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Partial density of states representation for
accurate deep neural network predictions
of X-ray spectra†

Clelia Middleton,a Basile F. E. Curchodb and Thomas J. Penfold *a

The performance of a machine learning (ML) algorithm for chemistry is highly contingent upon the

architect’s choice of input representation. This work introduces the partial density of states (p-DOS)

descriptor: a novel, quantum-inspired structural representation which encodes relevant electronic

information for machine learning models seeking to simulate X-ray spectroscopy. p-DOS uses a minimal

basis set in conjunction with a guess (non-optimised) electronic configuration to extract and then

discretise the density of states (DOS) of the absorbing atom to form the input vector. We demonstrate

that while the electronically-focused p-DOS performs well in isolation, optimal performance is achieved

when supplemented with nuclear structural information imparted via a geometric representation. p-DOS

provides a description of the key electronic properties of a system which is not only concise and

computationally efficient, but also independent of molecular size or choice of basis set. It can be rapidly

generated, facilitating its application with large training sets. Its performance is demonstrated using a wide

variety of examples at the sulphur K-edge, including the prediction of ultrafast X-ray spectroscopic signal

associated with photoexcited 2(5H)-thiophenone. These results highlight the potential for ML models

developed using p-DOS to contribute to the interpretation and prediction of experimental results e.g. in

operando measurements of batteries and/or catalysts and femtosecond time-resolved studies, especially

those made possible by emergent cutting-edge technologies, especially X-ray free electron lasers.

1 Introduction

As in innumerable other areas of modern life, the impact of
Machine learning (ML) algorithms is emerging as a transfor-
mative force within the fields of computational chemistry and
physics.1–3 It is vital that when developing an effectual ML
algorithm in chemistry that careful attention is paid to repre-
sentational formatting, i.e. the approach used to encode infor-
mation about molecular or material composition and
structure.4–6 A high-quality representation should efficiently
encapsulate both important differences between input cases
and the physics relevant to the problem under consideration,
enabling the model to develop descriptive power which can
render target properties accurately for a wide breadth of inputs.
A ML model that operates on molecular structures must map
each system, i.e. the atomic identities and their Cartesian

coordinates, onto a suitable (lower-dimensional) representa-
tion or feature vector. These representations aim to capture the
key ingredients required to support a model’s capacity to
extract abstract and nuanced patterns and relationships in
the training set data, facilitating the accurate prediction of
properties and observables. The ideal feature vector should be
(i) local, such that it encodes the immediate molecular struc-
ture at an arbitrary point up to a cutoff distance, (ii) invariant
with respect to transformations that do not alter the target
property (iii) unique, such that it should vary when the target
property varies; associating different outputs with identical
representations and (iv) efficient, such that it should not take
a long time to construct.

There exists a number of representations for which these
criteria are fulfilled: examples include smooth overlap of
atomic positions (SOAP),7 the atomic cluster expansion
(ACE),8 many body tensor representation (MBTR)9 and atomic
centred symmetry functions (ACSF).10 Importantly, these repre-
sentations focus solely on the position and charge of the nuclei
to build a representation. Consequently while computationally
inexpensive to generate, they are limited by an incapacity to
provide direct insights into the relationship between electronic
structure of the input and target properties of a system.
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They are also unable to supply distinct representations for
species with identical geometries which differ in their electro-
nic configurations, i.e. anions and cations.

To overcome this challenge, quantum-inspired representa-
tions which do include electronic structural information have
been developed. Such representations include molecular orbi-
tal basis machine learning (MOB-ML)11 and the F (Fock), J
(Coulomb), and K (exchange) matrices (FJK) representation.12

w?>However, both of these require some a priori calculations:
hence they only operate within a ‘D-learning’ framework, where
a ML model corrects a calculation performed at a lower level of
theory to provide a result consistent with a higher level of
theory. Alternatively, the spectrum of approximated Hamilto-
nian matrices (SPAHM)13 and matrix of orthogonalised atomic
orbital coefficients (MAOC)14 algorithms generate representa-
tions based upon a guess electronic Hamiltonian. These repre-
sentations are thus quicker to encode, and models applying
them are also able to provide predictions using electronic
information from the input.

In recent years, computational spectroscopy has become an
indispensable tool for the modern spectroscopist, capable of
providing predictions – and, consequently, interpretations – of
experimental observables. The predominance of computational
spectroscopy is perhaps best illustrated within X-ray
spectroscopy,15–17 where the transformative effects of next-
generation light sources18,19 are rapidly advancing the capabil-
ities of the technique. The increased understanding of mechan-
isms responsible for X-ray spectral lineshapes alongside the
availability of increasing quantities of data arising from the
performance of more numerous and sophisticated calculations
presents the opportunity to develop data-driven and ML tech-
niques, which can complement the first-principles based tech-
niques of computational spectroscopy.20,21 A number of works
have developed such ML models for the simulation and analy-
sis of X-ray spectroscopy.22–32 For example, Rankine et al.33

applied the weighted atomic centred symmetry functions
(wACSF)34 descriptor within a deep neural network (DNN) –
XANESNET – to predict X-ray absorption near-edge structure
(XANES) K-edge spectra of transition metal complexes. This
approach, which predicts spectra instantaneously, was able to
provides K-edge XANES spectra with an average accuracy of
B�2–4% in which the positions of prominent peaks are
matched with a 490% hit rate to sub-eV (B0.8 eV) error.

When observing transition metal spectra (an example of
which is supplied in Fig. 1(a)), it is apparent that many
prominent lineshape features arise above the ionisation
potential. These resonant features result from scattering events
of the excited electron with neighbouring atoms, and therefore
are largely dependent upon the nuclear geometric structure of
the system around the absorbing atom.35 The XANESNET net-
work was later extended by Watson et al. to the Pt L2/3-edge,36

which – in contrast to the transition metal K-edges – exhibits a
strong absorption edge, or white line transition in the low-
energy region of the spectrum. The shape and position of this
white line is determined by the character of the d-orbitals of the
absorbing atom, and therefore is also influenced by electronic

structure. In this work, Watson et al. demonstrated that
although the network was able to describe the whole spectrum
containing both electronic and nuclear structural information,
the poorest performance was found to be in region of the
spectrum near the white line – where the electronics of the
system are deterministic. This shortfall in predictive capability
is due to limitations of the wACSF descriptor, which only
directly encodes nuclear geometrics. Models where purely geo-
metric representations are used will naturally struggle to
describe regions of the XANES where electronic factors dom-
inate the formation of prominent features in the lineshape.

When approaching the problem of encoding electronic infor-
mation, Carbone et al.37 developed a graph neural network,
which went beyond purely nuclear geometrics by including
information about donor acceptor status and hybridisation of
the absorbing atom (or ‘‘absorber’’). In this work, the authors
demonstrated that the network could predict spectra at the O
and N K-edges, which – like the Pt L2/3 edge spectra – are
sensitive to the electronic structure, particularly close to the
white line. The sulphur K-edge, a typical spectrum for which is
shown in Fig. 1(b), presents a similar case, where the prominent
first peaks arise from 1s - p* and 1s - s* transitions. The
sharpness of these peaks and their strong sensitivity to the
electronic configuration of the system38,39 means that for a
model to cogently map out the structure–spectrum relationship,
a robust physics-based description of the initial and final states
of these transitions must be available. A representation which
can be generated with computational efficiency also remains a
desirable goal, as this leverages the benefits of efficient machine
learning architectures when contrasted with the run-times and
computational costs of first-principles calculations.

To tackle these challenges, we herein introduce a new
descriptor based upon a partial density of states (p-DOS), which
encodes relevant electronic information for ML models seeking
to simulate X-ray spectroscopy. We demonstrate that using a
minimal basis set in conjunction with a guess (non-optimised)
electronic configuration of the molecule, this representation
can be generated quickly and delivers a compact descriptor,
independent in size from the size of either the input species or
the basis set. Using a diverse variety of examples at the sulphur
K-edge, we demonstrate that while this representation per-
forms well in isolation, optimal performance is achieved when
the descriptor is supplemented with nuclear structural infor-
mation imparted via a geometric representation (Fig. 2).

Fig. 1 Example X-ray absorption spectra at the Fe K-edge (a), and S K-
edge (b).
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2 Methods and computational details
2.1 Partial density of states (p-DOS) descriptor

An X-ray absorption spectrum records the transition probability
between an initial ground state and a final core–hole excited
state of the system. This may be expressed using Fermi’s golden
rule as:

sðoÞ ¼ 4p2

o

X

F

CFh jHint CIj ij j2d EI � EF þ oð Þ (1)

where CI and CF represent the many-body electronic wavefunc-
tions of the initial and final states respectively, with initial and
final electronic energies EI and EF. Hint represents the inter-
action Hamiltonian, with light radiation of frequency o.

Assuming the one-electron state approximation (i.e. one
electron transitions to generate each final state) and an inter-
action limited to the dipole approximation (which even in the
short wavelength regime is usually 3 orders of magnitude larger
than high-order terms such as the electric transition quadru-
pole) we can rewrite eqn (1) as:

sðoÞ ¼ 4p2

o

X

F

funh jD̂ f1sj i
�� ��2d EI � EF þ oð Þ (2)

For a transition dipole moment D̂
� �

to be non-zero, the selec-
tion rule DL = �1 applies, and there must be spatial overlap
between the initial and final states. Consequently, we can take

advantage of the localised nature of the initial core-state and
approximate a XANES spectrum using a partial density of states
(p-DOS) corresponding to a dipole-allowed transition from the
initial core orbital. For the sulphur K-edge, this corresponds to
electronic transitions from s - p orbitals on the absorber and
therefore the spectrum can be approximated as the sulphur
p-orbital DOS.

Within this approximation, our p-DOS descriptor is
obtained by extracting the absorber’s atomic orbital contribu-
tion to each unoccupied molecular orbital, which is obtained
using a guess (non-optimised) electronic configuration of the
system. We express the guess molecular orbital configuration
as in eqn (3):

fa ¼
X

r

crawr (3)

where fa are the unoccupied molecular orbitals, wr are the
atomic orbitals (represented by the basis set used), and cra are
the coefficients. The atomic orbital coefficients (cra) for the p-
orbitals of the absorber are extracted and represented on an
energy grid as:

p-DOS Ekð Þ ¼
X

a

X

r

cra � exp �
Ea�Ekð Þ2

s (4)

where Ek is the energy grid used to represent the descriptor, Ea

is the energy of each unoccupied molecular orbital, and s is the

Fig. 2 Schematic of the architecture used in this work: during first principles calculations, the Hamiltonian is set up and then converged using self-
consistent field cycles. Subsequently, the spectra can be calculated using electronic excitations of the core-orbitals. Our DNN combines the nuclear
structure descriptor based upon weighted atom-centred symmetry functions (wACSF)34 with the partial density of states (p-DOS) obtained from a guess
(non-optimised) electronic wavefunction. This descriptor is subsequently fed to the DNN to develop a forward structure-to-spectrum mapping via the
iterative optimisation of the internal weights.
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width of the Gaussian broadening. These parameters (i.e.
number of grid points, k, the lowest and highest energy for
the grid Ek, and s) can be set and tuned by the user to optimise
model performance. A prominent benefit of the discretisation
of the p-DOS feature vector onto a fixed energy grid is that the
size of the descriptor becomes independent of the size of the
molecule and the basis set, making it amenable to application
across large and diverse training sets.

The p-DOS descriptor aims to encapsulate the electronic
information which produces spectroscopic observables. To
encode nuclear structural information which also acts as a
contributor to the spectrum, one can supplement this descrip-
tor with the wACSF descriptor previously described in ref. 33
For an arbitrary absorption site, i, wACSF is constructed via
using a single global (G1), n radial (G2; two-body), and m
angular (G4; three-body) terms. The descriptor is available in
the latest version of XANESNET found here.40

2.2 Training data and quantum chemistry simulations

Contextualising the ML training data in terms of ‘‘samples’’ and
‘‘labels’’, our reference datasets comprise X-ray absorption site
geometries (‘‘samples’’) of small organic molecule complexes
containing a single sulphur atom, extracted from the GBD13
dataset.41 All molecules have r10 heavy (non-hydrogen) atoms.
Overall, the dataset comprises a total of 134 877 samples.

Sulphur K-edge XAS spectra (‘‘labels’’) for all of the struc-
tures in our reference datasets were calculated using a
restricted excitation window time-dependent density functional
theory (REW-TDDFT)42 as implemented in the ORCA quantum
chemistry package.43 For all calculations, the BP86 exchange
and correlation functional44,45 and DKH-def2-TZVP basis set46

were used, and scalar relativistic effects were described using a
Douglas–Kroll–Hess (DKH) Hamiltonian of 2nd order.47 The
light–matter interaction was described using electric dipole, mag-
netic dipole, and electric quadrupole transition moments.48 After
calculation, each spectrum was broadened using a Gaussian
function with a fixed width of 1.0 eV. A final pre-processing step
was carried out to scale the target spectra for each reference
dataset into the 0 - 1 range independently by dividing through
by the largest calculated cross-section in the reference dataset.
The dataset is freely available at the following location.49

2.3 Network details and training

In this work, our network is based on the deep multilayer
perceptron (MLP) model and comprises an input layer, two
hidden layers, and an output layer. All layers are dense, i.e.:
fully connected, and each hidden layer perform nonlinear
transformations using the rectified linear unit (ReLU) activa-
tion function. The input layer, where an input feature vector
has length N, comprises N neurons, the hidden layers each
comprise 512 neurons, and the output layer comprises 400
neurons from which the discretised K-edge XANES spectrum is
retrieved after regression. In other words, XANESNET is a multi-
output MLP where each output neuron corresponds to the
spectral intensity at a given energy gridpoint. The XANESNET
DNN contains by [N � 512 � 512 � 400] points overall and

therefore has, depending on the size of N, B400 000 internal
weights (W).

The internal weights, W, are optimised via iterative feed-
forward and backpropagation cycles to minimise the empirical
loss, J(W), defined here as the mean-squared error (MSE)
between the predicted, mpredict, and calculated, mcalculated, K-
edge XANES spectra over the reference dataset. In other words,
the algorithm hunts for an optimal set of internal weights, W*,
to satisfy argmin

W

ðJðWÞÞ. Gradients of the empirical loss with

respect to the internal weights, dJ(W)/dW, were estimated over
minibatches of 64 samples and updated iteratively according to
the adaptive moment estimation (ADAM)50 algorithm. An
annealed learning rate was used throughout, with the learning
rate initially set to 2 � 10�3, then reduced by a factor of 2 every
100 epochs. Internal weights were initially set according to ref.
51. Unless explicitly stated in this Article, optimisation was
carried out over 500 iterative cycles through the network
(commonly termed epochs). Regularisation was implemented
to avert any over-fitting of the network to the training dataset.

The DNN is programmed in Python 3 with Pytorch.52 The
atomic simulation environment53 (ase) API is used to handle
and manipulate molecular structures. For this work, the
required electronic properties as described in Section 2.1 were
extracted using the pySCF package,54 as incorporated within
the XANESNET code.40 The code is publicly available under the
GNU Public License (GPLv3) on GitLab.40

3 Results

We now detail and discuss the results of the studies, which are
undertaken as follows: firstly, we optimise a suitable p-DOS
descriptor and assess the influence of its parameters – includ-
ing basis set, energy range, broadening and discretisation – on
performance. We additionally assess the influence of concate-
nating p-DOS with a nuclear structure descriptor based upon
wACSF.34 Secondly, the performance of the XANESNET DNN for
predicting S K-edge XANES spectra using the new descriptor is
investigated. Third and finally, we extend the investigation into
the capability of p-DOS at the S K-edge with an interesting test
case: the ultrafast time-resolved experimental signal associated
with the ground state interconversion of highly vibrationally
excited photoproducts of 2(5H)-thiophenone.

3.1 p-DOS descriptor: featurisation and optimisation

In this section, we address the way p-DOS represents the
electronic configuration of an input system, and investigate
the influence of user-adjustable parameters on the perfor-
mance of the ML algorithm.

p-DOS uses coefficients from orthogonalised atomic orbitals
and therefore the basis set used impacts both the performance
of the network and the time required to generate the descriptor.
Fig. 3 shows the relative performance as a function of the
transformation rate (i.e. the speed at which an input geometry
can be converted into the p-DOS descriptor) calculated using a
training subset of 10 000 structure–spectrum pairs randomly
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selected from the full dataset. For reference, translation into
the wACSF descriptor occurs at a rate of B300 transformations
per s using an off-the-shelf commercial-grade CPU (AMD Ryzen
Threadripper 3970X; 3.7–4.5 GHz). As expected, the rate of
generation for p-DOS is significantly slower for larger basis
sets – although in agreement with observations for the MAOC
representation,14 we find that the use of larger basis sets does
not improve performance, with the 3-21G and pc1 basis sets
achieving the best results. 3-21G is found to be faster than pc1
by a factor of four: consequently it was applied for the remain-
der of this study. In the context of future studies at other
absorption edges where larger basis (e.g. def2-TZVP) may be
requisite, we emphasise that although transformation times
may increase for large training sets, once the model has been
developed and is run in ‘predict’ mode individual predictions
by end users can be produced rapidly, with rates of Z6
predictions per minute.

Although the computational efficiency of p-DOS is achieved
by use of the guess wavefunction, we study the influence of
varying degrees of SCF convergence of the wavefunction to
assess the relative benefit of implementing some SCF cycles.
Fig. S1 (ESI†) shows the relative performance as a function of
the number of SCF cycles used while developing the p-DOS
descriptor with a 3-21G basis set. Very little improvement in
performance is gleaned as the number of SCF cycles is
increased. This lack of effectual benefit can be explained when
we plot the average p-DOS descriptor calculated with the
training subset as shown in Fig. 4. The blue line shows the
average and standard deviation without SCF optimisation,
while the grey shows the same metrics when SCF has been
used. Overall, only a small shift at low energy (�5 - 10 eV) and
a slight change of lineshape between 15 - 20 eV is observed.
These are comparatively small changes, and the behaviour is
not significantly distinct from shifts in p-DOS lineshape
observed when selecting sample structures from the training
set (examples shown in Fig. S2, ESI†). Hence increasing the
number of SCF cycles does not intelligently enhance the p-DOS

descriptor, and so the performance of the network is not
improved. Finally, the initial guess may also influence perfor-
mance. In the present case, we found a different initial guess
(e.g. Hückel or superposition of atomic densities) do not have a
significant influence on performance however it may at other
absorption edges and therefore should be considered when
developing and optimising models.

When generating the p-DOS descriptor, the number of
points (features), the energy range (Ek) and the broadening
used (s) (see eqn (4)) each influence performance. Fig. S3 (ESI†)
shows the relative performance as a function of the energy
range, where the energy grid starts at �10 eV, and the highest
energy point climbs to increment the full grid across a range.
We observe gradual improvement up to an energy range of
40 eV, a range which is sufficient to enclose all of the major
features seen in Fig. 4. Using this energy range, Fig. 5 displays
the relative performance as a function of the number of points
(features) and broadening (s). This shows that optimal perfor-
mance is achieved with Gaussian broadening of 0.8 eV and grid
points 450. Consequently, throughout the remainder of this
study we adopt s = 0.8, and discretise the p-DOS descriptor
using 80 input features.

3.2 p-DOS descriptor: performance

In this section, we apply a p-DOS descriptor with optimal
parameters as described in the previous section and turn our
attention towards assessing the performance of the model
when predicting sulphur K-edge XANES spectra. Unless other-
wise stated, all results in this section have been obtained using
a model-training set comprised of 129 877 structure–spectrum
pairs, and tested against a held-out set of 5000 structure–
spectrum pairs.49 Throughout this section, we apply the Was-
serstein distance as an alternative error metric to measure the
similarity of the expected and predicted spectral shapes. Low
values of Wasserstein distance implicate shape-adherence
somewhat more closely than pure mean-squared error. This
metric is sometimes referred to as earth-mover’s distance and

Fig. 3 Performance against transformation rate (i.e. the number of p-DOS
descriptors generated each second). Performance is plot relative (in %) to
the best performance in the panel, where the best performance is at 0%.
Validation results; five-times-repeated five fold cross-validation.

Fig. 4 The average and standard deviation of sulphur p-DOS for the
training subset of 10 000 randomly-selected samples with (grey) and
without (blue) SCF optimisation. Energy corresponds to the energy of
the eigenvalues, while the broadening, s = 0.8 in both cases.
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can intuitively be understood as the work done to transform
between one probability distribution and another.

The performance of the network as a function of the number
of epochs (i.e. optimisation cycles of the network) for three
permutations of the descriptor – p-DOS, wACSF, and p-DOS
appended with wACSF (‘‘combined’’) – is shown in Fig. S3
(ESI†). In each case, the wACSF descriptor includes 22 G2

functions and 10 G4 functions, consistent with the optimisation
described by Gastegger et al.34 We see that optimum perfor-
mance is achieved for the combined descriptor at Z500 epochs.
The second best performer, with relative performance 10%
worse than the combined descriptor, is the p-DOS only descrip-
tor; in spite of diminished performance, convergence is much
quicker with p-DOS only, occurring within 50 forward passes
through the network. Finally, while the wACSF only descriptor
shows a similar convergence trend to the combined descriptor,
its relative performance is 25% worse. Overall this demonstrates
that the combination of nuclear and electronic structural infor-
mation provides superior performance. We hence carry forward
the combined descriptor for the subsequent studies in this
paper. Additionally, we note that the rapidity of the network’s
training, taking o30 min using an off-the-shelf commercial-
grade CPU (AMD Ryzen Threadripper 3970X; 3.7–4.5 GHz) or
GPU (nVidia RTX 3070, 5888 CUDA cores; 1.5–1.7 GHz) illus-
trates that once training data has been curated our DNN can be
quickly reoptimised to estimate XANES spectra at other absorp-
tion edges, and for other absorbing elements.

As a function of the number of training samples, all three
descriptors show similar behaviour when assessed using k-fold
cross validation (see Fig. S4, ESI†). In all cases, performance
improves most rapidly when using the first 20 000 samples;
subsequent improvements are slow as set size increases 120 000
samples. The modest and diminishing rate of improvement
that while there remains scope to further improve on the
results by growing the dataset, further sample-size boosts
should be executed carefully to prevent the development of
an over-fitted network.

Fig. 6 shows a histogram of Wasserstein distance for the
held-out testing set of 5000 samples. The median Wasserstein
distance from this distribution is 0.0050 and the interquartile
range is 0.0026. These low values, alongside the high positive
skewness coefficient of 1.02 across the held-out dataset,
demonstrate that predictions are generally clustered towards
the higher-performance region of the histogram, indicating the
strong performance of the network. Fig. S5 (ESI†) contextualises
these results by showing the comparison between 6 predicted
and target sulphur K-edge XANES spectra from the held-out. It
can be observed that even for those spectra in the 90th–100th
percentiles, i.e. the worst performers, capture spectral line-
shape well, and error is mostly derived from discrepancies in
peak intensity.

Fig. 7 shows experimental (dashed), TDDFT calculated (grey)
and DNN predicted (black) S K-edge spectra for the species (a)
thianthrene, (b) thiohemianthraquinone, dibenzothiophene
(c), and tetramethylenesulfone (d). Overall, good agreement is
observed, even for the cases of species thiohemianthraquinone
and tetramethylenesulfone, which respectively exhibit a strong
pre-edge feature at 2466 eV arising from the formation of the
CQS double bond and a strong blue shift due to the electron-
withdrawing character of the SQO moiety. Fig. S7 (ESI†) shows
the same spectra predicted using a ML model trained using
only the nuclear geometric wACSF descriptor. The comparison
of the spectra shows clear distinctions and evidences signifi-
cant improvement, especially for species a and b, upon the
incorporation of electronic information via the p-DOS descrip-
tor. To facilitate interpretation, Fig. S8 (ESI†) shows normalised
feature importance resulting from SHAP value analysis.55 In all
cases, as confirmed by the average SHAP analysis performed
over the entire held-out set (Fig. S9, ESI†), this shows important
contributions from both the electronic (p-DOS) and structural
(wACSF) descriptors. Indeed, the relative importance of each
p-DOS feature closely follows, as expected, the general shape of
the spectrum. The agreement with lineshape is particularly
marked with thiohemianthraquinone, which shows a strong
peak at feature 18, lower than the other examples, which gives

Fig. 5 Performance against energy range of p-DOS descriptor. Perfor-
mance is plotted relative (in %) to the best performance in the panel, where
the best performance is at 0%. Validation results; five-times-repeated five-
fold cross-validation.

Fig. 6 Histogram of the Wasserstein distance between the target (mTarget)
and predicted (mPredict) S K-edge XANES spectra. Evaluated using held-out
test data containing 5000 randomly selected samples.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 1

:2
3:

32
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01368a


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 24477–24487 |  24483

rise to the strong pre-edge just above 2466 eV. The geometric
wACSF G2 functions (features 80–102) show peaks at 1.8 Å,
1.7 Å, 1.8 Å and 1.4 Å for thianthrene (a), thiohemianthraqui-
none (b), dibenzothiophene (c) and tetramethylenesulfone (d).
These distances correspond to first coordination shell bond
lengths to the sulphur absorber in each case.

3.3 Case study: application to ground state interconversion of
highly vibrationally excited photoproducts

Having demonstrated the strong performance of the model
developed using the p-DOS and wACSF combined descriptor,
we now apply it to the prediction of the sulphur K-edge XANES
signal arising from the athermal ground state dynamics follow-
ing photorelaxation of 266 nm excited 2(5H)-thiophenone.
Previous experimental investigations into the photoproducts
has been performed using photoelectron spectroscopy and
electron diffraction:56,57 the simulations in this work will
provide insights into the complementary information obtain-
able via ultrafast X-ray absorption spectroscopy.

As illustrated schematically in Fig. 8, following photoexcita-
tion 2(5H)-thiophenone exhibits a fast ring-opening wherein

one C–S bond breaks to form a ring-opened (acyclic) form and
an ultrafast decay towards the ground (S0) electronic state is
triggered. The ring-opening and decay occurs within B300 fs.
Upon reaching the ground state, intra-molecular rearrange-
ments of the highly vibrationally excited species may lead to
the reformation of a thiophenone and/or isomerisation to
various ketenes. A recent ultrafast electron diffraction study57

has demonstrated that B25% of the photoproducts reform
2(5H)-thiophenone (1) and B50% form 2-(2-thiiranyl)ketene (2) –
an exciting photoproduct containing a strained 3-membered
ring – within B1 ps of photoexcitation. The remaining B25%
form the ring-open forms 2-thioxoethylkene (3) and 2-(2-
sulfanylethyl)kentene (4), which are theoretically differentiable
due to the protonation of the sulphur in the latter structure.
However, due to the weak scattering cross section of hydrogen,
electron diffraction experiments have been unable to distin-
guish between these species. In contrast, S K-edge X-ray absorp-
tion is well documented to be very sensitive to electronic
structure, which would be expected to vary upon protonation.
It is therefore reasonable to posit that the sulphur K-edge
XANES of each species would show distinct signals, and

Fig. 7 Experimental (grey dashed-line), TDDFT(BP86) calculated (grey solid-line) and DNN predictions (black line) sulphur K-edge spectra of
(a) thianthrene, (b) thiohemianthraquinone, (c) dibenzothiophene and (d) tetramethylenesulfone. Experimental spectra have been digitised from ref.
38. All calculated and DNN predicted spectra have been shifted horizontally by 66 eV to account for the routine error in absolute transition energies of
TDDFT spectra.
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therefore that XANES spectroscopy could be applied to deliver a
more detailed insight into photoproduct formation.

Fig. 9 shows the calculated (dashed) and DNN predicted
(solid) sulphur K-edge spectra for photoproducts 1–4. Overall
there is good agreement between the DNN predicted and
calculated spectra, highlighting the accuracy of the DNN and
the p-DOS descriptor. Compared to 1, the spectrum of 2 exhibits
a red shift, associated with the increase in electron density of the
sulphur. The spectrum of 4 is somewhat similar to 2, within the
energy range considered with only a slight reduction in red shift
and loss of intensity of the band at 2473 eV. However, the
spectrum for 3 shows a significant change, with a strong pre-
edge peak arising at 2468 eV. This arises from transitions into a
low energy p* orbital along the CQS double bond (similarly to
the observations made for thiohemianthraquinone in the pre-
vious section). For comparison, Fig. S10 (ESI†) shows the predictions of the same photoproducts using a DNN developed

using only the nuclear structural wACSF descriptor. A substantial
decrease in performance is clearly observed, especially for 2-
thioxoethylkene (3) and 2-(2-sulfanylethyl)ketene (4). While these
snapshots appear to indicate a strong sensitivity to differences
between the two ring-open products, it is critical to account for
the effect of the high internal energy of the photoproducts,
which gives rise to a substantial diversity of molecular config-
urations for each photoproduct.

Fig. 10(a) shows the time-resolved S K-edge X-ray absorption
spectra to be simulated by the DNN, based upon the molecular
dynamics trajectories from ref. 56 and 57. Our interest in the
present study is in investigating the network’s ability to capture
the photoproduct spectra, therefore we have not included
initial dynamics in the excited state (up to B250 fs), and only
simulated the species when they populate the electronic ground
state. The most prominent feature is the formation of the
derivative profile associated with an edge shift between 2471–
2472 eV, arising due to the formation of 2. There is a weak
positive feature around 2468 eV which, as indicated in Fig. 9,
likely arises from photoproduct 4. Fig. 10(b) overlaps the
dynamics of this pre-edge peak with the populated kinetics of
3 (the relative populations of all of the species are shown in

Fig. 8 Schematic of the photochemistry of 2(5H)-thiophenone following
irradiation at 266 nm. Excitation to the second excited singlet electronic
state (S2) results in immediate C–S bond extension (ring opening) and
ultrafast nonradiative decay via the S1 to the ground (S0) electronic states.
In the electronic ground state, athermal dynamics drive the formation of
variant photoproducts, namely 2(5H)-thiophenone (1), 2-(2-thiiranyl)ketene
(2), 2-thioxoethylkene (3) and 2-(2-sulfanylethyl)kentene (4).

Fig. 9 TDDFT(BP86) calculated (dashed) and DNN predicted (solid) sul-
phur K-edge spectra for (a) 2(5H)-thiophenone (1), (b) 2-(2-thiiranyl)-
ketene (2), (c) 2-thioxoethylkene (3) and (d) 2-(2-sulfanylethyl)ketene
(4). All spectra have been shifted horizontally by 66 eV to account for
the routine error in absolute transition energies of TDDFT spectra.

Fig. 10 (a) DNN predicted transient (mt � mGS) S K-edge spectrum as a
function of time calculated using 39 MD trajectories, starting from the
point at which the photoexcited thiophenone repopulates the electronic
ground states. (Care should be taken in over interpreting the first 250 fs,
where experimentally most of the population would be in the electro-
nically excited state.) The ground state spectrum used to generate the
transient is predicted from cold ground state molecular dynamics, i.e.
configurations prior to excitation. Each MD trajectory contains 20 000
steps, meaning that this 2D spectrum has been generated using 800 000
spectral predictions from the DNN. (b) Normalised intensity of the inte-
grated pre-edge feature between 2467.5–2468.5 eV (black) and normal-
ised population kinetics of the photoproduct 3 (red).
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Fig. S11, ESI†) and excellent agreement is observed between the
two, confirming proposed ability of sulphur K-edge XANES to
distinguish between the ring open conformers 3 and 4.

To further review the accuracy of the DNN predictions,
Fig. 11 show a comparison between the DNN predicted (Fig. 11(a))
and TDDFT(BP86) calculated (Fig. 11(b)) at 140 (solid) and 1000
(dashed) fs respectively. While there are some small deviations,
especially with regards to the position and intensity of the pre-
edge, the key transient features and the changes between the
two time steps are very well reproduced, further confirming
the capability and aptness of the combined-descriptor DNN
model. The differences in the pre-edge, which arises from the
formation CQS, is consistent with the differences arising
from Fig. 7(b) and therefore represents an area for improve-
ment in future work. Fig. S12 and S13 (ESI†) show the same
simulations, using the DNN developed solely with a wACSF
descriptor. As is consistent with previous observations, the
wACSF DNN clearly exhibits a significant deviation in features
between the DNN and TDDFT, again evidencing that due to the
importance of electronic information wACSF in isolation is an
insufficient representational format for the simulation of these
spectra.

Overall, this section demonstrates the potential of incorpor-
ating electronic information in the form of our p-DOS descrip-
tor compared to solely using nuclear information through the
wACSF descriptor when applied to predicting ultrafast time-
resolved X-ray signals.58 With the upgrade of the LCLS, time-
resolved X-ray experiments have moved from 120 pulses
per second to 1 million pulses per second, making such
ultrafast X-ray experiments increasingly common. Conse-
quently, computations that efficiently and accurately support
analysis are also becoming increasingly desirable. We

emphasise that this is not design to replace first-principles
techniques, but rather to add an additional tool for researchers
to enhance analysis. In addition, while this present analysis is
focused on time-resolved experiments, it should be noted that
similar benefits could be expected for other experimental types,
e.g., in operando measurements of batteries and/or catalysts,
with the principal benefits being the ability to speed up spectral
predictions and therefore rapidly screen potential outcomes
and scenarios.

4 Conclusions

The proliferation of high-brilliance light sources such as third-
generation synchrotrons and X-ray free-electron lasers (XFELs)
means that it is increasingly possible for X-ray spectroscopy to
deliver highly-detailed information about the local geometric
and electronic structure of matter in a broad range of different
environments and under challenging operating conditions,
such as femtosecond time-resolved studies. These advances
increase the importance of computational spectroscopy to
interpret and predict experimental signals to guarantee that
the detailed information contained within these observables
can be efficiently extracted.59 Accurate ML models have the
potential to equip researchers with easy-to-use, computation-
ally inexpensive, and accessible tools for the fast and auto-
mated analysis and prediction of X-ray spectroscopy.21

To this end, this work has introduced a quantum-inspired
representation for ML specifically tailored towards the simula-
tion of X-ray spectra. The form of the p-DOS descriptor is
directly inspired by the spectral shapes within the single-
particle and dipole approximations and enables, for the first
time, the inclusion of explicit electronic information of the
absorbing atom into structural featurisation. The p-DOS is
generated within the XANESNET code40 and constructed from
the coefficients of the non-optimised (guess) wavefunction
obtained from the pySCF code54 and while it depends on the
basis set used, we have shown that even small basis sets are
able to exhibit strong performance while simultaneously con-
verting the atomic nuclear coordinates into the descriptor at
rapid rates.

Optimal performance is achieved by combining this newly
developed p-DOS descriptor with nuclear structural informa-
tion obtained from the wACSF descriptor used in previous
work.33 This is shown to facilitate the accurate description of
sulphur K-edge X-ray absorption spectra from a held-out set
and delivers predictions in good agreement with experimental
observables. We demonstrate that the performance is substan-
tially better than the wACSF-only descriptor, which can be
explained by the SHAP feature importance analysis of the input
descriptor showing that on average the p-DOS component
represents 440% of the overall feature importance for the
held-out training set. Further testing of the descriptor and
the network developed is achieved by applying it to predict
ultrafast sulphur K-edge XANES signals of the products of
2(5H)-thiophenone formed after 266 nm photoexcitation.56,57

Fig. 11 The DNN predicted (a) and TDDFT(BP86) calculated (b) S K-edge
spectra at 140 (solid) and 1000 (dashed) fs.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/3

1/
20

25
 1

:2
3:

32
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp01368a


24486 |  Phys. Chem. Chem. Phys., 2024, 26, 24477–24487 This journal is © the Owner Societies 2024

This demonstrates, consistent with first principles simulations,
that in contrast to previous photoelectron spectrum and electron
diffraction experiments, X-ray absorption spectroscopy can distin-
guish between some of the ring-open isomers formed in the
vibrationally excited ground state. Here the DNN is especially
important, due to the high level of conformational disorder of the
molecule which must be captured, meaning that many spectral
simulations are required to simulate an experimental observable.

Overall, this paper introduces an accurate and affordable
descriptor, generaliseable with respect to the identity of the
absorber, which encapsulates the electronic properties that
contribute to spectroscopic observables. Although, owing to
the strong influence of the electronic structure on spectral
shape,38,39 the present work focuses on the application of p-
DOS descriptor to sulphur K-edge X-ray absorption spectra, the
method is equally applicable to other absorption edges and
spectroscopic methods (i.e. an XES ML-model could be devel-
oped if the method were applied to the occupied rather than
unoccupied DOS), which will be the focus of future work.
Previous work33 demonstrated that when developing machine
learning algorithms to produce transition metal K-edge spectra,
a purely geometric structural representation facilitated the
production of an accurate and affordable machine learning
model. This is as the transition metal spectra are principally
derived from structural properties, with the strongest spectral
features appearing at – or slightly above – the absorption edge.
For this group, transitions from core orbitals into the low-lying
unoccupied valence states correspond to dipole-forbidden
(3d ’ 1s) excitations, and consequently provide limited insight
into the electronic configuration of the absorber, because such
forbidden transitions typically give rise to both broad and weak
spectral features. In the present work, SHAP analysis highlights
the importance of the electronic (p-DOS) representation, and
therefore it should be established whether p-DOS might also
demonstrate an appreciable benefit for species where the
XANES spectra are principally derived from geometric features.
In addition, the role of quadrupole transitions raises the
question of whether s and d orbitals should also be considered
by an electronic representation, in spite of the weakness of
these transitions. In the present work a non-optimised (guess)
wavefunction has been used, as this limits the computational
expense of generating the descriptor. We note that while the
guess wavefunction performs sufficiently within the present
work, it may represent a limitation for some systems with a
more complex electronic structure. To overcome this, opti-
mised wavefunctions from lower-level semi-empirical methods,
such as GFN-xTB60 could be used to generate the p-DOS. These
are therefore the recommended directions of focus for future
investigations based upon the novel p-DOS descriptor.
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