Results and discussion
3.1 Fourier synthesized DNP

In the following sections we use the Fourier expansion of
eqn (16) and the matrix representation of the Floquet Hamilto-
nian in the electron rotating frame to explain the occurrence of
certain resonance peaks in the DNP profile. We artificially set
some Fourier coefficients of the microwave irradiation scheme
to 0 and see which resonance peaks are left/'unchanged com-
pared to the original sequence. For this Fourier-synthesized

VAN

3

-300 -200 -100

T T T 1
0 100 200 300

Q[)'S/Qﬂ' / MHz

Fig. 4 DNP profile for XiX (blue line) and FS-XiX (red line) recorded at X-band (0.35 T) with a Rabi frequency of 25 — 4 MHzand a pulse length 7, = 15 ns
(further experimental parameters are given in Section 5). The dots and asterisks represent the estimated enhancement &zq/pa as given in eqn (13).
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(FS) DNP sequences we use the name FS-XiX in case where the
original sequence is the XiX sequence or FS-TOP for the TOP
sequence, respectively. In the following Section the original
sequence will be always represented by blue color and the FS
case by red color. All experiments were conducted with the
parameters/procedures as given in Section 5. As a chemical
system we used the trityl radical Ox063 dissolved in DNP juice
at 80 K which gives high enhancement factors as first described
in ref. 24. We discuss the details for the XiX sequence and only
give a more summary description for the TOP and TPPM
sequence since many of the properties are very similar.

3.2 XiX sequence

3.2.1 DNP profile. The experimental comparison of the
DNP profile of the standard XiX DNP sequence with the FS-

XiX case for b, = 0V g \{1} at X-band (0.35 T) using 7, = 15 ns and

%ﬁs =4 MHz is shown in Fig. 4. Examples for pulse lengths of

7, = 5, 9 and 45 ns can be found in ESI,} Section J. We
only discuss the case where we set all Fourier coefficients of
the microwave irradiation to 0 except the one for g = 1. All others
can be converted to this case by scaling the modulation fre-
quency of the XiX DNP sequence to the considered harmonic.
In Fig. 4 we see that only some select resonances remain
visible for the FS-XiX sequence. This is confirmed by calculat-
ing the transfer efficiency using operator-based Floquet theory.
The theoretical values were calculated numerically (see Section
2.1 or ESL 7 Section L) and are indicated by circles or asterisks
in Fig. 4. We can group the resonance conditions (Qs for
which eqn (9) is fulfilled) obtained from numerical calculations
using operator-based Floquet theory in three groups, ie.,
resonance conditions that are present (non-zero) in the XiX

. L9
case and the FS-XiX case like % ~ +18 or +48 MHz, reso-
T
nance conditions that are non-zero in the XiX case, but 0 in the

Q
FS-XiX case like % ~ +115 MHz and resonance conditions
Y

Qs
that are zero in both cases, e.g., —— ~ £81 MHz. This behavior
2

can be better explained by using the matrix representation of
the infinite-dimensional Floquet Hamiltonian as described in
Section 2.3. In case of XiX we only need the first diagonalization
step from Section 2.4 because a, = 0. The four eigenvalues can
be calculated according to eqn (39) and are given as

) B> Qs
&) =clom+5, | 1+————— (A= +2m01) +—= (59
wa = 1Om Ty (AZZ+2w0,1>2( T @
, A Q
&) = 1om =7, | 1+ ————— (Ao +200,) +-5> (60
afp = Ol 4 (A:Z+2wo‘1)2( o) 2 0
2
A = ot (1 B (a0, T
4 (—AZ:+2(00,1)
(61)
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Fig. 5 Part of the infinite-dimensional Floquet matrix of Fig. 3 for the
Fourier states (1], (O] and (—1|. We consider systems consisting of four sub-
blocks in Fourier space. The system comprising the Fourier states 0 and —1
is indicated by an orange frame. There arise four different transitions
marked in yellow, greenish-blue, brown and purple. These transitions
can be further grouped in two ZQ- and two DQ-transitions (see Section
3.2.1). In the system comprising the Fourier states (1| and (—1| (light-green
frames), the four sub-blocks in Fourier space are not connected.

(c1) 1 1+—B2 AL 4 20p,) — 208,
4 (7142: +2w0,1)2( - OJ)

(62)

In eqn (59)-(62) the superscript in e.g. &) denotes the Fourier
index, the first subscript index refers to the electron spin state
and the second to the nuclear spin state, respectively. For weak
irradiation, meaning that w, s <« om, the off-diagonal blocks
that are relevant are the ones that connect almost degenerate
Floquet states in the diagonal blocks (see Fig. 5). These off-
diagonal blocks contain the transition amplitudes of the
corresponding transition. For DQ transitions in Floquet space,
e.g (|95,1¢1) < |Bs,Bics)), this means that

6y — 8/%) =0

(63)

has to hold resulting in the following expression for the
microwave offset at resonance

res 1 B2
Q(().SDQ) = (L‘z _Cl)CUm _Z m(/bﬁdwov,)
zz 0,7
2
+ |1+ B (_Az: + 20)0J)

(_Az: + 2(00,1)2
(64)
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For ZQ transitions, we need to consider (|us,f,c1) < |Bs,015C2))
and we obtain

. 1 B
Q(()::gsZQ) = (Cz_Cl)COm-FZ 1 +m(z‘l:z+2wo.[)
zz 0,/
B2
+, |1+ (—A--+2w0)

(714:; + 2UJOJ) ?
(65)

For spin systems in the weak coupling regime, where |4/,
|B| < |wo,|, the resonance offset in eqn (64) and (65) can be
approximated by

APV~ (2 — c1)om — |wo (66)
and
Qg,gs’ZQ) ~ (€2 — c)om + w0, (67)

respectively. The results in eqn (66) and (67) have two impor-
tant consequences. First of all, we can assign the different
resonance peaks in the experimental DNP profile in Fig. 4 to a
specific Fourier index ¢’ of the pulse sequence. So each reso-
nance peak can be viewed as a modulation side band resulting
from the fundamental modulation period of the applied pulse
sequence. Second, according to eqn (66) and (67) we observe
that the resonance offset Q,s for ¢, — ¢; = ¢’ = £1 (the
resonance offset with largest transition amplitude in the DNP
profile see discussion later) shifts towards larger offsets when
going towards larger magnetic fields. E.g. for a XiX sequence
with 1, = 1 ns corresponding to 2—;: = 500 MHz at a magnetic

field of 28 T <% ~ —1200 MHZ) , this would lead to resonance

Q,
offset % for ¢, — ¢; = ¢’ = +1 of F700 MHz and £1700 MHz.
v

This can have important consequences for the hardware design
of a pulsed DNP spectrometer. The relation between operator-
based Floquet theory and matrix-based Floquet theory in the
weak irradiation limit and weak coupling regime is discussed
in ESI,T Section K.

At this point we need to consider the matrix elements that
connect the ZQ/DQ transitions for the Fourier states ¢; and c,,
because these elements represent the transition amplitudes.
A transition |¢;) <> |¢,) in Fourier space is connected by the off-
diagonal blocks #¢) with ¢, — ¢ = ¢’ as indicated in Fig. 5 by
the orange frame for the case |0) < |—1) and green frames for
|1) < |-1), respectively. In such a constellation one can
observe a total of four different transitions (two ZQ- and two
DQ-transitions) as marked with yellow and purple for the DQ
case and greenish-blue and brown for the ZQ case, respectively.
The transition amplitudes can be obtained from the prefactor
of the DQ- and ZQ-operators terms in the off-diagonal elements

This journal is © the Owner Societies 2024
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#'9) in eqn (46) and are given by

. ax) L .
/@) ¥31gn(q’)w<l?x)1b‘q/‘ sin(n), for odd ¢

7Q/pQ = (68)

0, for even ¢

In the XiX case, whenever ¢’ = ¢, — ¢, is odd, the off-diagonal
block in the Floquet matrix is non-zero and, therefore, the
transition amplitudes are non-zero as can be seen by eqn (68)
and Fig. 5. This results in a resonance in the DNP profile that
we observe experimentally by a polarization transfer. These
resonance conditions are also confirmed by a non-zero Fourier

coefficient for the Hamiltonian o

simulations using operator-based Floquet theory, e.g. for
Qo5
2n
¢, is even, we do not observe a resonance peak in the experi-
mental DNP profile. In numerical simulation using operator-
based Floquet theory we obtain a match in the resonance
condition, but with the Fourier coefficient of the Hamiltonian

arising in numerical

~ £18, £48 or +115 MHz in Fig. 4. Whenever ¢’ = ¢, —

af”/(’) equal to 0. This represent cases like % ~ +81 MHz in
Fig. 4.

In the FS-XiX case, all Fourier coefficients of the microwave
irradiation scheme are 0 except for |¢’| = 1 and all off-diagonal
blocks in the matrix-based Floquet representation are 0 except
for the #*!) block. Therefore, in the FS-XiX case only those

resonance peaks remain in the DNP profile for which ¢, — ¢; =
Q
¢’ = +1 holds, ie., % ~ +18 MHz and +48 MHz in Fig. 4. By
T

using eqn (66) and (67), these four resonance peaks can be
. o Q
grouped into two DQ transitions (%z —48 MHz and +18
T

Q
MHz) and two ZQ transitions (%z—lé% MHz and +48
T

MHz). They are indicated in Fig. 5 by yellow colour for the

Q
DQ transition at ﬁ ~ +18 MHz, by purple colour for the DQ
Q
transition at ﬁ ~ —48 MHz, by greenish-blue colour for the
Q
ZQ transition at %ns ~ +48 MHz and by brown colour for the

ZQ transition at % ~ —18 MHz. All other resonances resulting
T

from |c, — ¢1| = |¢'| # 1 are absent in the experimental DNP
profile. Numerical simulations using operator-based Floquet
theory results in zero transition amplitude for these resonances.

As outlined above, we can group the resonance peaks in
Fig. 4 according to the Fourier index ¢’ (see Fig. 6 and Fig. S14
in ESI,T Section M). In Fig. 6 and Fig. S14 (ESIt) we compare the
approach using the infinite-dimensional Floquet Hamiltonian,
which results in analytical expressions for the resonance offset
Qo s and transition amplitudes, with the numerical approach
using operator-based Floquet theory for the DQ and ZQ reso-
nance conditions. Both these approaches agree well with each
other in the weak coupling regime (|A.|,|B] <« |wo,|). The
resonance offsets obtained by numerical simulation using
operator-based Floquet theory are shown in dashed lines in
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Fig. 6 Comparison between the eigenvalues of a specific diagonal block in the infinite-dimensional Floquet Hamiltonian as given in egn (59) (red color code)
and egn (62) (blue color code) with the numerical simulation using operator-based Floquet theory (dashed lines) for the XiX DNP sequence at 0.35 T and a
pulse length 7, of 15 ns. Shown here are resonance conditions for DQ transitions. A resonance condition occurs at a mw offset Qg s, where the eigenvalues are
equalie. &5‘}) = r;;f,) with ¢, — ¢; = g'. The Fourier components A9 with Fourier index g’ are indicated above the dashed lines. In the weak irradiation regime
(w15 <« ), each resonance condition can be assigned to a Fourier index of the infinite Floquet Hamiltonian and therefore to a mode in the Fourier expansion
of the mw irradiation. The color code for the dashed lines indicates the strength of the resonance condition (see egn (68)). For the analytical calculations of the
eigenvalues according to eqgn (59) and (62) the following parameters were used: % =33.333 MHz, % = —14.83 MHz, A,, = B = 1 MHz. Hyperfine constants

are given here in linear frequency, whereas they are expressed in angular frequency in egn (59)—(62).

those two figures. They overlap with the intersection points and (61) for ZQ resonances, respectively. The dashed lines are
obtained by eqn (59) and (62) for DQ resonances and eqn (60) color-coded according to transitions between Floquet states
that have a non-zero transition amplitude (black) and a zero

transition amplitude (gray) according to eqn (68).
© numerical A closer look at Fig. 4 reveals that there are some small peaks
5 peaks for s <0 5Q peats or QUVQQ;‘;‘QSZ;CQM] visible at the foot of the large assigned enhancements. As
i already explained in ref. 41 and 29 these small peaks corre-
spond to three-spin electron-'H-'H transitions. One can use
the same formalism described above for the two-spin case to
obtain analytical expressions for the resonance offset Q, s and
the transition amplitudes for the three-spin case (see ESL¥

Section N).

3.2.2 Transition amplitudes. The transition amplitudes
according to eqn (68) can be compared to the numerically

norm. € /a.u.

2Q peaks for Qs < 0 i 2Q peaks for Qs > 0 . . I . .
af, PApentsiorfhs< ; (@ peals for Shs > calculated Fourier coefficients of the Hamiltonian, as given in

7 ? ¢ ! ’ ’ T eqn (13), and to the experimental enhancements. This is

Fig. 7 Comparison between the transition amplitudes obtained by the g:raphlcall?/ represented in F,lg' 7 1\'Iote that, unlike the transi-
analytical expression of eqn (68) obtained by matrix-based Floquet theory tion amplitudes, the numerical estimate for the enhancement
(red dots), the numerically calculated Fourier coefficients of the Hamilto- ~ as given in eqn (13) also contains the projection of p, onto the
nian in operator-based Floquet theory as given in eqn (14) (blue asterisks) ~ effective field (factor <p0|§'2> in eqn (13)). However, for
and the experimental enhancements (magenta diamonds). The experi-  ha pulsed DNP experiments presented in this work and for
mental values were obtained from a non-linear fit of the DNP . . .
. o o - pulsed DNP experiments using low to moderate Rabi frequen-
profile presented already in Fig. 4. The black line is plotted to indicate R X X i
cies w; s, such that w; 5 <« wy, this factor is close to 1 since

the inverse scaling with respect to the Fourier index g of the analytical and
numerical values. the resonance offsets are large and the irradiation is weak.
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The experimental values were obtained by taking the maximal
or minimal intensity of the DNP profile of Fig. 4. They were
scaled linearly so that they agreed best with the theoretical
black curve that represents the function 1/g. As seen from
Fig. 7, both, the transition amplitudes obtained by matrix-
based Floquet theory (analytical) and the Fourier coefficients
of the Hamiltonian obtained from operator-based Floquet
theory (numerical), scale with the inverse of the Fourier coeffi-
cient g’ (see black line in Fig. 7). For the analytical transition
amplitudes this follows from inserting eqn (19) into eqn (68).
There are a number of reasons for the observed differences
between theory and experiments. In the theory so far we
completely neglect relaxation effects, electron/proton concen-
trations or nuclear spin diffusion processes. These effects can
contribute to the efficiency of the polarization transfer and
therefore to the enhancement observed in experiments. Imper-
fections of the spectrometer, such as limited width of the
microwave resonator mode or differences in non-linearity of
the traveling wave tube amplifier at different frequencies can
also influence the polarization enhancement. We tried to
minimize effects of spectrometer imperfections during the
acquisition by the techniques described in Section 5, and the
ESI,t Sections E and F.

3.2.3 Field dependence of DNP sequences. In order to
discuss the field dependence of a particular DNP sequence we
need to emphasize some important points. We use the Fourier
coefficients of the effective Hamiltonian obtained from
operator-based Floquet theory (especially eqn (12) and (13))
for the analysis of the performance of a certain sequence.””*°
In the previous Section we presented analytical expressions for
transition amplitudes obtained from the off-diagonal blocks in
the infinite-dimensional Floquet matrix and showed that they
are identical with the numerically calculated counterparts
obtained from operator-based Floquet theory. Such an analysis
does not cover any experimental parameters such as relaxation
times, electron and proton concentration, nuclear spin diffu-
sion, repeated application of the DNP sequence, or electronic
imperfections. However, these parameters can play an impor-
tant role in the polarization transfer and in the magnitude of
the enhanced signal that is measured.

We restrict our discussion to the weak-irradiation regime,
i.e, w5 < Wp. In this regime the transition amplitude and,
therefore, the transition probability between two almost degen-
erate Floquet states can be described by the matrix elements in
the off-diagonal block of the Floquet matrix connecting the
almost degenerate states. For a typical XiX sequence with short
pulses 1, the modulation frequency wy,, becomes large, which
results for the sequence to be in the weak irradiation regime
even for large Rabi frequencies w, s. The transition amplitudes
as given by eqn (68) for non-zero resonance conditions (for odd
values of ¢, — ¢; = ¢') are
X) max)

I(q/) _ o
S 20)0'1

i (max) ooy 1k (
ZQ/DQ = Zb\q’\wl,s sin() ~ Zb\q'\wl (69)

First we notice that the transition amplitude is independent of the
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Fig. 8 Calculated values for aes, Qos and ko at resonance for different
magnetic fields (0.1, 0.35, 1.3, 3.5, 7, 14, 28) T for DQ peaks withc, —c; = 1.

The red circles represent a XiX DNP sequence with a fixed Rabi frequency

% =4 MHz and pulse length 7, = 15 ns. XiX DNP sequences with 7, = 5
n

ns and Rabi frequencies that increase linearly with the external By-field e.g.
(0.1 MHz, 0.1 T), (0.35 MHz, 0.35 ), (1.3 MHz, 1.3 T), (3.5 MHz, 35 1),
(7 MHz, 77T), (14 MHz, 14 T) and (28 MHz, 28 T) for the Rabi frequency and
the external magnetic field, respectively, are shown in blue diamonds. The
linear behaviour of Qg s with respect to the external magnetic field can be
explained by the approximation in eqn (66). Due to eqgn (9) also kg shows a
similar linear behaviour. For the red circles, a fraction of ag¢ for two
different magnetic fields scale with the inverse fraction of the corres-
ponding magnetic fields, respectively. In contrast, aes is constant over the
different magnetic fields for a Rabi frequency that scales linearly with the
magnetic field (blue diamonds). This is indicated by the dashed blue line.
Please note the logarithmic scale in the y axis in the plot for ae.

4
pulse length 7, (remember that b, = e for odd ¢). The rightmost
approximate expression results from the definitions of the angles

ng = arctan( and

__*B __*B
2(,0(),[ + A;z ’ 2u)(),l - AZ:

1
n= 5("“ —+ r]ﬁ). The argument inside the arctan function scales

with the inverse of the Larmor frequency of the nuclei and, there-
fore, with the inverse of the external magnetic field. In the weak
coupling regime, where |A,|,|B| « |wo|, we can invoke the small

N, = arctan(

. B . .
angle approximation and simplify sin () ~ 7o In eqn (69). This
0.7

s

approximation was already used to derive the prefactors for the
solid-effect DNP mechanism in operator-based Floquet theory. We
again obtain an unfavorable inverse scaling of the transition prob-
ability with larger magnetic fields. As eqn (69) contains also %™ as
a pre-factor, the transition amplitude can be kept field-independent
by increasing the Rabi frequency linearly with the external B,-field.
This is the same scaling as required in CW DNP schemes.

To demonstrate our conclusion, we plotted in Fig. 8 the
Fourier coefficient aeg, the offset Qy s and k, obtained from
operator-based Floquet theory at the resonance condition for
two different cases. In the first case we look at a XiX DNP
sequence with a pulse length 7, = 15 ns and a fixed Rabi

frequency % = 4 MHz but for different magnetic fields. This

case is shown in Fig. 8 in red circles. In blue diamonds in Fig. 8
we look at a XiX DNP sequence with a pulse length 7, = 5 ns
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(%: 100 MHz) for the following nutation frequency and

external magnetic field combinations ie. (%, BO> € {(0.1 MHz,
n

0.1 T), (0.35 MHz, 0.35 T), (1.3 MHz, 1.3 T), (3.5 MHz, 3.5 T),
(7 MHz, 7 T), (14 MHz, 14 T), (28 MHz, 28 T)}. The pulse length
of the second case was chosen to ensure that the weak irradia-
tion regime (w,,s < @) is fulfilled for all combinations. For
both cases we discuss and compare the DQ resonances for the
difference in Fourier indices ¢, — ¢; = 1. The ZQ case with ¢, —
¢; = 1 is treated in Fig. S16 in ESIL{ Section O. Note that the
cases ZQ ¢, — ¢, = +1 and DQ ¢, — ¢; = —1 are equivalent (except
for the sign of a.¢r and Q s) due to the point symmetry of the
ideal DNP profile.

From the first case with fixed Rabi frequency w,gs, but
varying magnetic field (red circles in Fig. 8) we can confirm
the unfavorable scaling of the transition probability with larger
magnetic fields. The numerically calculated Fourier coefficients
of the Hamiltonian a.s as given in eqn (14) scale with the inverse

e . aer(By =7T) 0.35
of the magnetic field e.g. the fraction —aerr (Bo=035T) —
This relation is true for all comparisons within the used mag-
netic fields and is predicted by eqn (69). In Fig. 8 one can nicely
observe the linear increase of the resonance offset Qs for
resonant DNP as already outlined in eqn (66) and (67). We find
that k, also depends linearly on the magnetic field within the
quantization error of a discrete parameter. This can be explained

by the increase of w,, in the resonance condition of eqn (9). k&,

selects the Fourier coefficients a(ik“"[()) of the effective Hamilto-

nian relevant for DNP (see eqn (10) and (11)). The Fourier

coefficients aik"‘k") tend to decrease for larger values of k,, which

can be seen from eqn (6) and which is the actual reason for the
decreased transition probability towards larger magnetic fields.

—g anisotropy —isotropic g
X-band

norm. €/ a.u.
I

T

T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
14
0.54 ’
0

- T T T T T T 1
-200 -150 -100 -50 0 50 100 150 200
Qos/(2m) / MHz

‘W-band

norm. € /a.u.

Fig. 9 Full numerical simulation of the field profile for XiX DNP with 7, = 5 ns
and ‘%S =4 MHz at 80 K for By fields of 0.35 T (X-band) top and 3.5 T

(W-band) bottom for an isotropic g-tensor (red) and with an axial g-tensor
with a slight g-anisotropy (blue). At X-band the difference between the
simulations with and without g-anisotropy are very minor due to the small
magnitude of the g-anisotropy. However, at W-band the resonance peaks in
the DNP profile using a slight g-anisotropy are much broader than for the
isotropic counterpart and resemble the g-tensor of the electron spin. All
details of the numerical simulation can be found in ESI,1 Section Q.
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Increasing the Rabi frequency linearly with the external B,-
field keeps the transition amplitude field independent as one
can see from the blue diamonds in Fig. 8. a.¢ is constant over
the seven different combinations used in our simulations.
Again, this behaviour can be explained with the right-hand
side of eqn (69). Assuming that the strength of the pseudo-
secular term B does not change (we assume that we polarize the
same proton), the only terms that change within the seven

(max)
(max) 1,

combinations are s~ and wg; The ratio

is kept
o,1 P

constant here. Accordingly, the numerically calculated Fourier
coefficients of the effective Hamiltonian in operator-based
Floquet theory are the same.

We discussed here the three parameters aes, 2o s and k, to
reveal the behaviour of the XiX DNP pulse sequence when
increasing the external magnetic field. As outlined in Section
2.1 the parameters weg,s and (p0|§z) at resonance condition also
influence the performance of the XiX DNP sequence. However,
the behaviour of wegs and (p0|§z> with respect to different
magnetic fields is difficult to predict/explain due to the merging
of different effects (see Fig. S17 and S18 in ESIL,T Section O).
Cases for ¢, — ¢; = =3 or even higher values are equivalent and
are not discussed explicitly here.

3.2.4 Linewidth in the DNP profile. So far our theory as
outlined in Sections 2.1 and 2.3 does not include a line width
provided by either relaxation of the electrons or the orientation
dependence of the g value. In this situation, our theory predicts
a DNP profile with infinitely narrow lines, since the resonance
condition in eqn (9) and the analytical expression for the
microwave offset at resonance (see eqn (64) and (65)) are
fulfilled for only a single Q,s. However, the experimental
DNP profile (see Fig. 4) clearly shows broadened lines. The fit
of a field-swept EPR spectrum at X band (9.8 GHz) to a Gaussian
line shape gave a FWHM of 6.23 MHz for the allowed transition
(see Fig. S4 in ESLT Section D). The resonances in the DNP
profile in Fig. 4 were also fitted to a Gaussian line shape (see
Fig. S19 in ESLt Section P) and the FWHM of each individual
peak was extracted (Table S2 in ESI,} Section P) with an average
width of about 5.59 MHz.

A full numerical simulation using GAMMA®*> showed that
the line width in the DNP profile is influenced by the g-
anisotropy of the electron and dominated by this effect in W
band. The resulting simulated field profiles for XiX with 1, =

5 ns and % = 4 MHz at 80 K for B, fields of 0.35 and 3.5 T are
b1

plotted in Fig. 9. We simulated the field profile using a two-spin
electron-proton system with an electron-proton distance r., =
4.5 A with either an axial g-tensor with a slight g-anisotropy of
Zrx =&yy =2.00319 and g, = 2.00258 or an isotropic g-tensor with
Ziso = 2.00299.” A more detailed description of the GAMMA
simulations can be found in ESI,{ Section Q. At 0.35 T one
can barely see a difference between the field profile with
g-anisotropy and with isotropic g-tensor because of the small
g-anisotropy. However, at 3.5 T the field profile of the simula-
tion using a g-anisotropy show resonance peaks that resemble
the powder lineshape for a g-tensor with axial symmetry.
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3.3 TOP sequence

The discussion of the TOP DNP sequence in terms of its Fourier
coefficients is not as straightforward as in the XiX case because
the Fourier coefficients of the mw irradiation scheme now
depend on pulse length 7, and delay 74 (see eqn (17) and
(18)). In addition, the unmodulated Fourier coefficient a, is
non-zero. Therefore, we need two consecutively applied unitary
transformations to approximately diagonalize #'() (see Section
2.4 or ESL,t Section B for more details). As a consequence of this
second unitary transformation the transition amplitudes now
depend on the mw offset. However, the resonance conditions in
the TOP DNP sequence can still be assigned to a certain Fourier
index ¢’ as will become clear later in this section.

First let us take a closer look on how the four eigenvalues for
the TOP DNP case look like. The four eigenvalues can be
obtained from eqn (51) and are given as

' 1 20 2 of
4y = crom + Z\/l () W29 45 0

/ 2
2w1$S

/
(1) ! / ©0.1
5 = C1om ——1/1 ——— | (A" —2Q - —
€y cw 4\/ + (A’ — 29018) ( o,s) 3

(71)

/ 2 /
(er) _ 1 1 20 A 420 @ 1 2
e T M +(A/+290As (#+2820s) #5772

’ 2 /
() _ 1 205 ) o
Epp = €10m +4\/1 + (7/1, 200 (4" =2Q05) — >

The exact analytical expressions for w;, ; and A’ can be found in

(73)

eqn (40) and (41), respectively. We can now invoke the same
steps as for the XiX case and solve

ey — o5y =0

/;,./1 (74)

and

) —ef? =0 (75)
for QP and QIS respectively. This leads to simplified
: } p Y P
expressions for these conditions in the weak coupling regime
(|Az|,|B| « |wo ). However, compared to the XiX case, we need

to make an additional approximation. If the condition
(max) 40

|w’1,s| =g 5003(11)\ < Qs

(76)
is fulfilled, we find the same approximate resonance conditions
as in the XiX case (e.g. eqn (66) and (67)), namely
QP & (¢ — ¢1)om — |wo ] (77)
and
Q™ & (cy — ¢1)om + |-

(78)

Note that one needs to check for each case if the condition
eqn (76) is fulfilled for all resonances. If so, the transition
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Table 2 Fourier coefficients of the TOP DNP sequence according to
egn (17) and (18) for z—d =2 and the expected resonance offsets according

P

to eqn (77) and (78) calculated for different c, — ¢1 = g’. The values for the
) Q

resonance offsets are compared to a DNP profile measured from % =

—30 MHz to +% = 430 MHz at 0.35 T with % =4MHz, 1, = 28 ns,
Y Y[

T4 = 56 ns as reported in ref. 27. The italic entries are those resonances

which were also observed experimentally in ref. 27. The bold entries were

reported as being observed by numerical simulations using operator-

based Floguet theory, but gave zero enhancement in the experimental

DNP profile (see Table 1 for T )

Tp
6 —c=q aqg (€2 = ¢1)Vm t Vo] [MHZ] (¢2 — ¢1)vm — |Vvo,| [MHz]
—4 0.138 —32.789 —62.449
-3 0 —20.884 —50.544
-2 —0.276 —8.980 —38.640
-1 0.551 2.925 —26.735
0 0.667 14.830 —14.830
1 —0.551 26.735 —2.925
2 0.276 38.640 8.980
3 0 50.544 20.884
4 —0.138 62.449 32.789

amplitudes for the TOP case are given according to eqn (56)

oy cos(6) cos(n)sin(n), if ¢ =0
@
Jé = 79
ze/pe (max) g/ ‘ 79)
LS 4 cos(6) sin(n), else

where 9:%(&7(9/;) (see eqn (49) and (50) for analytical
expression for 0, and 0j). As expected also the transition
amplitudes for the TOP DNP sequence contain the term
sin(n). As explained in Section 3.2.3 this term scales unfavorably
with the inverse of B, when invoking the weak coupling regime.
For low to moderate ("™ e.g. the weak irradiation regime, 0 is
small and therefore cos(f) ~ 1 holds.

We can now test the theory derived for TOP DNP against
experimental observations reported in ref. 27. Tan et al. per-
formed a TOP DNP experiment at 0.35 T (corresponding to
Vo & —14.83 MHz) using trityl radical Ox063 with the follow-

. ) .
ing parameters: % =4 MHz, 1, = 28 ns, 1q = 56 ns. This
T

. T . .
results in -~ =2 and a linear modulation frequency of

Tp
%: 11.905 MHz. They measured the DNP profile for this
Q
particular TOP DNP experiment from %: —30 MHz to

+30 MHz and found the following values for the resonance
Q
offsets: %T: ~ 43, 49, +15 and +27 MHz.”” They also found a

Q . .
DNP enhancement at —2> ~ +21 MHz in numerical calcula-
T

tions using operator-based Floquet theory but with zero DNP
enhancement in experiments. They explained the absence of

DNP enhancement at this particular offset by assuming that the

“ZQ- and DQ terms” (Fourier coefficients a(ik”’zn) in eqn (10) and

(11) in our notation) “have almost equal sizes” (and different
sign). We can now use eqn (77)-(79) to explain the occurrence
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and absence of resonance peaks in the TOP DNP profile

reported in ref. 27. In Table 2 we list the Fourier indices for

the TOP DNP experiment for the fraction M_» (see eqn (17)
T

p
and (18)) along with the estimated values according to eqn (77)

and (78) for different values of ¢, — ¢; = gq’. We see that the
approximations in eqn (77) and (78) give very accurate predic-
tions for the microwave offsets Q, 5, where DNP enhancements
are expected. Eqn (79) together with eqn (17) and (18) fairly well
predicts the amount of polarization transfer in the DNP profile

R . Q
presented in Fig. 2 in ref. 27. The resonances at % ~ 15 and
n

27 MHz show the largest enhancement, whereas the peak at

Q
—20; ~ 9 MHz shows only a small enhancement, as predicted

Q
from theory. However, the resonance offset %z +3 MHz
T

should

Q
TOT‘CS ~ +27 MHz. The data shown in Fig. 2 in ref. 27 indicate

in theory result in a similar enhancement as

Q
a slightly smaller enhancement for ZLTES ~ +3 MHz than for

% ~ £27 MHz. We tentatively attribute this difference
T

between simulation and experiment to the fact that the ZQ-
and DQ enhancements occur at a frequency difference that is
within the FWHM (~ 6 MHz) of the EPR line of the trityl radical

0x063. This case is similar to the enhancements close to % =
T

0 MHz in the XiX field profile for 7, = 45 ns shown in Fig. S13
(ESIT). As discussed in Section 3.2.4, the width of the experi-
mental DNP profile at 0.35 T resembles the width of the EPR
line. This may result in a partial cancellation of the ZQ- and DQ-
enhancement due to the overlap of both peaks in the DNP
profile and the different sign of their amplitudes. Using the
theory outlined here, we can also explain the absence of DNP

Q
enhancement for % ~ +21 MHz. According to eqn (17) and
s

(18) and Table 1 all Fourier coefficients of the pulse sequence
are non-zero except for Fourier indices of g = 3, 6, 9, 12,....
Therefore, for ¢, — ¢; = ¢’ = £3 we can calculate (by using

eqn (77) and (78)) one pair of the offset to be % ~ +21 MHz.

This means that the enhancement at this resonance offset is
zero because the Fourier coefficient a5 is zero.

3.4 TPPM sequence

The analytical expressions for the diagonal blocks of the

Floquet matrix after the two diagonalization steps (# " in
eqn (57)) are similar for the TPPM and TOP sequences. Hence,
we can adapt the results obtained for the TOP DNP sequence in

Section 3.3 to the TPPM case. The only difference is the

o . .a
definition of the Fourier coefficient 70 (compare eqn (17) and

a
(23)). In both cases ?0 cannot exceed one. Therefore, the

condition in eqn (76) is also valid in the TPPM case, resulting
in the same approximations for , s as in the TOP DNP and XiX
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Table 3 Comparison of transition amplitudes of different DNP sequences

Experiment Transition amplitude Comment
NOVEL B o = (g
4
s Bl
4 o1
XiX (max) . 4
! Bw 5" by For odd ¢, b, = —
4 o, 1 2 qr
TOP Bl 4y -
4 wy; 2 Tm
(max) 2 .
ol o= ~Zon(22)
4 o1 2 qmn Tm
TPPM Bw(l'_?x) @
- 0s
4 woy
(max) . 4
Bw, 5 iby in(9) For odd ¢, b, = —
4 wo; 2 gqr

DNP case, e.g. eqn (77) and (78). Therefore, in the weak
irradiation regime the resonance offsets Q, s of the three DNP
sequences (TOP, XiX and TPPM) occur at the same spectral
position when using the same modulation period w,,. Using
eqn (57) and (58) the transition amplitudes between the Fourier
states ¢; and c, for the TPPM case are then given as

(max)
B O] 5 .
— — fqg=0
Fzcos(9) o if ¢
(4) )
I = . (max)
7Q/D Bib,, w
a/pQ 32l sin(@) cos(01) CLOSI if ¢’ is odd
0, if ¢ is even

(80)

where ¢’ = ¢, — ¢; and 0) = %(91 + 9,;). For the angles 0, and 6

one needs to insert o} ¢ = o\’

cos(¢) cos(n) into in eqn (49)
and (50). For the weak irradiation regime, ie., for low to
moderate o{"#™ and sufficient large wy,, cos(0")) ~ 1 holds.

Thus for ¢ — 0 we obtain the same transition amplitude as for
T -, . .
the SE and for ¢ — 5 the transition amplitude as for the XiX

sequence, respectively.

In Table 3 we compare the transition amplitudes for differ-
ent DNP sequences applying the weak irradiation regime and
the weak coupling regime. Please note that we do not distin-
guish between ZQ- and DQ-polarization transfer in that table
and that g = |¢'| = |c, — ¢1]|. Pulsed DNP sequences like XiX,
TPPM or TOP in general show an inverse scaling of transfer
efficiency with respect to the external magnetic field By: the
same as the CW experiments like SE.

4 Conclusions

Combining operator- and matrix-based Floquet theory for the
description of a general amplitude-modulated pulsed DNP
sequence, we can explain the origin of the resonance offsets

This journal is © the Owner Societies 2024
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where enhancement occurs and the corresponding enhance-
ment factors for pulsed DNP experiments TOP,*” XiX**?° or
TPPM*° sequences. We show experimentally that the reso-
nances in the XiX DNP case can be excited by a simple sine
wave and originate from a single frequency mode of the Fourier
expansion. The TPPM sequence can be viewed as an XiX
sequence with an additional orthogonal CW component and
will, therefore, have a similar excitation profile. Using matrix-
based Floquet theory, we obtain analytical expressions for the
mw offsets that correspond to resonance conditions as well as
expressions for the corresponding transition amplitudes. The
latter quantities allow a better understanding of the scaling
behavior of pulsed DNP experiments with respect to the exter-
nal magnetic By-field.

The frequency offset at the resonance conditions and the
magnitude of the transition amplitudes agree very well with the
numerical results obtained using operator-based Floquet the-
ory. Both complementary approaches are able to predict experi-
mental observations, e.g., the mw offsets corresponding to
resonance conditions and the magnitude of polarization trans-
fer in an experimental DNP profile. However, important effects
that influence experimental enhancements, such as relaxation,
spin diffusion processes, experimental parameters like concen-
tration of the radical and imperfections in mw irradiation are
not covered by the presented theory. Regardless, the numerical
results using effective Hamiltonians in operator-based Floquet
theory as well as the analytical expressions resulting from
matrix-based Floquet theory reveal an unfavorable scaling of
the transition amplitudes with magnetic field. This result is not
unexpected, since the effectiveness of the pseudo-secular BS,J,
term in the Hamiltonian of eqn (1) for mixing tends to zero
when the external magnetic field approaches the high-field
limit for the nuclear spin.

The performance of a particular pulsed DNP sequence can
be maintained if and only if the Rabi frequency on the electron
spin is increased linearly with the external B-field. Therefore,
pulsed DNP at high B,-fields requires the use of high-power mw
devices. Such devices are not yet readily available at higher mw
frequencies.

An alternative approach is simultaneous irradiation of elec-
trons and protons by mw and rf, respectively. Such techniques,
reminiscent of Hartmann-Hahn cross polarization, do not rely
on the pseudo-secular part of the hyperfine coupling. In these
schemes, mixing is achieved by the modulation of the secular
part of the hyperfine coupling 4,,8.1,. A possible disadvantage
of this approach would be that the transfer rate of polarization
needs to compete with relaxation of the electrons and nuclei in
the modulated spin-lock frame rather than with longitudinal
relaxation of electrons and nuclei.

As confirmed by numerical simulations, part of the line
width observed in experimental DNP profiles can be attributed
to the anisotropy of the g-tensor. As expected, the g tensor
contribution becomes dominant at larger magnetic fields. At
higher fields, this effect could lead to an overlap of ZQ- and
DQ-transfer resulting in a diminished polarization transfer if
the bandwidth of the sequence is large. However, sequences
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currently in use have a quite narrow DNP matching profile and
will result in orientation selection for the g tensor.

The observations in this publication have implications for
the future design of new pulsed DNP sequences to circumvent
the unfavorable scaling of the effective Hamiltonian with
respect to the external B,-field. Moreover, we were able to show
that an enhanced NMR signal can be achieved by a simple
cosine or sine wave. This opens new possibilities since those
trigonometric functions are already implemented on most
AWG and are less prone to electronic imperfections (pulse
transients, finite rise times) than rectangular pulses. On the
other hand, limited rise time of rectangular pulses corresponds
to an attenuation of higher harmonics of the modulation
frequency and is, thus, not expected to substantially reduce
performance of pulsed DNP schemes.

5 Materials and methods
5.1 Sample preparation

In all experiments a 5 mM sample of OX063 trityl radical dissolved
in DNP juice (glycerol-dg: D,0: H,0, 6:3:1 by volume) was used.
The sample was prepared by the following procedure: 1.69 mg of
the trityl (MW = 1359 g mol ") were dissolved in 24.15 mg water
(MW = 18.02 g mol ™', po = 0.997 ¢ mL™ ") and 80.93 mg D,O
(MW = 20.03 g mol ™, p, = 1.11 g mL ™). This gives a ~1.2 umol
solution of trityl dissolved in a D,O: H,O matrix of 3 : 1 by volume.
From that resulting solution 48.6 puL were added to 99.92 mg
glycerol-dg (MW = 100.14 g mol *, p, = 1.371 g mL ") to give the
desired 5 mM solution of trityl in DNP juice. 40 pL of that final
solution were added to a 3 mm OD quartz capillary. All masses
were weighted in with a AT261 Delta Range scale with a precision
of 0.01 mg. A pipetman from GILSON (P100) with volumes
adjustable to 0.1 pL precision was used to transfer and measure
the volumes.

All experiments were conducted at 80 K and an external
magnetic field of 0.35 T (X-band). The sample was flash frozen
in liquid nitrogen before measuring in the resonator.

5.2 EPR/NMR spectroscopy

All experiments were acquired on a home-built X-band spectro-
meter similar to the spectrometer as described in ref. 44.
A constant temperature of 80 K was achieved with closed cycle
cryogen-free cryostat from Cryogen Limited. An arbitrary wave-
form generator (Keysight model M8190A) was used to generate
mw pulses and the pulses were amplified using a 1 kW traveling
wave tube (TWT) amplifier. The Hahn echoes were recorded
using a digitizer running at 1.8 GSa s~ (SP devices ADQ412). A
Bruker EN4118A-MD4 resonator was used with a home-built
external rf tuning and matching box. NMR experiments were
performed with an OpenCore spectrometer.*>*® A schematic
representation of a general DNP experiment used in this work
can be seen in Fig. 10. Each DNP sequence was started with a
'H saturation pulse train consisting of eleven 100° pulses
spaced by 1 ms to destroy any polarization on the protons.
Afterwards, each basic DNP block was repeated k times to give a
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Fig. 10 General DNP pulse sequence used in the realm of this work. The
saturation train on the *H channel is followed by a repeated DNP cycle (h-
loop). The actual DNP sequence, either XiX or FS-XiX is repeated k-times.
The enhanced H signal is afterwards recorded with a solid echo with two
90° pulses of 2.5 pus length separated by tsg = 20 ps. A eight-step phase
cycle was used for the solid echo with {x, x, y, y. —x, —x, —y, —y} for the first
pulse and detection and {y, —y, x, —x, ¥, —y. x, —x} for the second pulse.

total contact time t.o, = k-7, (gray loop in Fig. 10). The total
DNP experiment was then repeated % times to give a total build-
up time tpnp = h-trep (Outer black loop in Fig. 10). The enhanced
proton signal was finally read out by a solid echo consisting of
two 90° pulses of 2.5 us length separated by tsg = 20 ps. For the
solid echo a eight step phase cycle was used with {x, x, y, y, —x,
—x, —y, —y} for the first pulse and detection and {y, —y, x, —x, y,
-y, x, —x} for the second pulse. For most of the experiments the
following values were used: tcon = 5 WS, trep = 2 ms and 7 = 1000.
To record a DNP profile, the mw frequency on the EPR spectro-
meter was adjusted accordingly and a total of 8 scans were
recorded for every mw frequency. The build-up curves were
recorded by incrementing either 4 or k at a given resonance
offset and keeping all other parameters constant. The reference
experiment was recorded the same way with the exception that
the mw irradiation was turned off and a delay of 180 s ~ 5T} ,,
was used between two consecutive scans. A total of 512 scans
were recorded and accumulated for the reference experiment.
To process the data, a cosine-squared apodization function was
used and time-domain data was zero-filled to twice the number
of recorded data points. After Fourier transformation of the
resulting time-domain data, the peak was fitted by a Lorentzian
function and integrated using a standard library function in
MATLAB over a symmetric integration window. The range of
the integration window was constant for all individual record-
ings as well as for the reference experiment. The experimental
enhancement was calculated by dividing the integral of the
enhanced signal by the integral of the reference signal normal-
ized by the number of scans e.g. normalized by 8 for a DNP
experiment and by 512 for the reference experiment.

An echo-detected nutation experiment was used to compen-
sate for the limited width of the microwave resonator mode and
differences in non-linearity of the traveling wave tube amplifier
at different frequencies.”” The result of those experiments can
be found in the ESI,{ Sections E and F. All experimental spectra
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and plots for the DNP, EPR and NMR experiments together with
the complete experimental parameters can be found in ESI,¥
Sections C-I.
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