

Cite this: *Phys. Chem. Chem. Phys.*,
2024, 26, 16048

Benchmark *ab initio* characterization of the complex potential energy surfaces of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions[†]

Domonkos A. Tasi * and Gábor Czakó *

The α -effect is a well-known phenomenon in organic chemistry, and is related to the enhanced reactivity of nucleophiles involving one or more lone-pair electrons adjacent to the nucleophilic center. The gas-phase bimolecular nucleophilic substitution ($S_{\text{N}}2$) reactions of α -nucleophile HOO^- with methyl halides have been thoroughly investigated experimentally and theoretically; however, these investigations have mainly focused on identifying and characterizing the α -effect of HOO^- . Here, we perform the first comprehensive high-level *ab initio* mapping for the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I] reactions utilizing the modern explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [$n = 2-4$] basis sets. The present *ab initio* characterization considers five distinct product channels of $S_{\text{N}}2$: $(\text{CH}_3\text{OOH} + \text{Y}^-)$, proton abstraction $(\text{CH}_2\text{Y}^- + \text{H}_2\text{O}_2)$, peroxide ion substitution $(\text{CH}_3\text{OO}^- + \text{HY})$, $S_{\text{N}}2$ -induced elimination $(\text{CH}_2\text{O} + \text{HY} + \text{HO}^-)$ and $S_{\text{N}}2$ -induced rearrangement $(\text{CH}_2(\text{OH})\text{O}^- + \text{HY})$. Moreover, besides the traditional back-side attack Walden inversion, the pathways of front-side attack, double inversion and halogen-bond complex formation have also been explored for $S_{\text{N}}2$. With regard to the Walden inversion of $\text{HOO}^- + \text{CH}_3\text{Cl}$, the previously unaddressed discrepancies concerning the geometry of the corresponding transition state are clarified. For the $\text{HOO}^- + \text{CH}_3\text{F}$ reaction, the recently identified $S_{\text{N}}2$ -induced elimination is found to be more exothermic than the $S_{\text{N}}2$ channel, submerged by ~ 36 kcal mol⁻¹. The accuracy of our high-level *ab initio* calculations performed in the present study is validated by the fact that our new benchmark 0 K reaction enthalpies show excellent agreement with the experimental data in nearly all cases.

Received 11th March 2024,
Accepted 6th May 2024

DOI: 10.1039/d4cp01071j

rsc.li/pccp

I. Introduction

Theoretical and experimental investigations of the gas-phase bimolecular nucleophilic substitution ($S_{\text{N}}2$) reactions have gained increasing prominence since the 1970s.¹⁻¹⁰ In step with the progress of computational chemistry and experimental methodology,¹¹⁻¹⁶ the initially conceived simple picture of the elemental $S_{\text{N}}2$ reactions has been found to be incomplete, as it became apparent that along with the traditional Walden inversion and front-side attack, several alternative mechanisms may also occur depending on the reactants and the reaction conditions.¹⁷⁻²¹

Transcending the conventional reactions between halide ions and methyl halides, our understanding of $S_{\text{N}}2$ was also

reshaped by the examination of reactions involving HO^- .²²⁻³⁸ In 2002, Sun *et al.* investigated the $\text{HO}^- + \text{CH}_3\text{F}$ $S_{\text{N}}2$ reaction by performing direct dynamics simulations and revealed that the reaction avoids the region of the deep H-bonded $\text{CH}_3\text{OH}\cdots\text{F}^-$ minimum in the exit channel.²² Since then, other theoretical studies have uncovered a novel oxide ion substitution for the $\text{HO}^- + \text{CH}_3\text{F}$ reaction utilizing quasi-classical trajectory (QCT), as well as, direct dynamics calculations.³⁹⁻⁴¹ Over the years, the primary focus has been on the dynamical characterization of the $\text{HO}^- + \text{CH}_3\text{I}$ reaction.⁴²⁻⁴⁸ Wester and co-workers examined several $S_{\text{N}}2$ reactions experimentally, including $\text{HO}^- + \text{CH}_3\text{I}$, with the crossed-beam ion-imaging technique.^{10,14,49} Direct dynamics simulations were also performed by Hase and co-workers, paving the way for comprehensive experimental-theoretical studies of the $\text{HO}^- + \text{CH}_3\text{I}$ reaction.⁵⁰⁻⁵² Furthermore, the present authors developed several global analytical *ab initio* potential energy surfaces (PESs) for $\text{HO}^- + \text{CH}_3\text{I}$ at seven different levels of theory using the in-house ROBOSURFER program package.^{53,54} Afterwards, on the final PES, which was confirmed to be the most suitable for further investigations, more than half a million trajectories were computed, comparing the results with the results of revised crossed-beam experiments

MTA-SZTE Lendület Computational Reaction Dynamics Research Group,
Interdisciplinary Excellence Centre and Department of Physical Chemistry and
Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1,
Szeged H-6720, Hungary. E-mail: dtasi@chem.u-szeged.hu,
gzakko@chem.u-szeged.hu

† Electronic supplementary information (ESI) available: Benchmark Cartesian coordinates (\AA) and energies (E_h) of the stationary points. See DOI: <https://doi.org/10.1039/d4cp01071j>

in order to analyze the dynamics of the reaction in a more detailed manner.⁵⁵ Recently, the mode specificity in the dynamics of the reaction was also studied at several collision energies by exciting certain vibrational modes of the reactants.^{56,57}

Besides considering di- or polyatomic 'normal' nucleophiles (e.g., HO^- , CN^- , NH_2^- , PH_2^- etc.),^{10,24,58-63} a significant emphasis has been placed on α -nucleophiles (e.g., HOO^- , ClO^- , BrO^- , CH_3OO^- , HOHN^- , NH_2O^- , etc.) participating in $\text{S}_{\text{N}}2$ reactions.^{8,9,64-71} In the case of these α -nucleophiles, one or more lone-pair electrons are located on the atom adjacent to the nucleophilic center, inducing enhanced reactivity compared to that expected from the Brønsted-type correlation.⁷² This phenomenon is known as the α -effect.⁷³ While the existence of the α -effect was beyond doubt in solution, the situation was not as clearly defined in the gas phase.^{72,74,75} By comparing the branching ratios for the reactions of HO^- and HOO^- with methyl formate, DePuy and co-workers concluded that HOO^- does not show the α -effect in the gas phase.⁷⁶ In addition, Villiano *et al.* unveiled that a noticeable α -effect cannot be observed for the $\text{HOO}^-/\text{ClO}^-/\text{BrO}^- + \text{CH}_3\text{R}$ ($\text{R} = \text{CH}_3$, CH_3CH_2 , etc.) systems, as well.⁶⁵ In contrast, the opposite of these findings has been confirmed, and several studies have verified that the α -effect stems from the intrinsic properties of α -nucleophiles validating the manifestation of this phenomenon in the gas phase.⁷⁷⁻⁸⁵ However, the identification of these intrinsic properties of α -nucleophiles remained disputed.⁸⁶⁻⁹³ Recently, Hamlin *et al.* reported an extensive theoretical survey on the origin of the α -effect in the gas phase.⁷¹ They employed the activation strain model of reactivity in combination with Kohn–Sham molecular orbital theory and arrived at the conclusion that the adjacent atom of α -nucleophiles induces a reduction in Pauli repulsion between the reactants by polarizing orbital density away from the nucleophilic center. As a result, an enhancement of the reactivity can be obtained for α -nucleophiles compared to their 'normal' counterparts.

Regarding $\text{S}_{\text{N}}2$ reactions involving HOO^- , several theoretical investigations have concentrated on the stationary-point and dynamical characterization, as well.^{74,88,94-97} In the course of the aforementioned α -effect examinations, the stationary points of the corresponding Walden-inversion pathways were determined for several $\text{S}_{\text{N}}2$ reactions of HOO^- at various levels of theory. The $\text{HOO}^- \cdots \text{CH}_3\text{Y} \rightarrow [\text{HOO} \cdots \text{CH}_3 \cdots \text{Y}]^- \rightarrow \text{CH}_3\text{OOH} \cdots \text{Y}^-$ path was explored by Evanseck *et al.* for $\text{Y} = \text{Cl}$ at the level of HF/6-31+G(d).⁷⁴ Later, in the theoretical surveys of Ren *et al.*, the geometries of the $[\text{HOO} \cdots \text{CH}_3 \cdots \text{Y}]^-$ transition states were optimized in the case of $\text{Y} = \text{F}$ and Cl at the MP2/6-31+G(d) level of theory, and the corresponding energies were determined with the G2(+) method.^{78,79} Associated with the microsolvated variants of the $\text{HOO}^- + \text{CH}_3\text{Cl}$ $\text{S}_{\text{N}}2$ reaction, the unsolvated Walden-inversion pathways were also characterized in the studies of Thomsen *et al.*⁸⁸ and Hu *et al.*⁹⁷ utilizing the MP2/6-311++G(d,p) level of theory in combination with G3 and CCSD(T)/aug-cc-pVTZ energy calculations, respectively. The most thorough *ab initio* mapping was achieved by Wu *et al.* in the case of the $\text{HOO}^-(\text{H}_2\text{O})_n + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}; n = 0, 1, 2$]

$\text{S}_{\text{N}}2$ reactions, whereby they identified two H-bonded stationary points in the entrance channel, as well.⁹⁶ The dynamics of the $\text{HOO}^-(\text{H}_2\text{O})_n + \text{CH}_3\text{Cl}$ reactions, where $n = 0$ or 1, was also examined with direct dynamics simulations.^{94,95} It is noteworthy that, based on the earlier work of Anick *et al.*,⁹⁸ the only stable structure for the singly hydrated hydroperoxide ion is $\text{HO}^-(\text{HOOH})$, which indicates that in the $\text{S}_{\text{N}}2$ reaction with CH_3Cl , two distinct pathways may be possible, leading to the $\text{CH}_3\text{OOH} + \text{Cl}^- + \text{H}_2\text{O}$ and $\text{CH}_3\text{OH} + \text{Cl}^- + \text{H}_2\text{O}_2$ products. Recently, dynamics simulations performed by Zhao *et al.*⁹⁵ have substantiated that both reaction routes are viable, indicating the fact that a single solvent water molecule can induce a new nucleophile in $\text{S}_{\text{N}}2$ reactions, which opens the door for an alternative pathway. Moreover, for the unsolvated $\text{HOO}^- + \text{CH}_3\text{Cl}$ reaction, similar to the case of $\text{ClO}^- + \text{CH}_3\text{Cl}$,^{65,69} a novel non- $\text{S}_{\text{N}}2$ pathway generating the $\text{CH}_2\text{O} + \text{HCl} + \text{HO}^-$ products was also unveiled. Besides the dynamical description, the PES of the considered product channels of the $\text{HOO}^- + \text{CH}_3\text{Cl}$ reaction was mapped at the MP2/6-31+G(d,p) level of theory.⁹⁵

In the present work, based on the prominent attention paid to the $\text{S}_{\text{N}}2$ reactions involving hydroperoxide ions, we perform a comprehensive benchmark *ab initio* characterization of $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I] using the explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [$n = 2$ (D), 3 (T) and 4 (Q)] basis sets. Besides the traditional Walden-inversion path, we analyze the halogen-bonded complex mechanism⁴⁸ and the possible $\text{S}_{\text{N}}2$ retention routes of front-side attack and double inversion.¹⁹ We identify the stationary points of the proton-abstraction channel, as well; furthermore, relying on the previous study of Xie and co-workers,⁹⁵ our high-level stationary-point mapping also considers other possible pathways. Detailed insights into the applied *ab initio* methods can be found in Section II. In the subsequent Section III, a comprehensive description and discussion of the results are presented, followed by a brief summary of the work in Section IV.

II. Computational details

The stationary points of the title reactions are searched and preoptimized using the second-order Møller-Plesset perturbation theory (MP2)⁹⁹ with the augmented correlation-consistent polarized-valence-double- ζ (aug-cc-pVDZ) basis set.¹⁰⁰ The exploration of the stationary points was conducted based on previous studies and chemical intuition;^{24,38,95} nevertheless, it is important to note that automated methods and approaches for identifying reaction pathways and stationary points in chemical reactions are becoming more and more prevalent.¹⁰¹⁻¹⁰³ Thereafter, in order to attain more accurate geometries, energies and harmonic frequencies for the stationary points, the explicitly-correlated coupled-cluster singles, doubles, and perturbative triples (CCSD(T)-F12b) method¹⁰⁴⁻¹⁰⁶ is utilized with the aug-cc-pVDZ and aug-cc-pVTZ basis sets.¹⁰⁰ To achieve a more in-depth mapping, intrinsic reaction coordinate (IRC) computations are also carried out from the saddle points at the MP2/aug-cc-pVDZ level of theory. In order to avoid any spurious stationary point, it is

Fig. 1 Schematic representation of the complex potential energy surfaces of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions presenting the classical (adiabatic) CCSD(T)-F12b/aug-cc-pVQZ ($+\Delta\text{ZPE}[\text{CCSD(T)-F12b/aug-cc-pVTZ}]$) relative energies (kcal mol^{-1}) of the stationary points along the possible reaction routes. \dagger MP2/aug-cc-pVDZ structure; * CCSD(T)-F12b/aug-cc-pVDZ structure.

important to note that for all geometry optimizations, the default (3×10^{-4}) required accuracy of the optimized gradient is changed to 10^{-5} in atomic units. Small-core relativistic effective core potentials (ECPs)¹⁰⁷ are employed for Br and I, and the aug-cc-pVnZ-PP [$n = 2-4$] basis sets are applied to replace the inner-core $1s^2 2s^2 2p^6$ (Br) and $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$ (I) electrons. For the stationary points identified in the present work, the computed T_1 -diagnostic values are below 0.02 in every case, except for FSTS and FSTS2 (see Fig. 1), where the values are between 0.02 and 0.04, validating that the multi-reference character is

not a probable issue for the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I] systems. The benchmark classical (adiabatic) relative energies are computed for the CCSD(T)-F12b/aug-cc-pVTZ structures as follows:

$$\Delta E[\text{CCSD(T)-F12b/aug-cc-pVQZ}] (\Delta\text{ZPE}[\text{CCSD(T)-F12b/aug-cc-pVTZ}]), \quad (1)$$

where ΔZPE is the harmonic zero-point energy correction. The *ab initio* calculations are performed with the MOLPRO program package.¹⁰⁸

Table 1 Benchmark classical and adiabatic energies (kcal mol⁻¹) of the stationary points relative to the reactants for the possible pathways of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [Y = F, Cl, Br, I] reactions

$\text{HOO}^- + \text{CH}_3\text{F}$	MP2		CCSD(T)-F12b			ΔZPE^e	Adiabatic ^f
	DZ ^a	DZ ^b	TZ ^c	QZ ^d			
HMIN1	-14.41	-13.95	-13.69	-13.47	1.09	-12.38	
HTS1	-14.00	-13.49	-13.32	-13.15	0.67	-12.49	
PreMIN	-14.45	-14.01	-13.80	-13.59	0.84	-12.74	
WaldenTS	-6.77	-3.37	-3.44	-3.27	0.66	-2.61	
FSTS1	29.87	33.40	33.50	33.87	0.25	34.12	
FSTS2	25.76	29.26	29.28	29.64	0.59	30.23	
DITS	21.68	21.81	22.37	22.72	-0.37	22.35	
PostHMIN	-53.64	-50.43	-49.99	-49.74	1.11	-48.63	
WaldenPostHMIN	-32.77	-28.62	-28.08	-27.91	1.26	-26.65	
ABSTS	-11.38	-11.00	-10.71 ^g	-10.52 ^g	0.44 ^g	-10.08 ^g	
ABSMIN2	12.34	12.43	13.00	13.37	0.28	13.65	
PostTS	-28.42	-23.65	-22.93	-22.62	-2.89	-25.51	
PostDHMIN	-127.02	-121.31	-120.63	-120.45	4.07	-116.38	
$\text{HOO}^- + \text{CH}_3\text{Cl}$		MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f
HMIN1	-17.02	-16.26	-16.14	-15.97	0.89	-15.08	
HTS1	-16.57	-15.78	-15.74	-15.62	0.62	-15.00	
HTS2	-15.45	-15.04	-14.98	-14.82	0.59	-14.23	
FSMIN	-1.81	-3.25	-2.87	-2.73	0.47	-2.27	
HBTS	1.54	0.80	1.06 ^g	1.14 ^g	0.26 ^g	1.40 ^g	
PreMIN	-16.35	-15.73	-15.72	-15.57	0.79	-14.78	
WaldenTS	-14.39	-13.03	-13.33	-13.24	0.62	-12.62	
FSTS1	18.84	19.20	19.19	19.40	0.48	19.88	
FSTS2	18.12	17.44	17.80	18.07	0.85	18.93	
DITS	9.64	9.13	9.61	9.82	-0.02	9.81	
PostHMIN	-68.49	-65.91	-65.58	-65.61	3.26	-62.34	
WaldenPostHMIN	-57.10	-53.75 ^h	-53.44 ^h	-53.55 ^h	2.48 ^h	-51.07 ^h	
ABSTS	-14.49	-13.79	-13.59	-13.43	0.45	-12.98	
ABSMIN2	3.08	2.71	3.03	3.23	0.52	3.75	
PostTS	-38.33	-27.93	-27.17	-27.01	-3.75	-30.76	
PostDHMIN	-141.29	-136.29	-135.89	-136.00	5.14	-130.86	
$\text{HOO}^- + \text{CH}_3\text{Br}$		MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f
HMIN1	-17.61	-17.21	-16.92	-16.74	0.74	-15.99	
HMIN2	-17.22	-16.57 ^h	-16.18 ^h	-15.97 ^h	0.82 ^h	-15.15 ^h	
HTS1	-17.13	-16.72	-16.49	-16.35	0.54	-15.81	
HTS2	-15.90	-15.92	-15.71	-15.53	0.42	-15.11	
FSMIN	-10.48	-11.07	-10.89	-10.76	0.37	-10.39	
HBTS	-0.36	-0.67	-0.70 ^g	-0.62 ^g	0.39 ^g	-0.23 ^g	
PreMIN	-16.87	-16.88	-16.73	-16.57	0.79	-15.77	
WaldenTS	-16.35	-16.41	-16.45	-16.32	0.62	-15.70	
FSTS1	14.09	12.96	12.98	13.17	0.78	13.95	
FSTS2	14.10	13.18 ^h	13.29 ^h	13.55 ^h	0.95 ^h	14.50 ^h	
DITS	7.23	6.88	7.42	7.69	0.05	7.73	
PostHMIN	-72.09	-71.45	-70.85	-70.93	3.71	-67.22	
ABSTS	-15.27	-14.80	-14.48	-14.30	0.41	-13.89	
ABSMIN1	-11.03	-11.55	-11.18	-10.89	0.00	-10.90	
ABSMIN2	0.38	-0.79	-0.37	-0.12	0.57	0.45	
PostTS	-40.96	-28.82	-27.82	-27.63	-4.16	-31.80	
PostDHMIN	-144.57	-141.54	-140.79	-140.94	5.48	-135.46	
$\text{HOO}^- + \text{CH}_3\text{I}$		MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f
HMIN1	-18.52	-18.05	-17.75	-17.57	0.72	-16.84	
HMIN2	-18.45	-17.96	-17.60	-17.40	0.79	-16.61	
HTS1	-18.02	-17.56	-17.31	-17.17	0.53	-16.64	
HTS2	-16.44	-16.51	-16.27	-16.10	0.54	-15.56	
FSMIN	-22.36	-22.28	-22.11	-22.03	0.44	-21.59	
HBTS	-2.65	-3.19	-3.37	-3.30	0.40	-2.90	
FSTS1	9.16	7.85	7.91	8.04	0.87	8.91	
FSTS2	10.01	8.46 ^h	8.67 ^h	8.93 ^h	1.08 ^h	10.01 ^h	
DITS	3.40	2.68	3.11	3.36	0.19	3.55	

Table 1 (continued)

$\text{HOO}^- + \text{CH}_3\text{I}$	MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f
PostHMIN	−75.63	−75.15	−74.52	−74.74	3.94	−70.80
ABSTS	−16.32	−15.83	−15.48	−15.30	0.28	−15.02
ABSMIN1	−14.52	−14.76	−14.42	−14.15	0.28	−13.88
ABSMIN2	−2.98	−4.37	−3.97	−3.75	0.66	−3.09
PostTS	−36.02	−27.58	−26.36	−26.15	−4.08	−30.23
PostDHMIN	−147.56	−144.70	−143.92	−144.19	5.79	−138.40

^a MP2/aug-cc-pVDZ. ^b CCSD(T)-F12b/aug-cc-pVDZ. ^c CCSD(T)-F12b/aug-cc-pVTZ. ^d CCSD(T)-F12b/aug-cc-pVQZ at CCSD(T)-F12b/aug-cc-pVTZ geometry. ^e $\Delta\text{ZPE}(\text{CCSD(T)-F12b/aug-cc-pVTZ})$. ^f QZ + ΔZPE . ^g CCSD(T)-F12b/aug-cc-pVDZ geometry and frequencies. ^h MP2/aug-cc-pVDZ geometry and frequencies.

III. Results and discussion

The complex PESs of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I] reactions showing the benchmark classical (adiabatic) relative energies of the stationary points along the considered pathways are presented in Fig. 1. The *ab initio* energies determined at the MP2/aug-cc-pVDZ and CCSD(T)-F12b/aug-cc-pVnZ [$n = 2, 3$ and 4] levels of theory are summarized in Tables 1 and 2. Taking a cue from previous studies on the $\text{HOO}^-/\text{ClO}^- + \text{CH}_3\text{Cl}$ and $\text{HO}^- + \text{CH}_3\text{F}$ reactions,^{40,65,69,95} in addition to the typical $\text{S}_{\text{N}2}$ ($\text{CH}_3\text{OOH} + \text{Y}^-$) and proton-abstraction ($\text{CH}_2\text{Y}^- + \text{H}_2\text{O}_2$) routes, alternative channels of peroxide ion substitution ($\text{CH}_3\text{OO}^- + \text{HY}$), $\text{S}_{\text{N}2}$ -induced elimination ($\text{CH}_2\text{O} + \text{HY} + \text{HO}^-$) and $\text{S}_{\text{N}2}$ -induced rearrangement ($\text{CH}_2(\text{OH})\text{O}^- + \text{HY}$) are also analyzed. It should be noted that in the case of the $\text{HOO}^- + \text{CH}_3\text{Cl}$ reaction, the dynamical characterization reported by Xie and co-workers did not reveal the existence of the corresponding peroxide ion substitution, $\text{S}_{\text{N}2}$ -induced rearrangement and proton abstraction, presumably, due to the fact that overall 1154 trajectories were run at one sole collision energy of 0.9 kcal mol^{−1}.⁹⁵ However, the pathways of peroxide ion substitution and $\text{S}_{\text{N}2}$ -induced rearrangement were also considered in the course of their stationary-point survey.

As seen in Fig. 1, in the entrance channel of the back-side attack Walden inversion, several H-bonded stationary points can be found for $\text{HOO}^- + \text{CH}_3\text{Y}$: HMIN1 [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I], HTS1 [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I], HMIN2 [$\text{Y} = \text{Br}$ and I] and HTS2 [$\text{Y} = \text{Cl}, \text{Br}$ and I]. The energetics of these minima and transition states are similar, and the differences in the relative energies are within ~ 1.5 kcal mol^{−1}. Moreover, the typical PreMIN ion-dipole complex does not demonstrate notable distinctions, as well. On the other hand, for the alternative pre-reaction halogen-bonded complex pathway, a different situation can be found. In line with $\text{HO}^- + \text{CH}_3\text{Y}$,^{24,38} FSMIN is situated above HMIN1 by 13.2 (12.8) and 6.0 (5.6) kcal mol^{−1} for $\text{Y} = \text{Cl}$ and Br , in order; while for $\text{Y} = \text{I}$, FMIN is below HMIN1 by 4.5 (4.7) kcal mol^{−1}. Note that the back-side attack Walden-inversion mechanism is submerged except for $\text{Y} = \text{F}$, where HBTS is positioned above the reactant asymptote by 1.1 (1.4) kcal mol^{−1}. With the atomic number of Y , the barrier height of HBTS is increasing: 3.9 (3.7), 10.1 (10.2) and 18.7 (18.7) kcal mol^{−1} relative to the corresponding FMIN, for $\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I , respectively. The deep well of the FMIN complex at $\text{Y} = \text{I}$ points out the common occurrence of the front-side complex formation mechanism in

$\text{S}_{\text{N}2}$ reactions involving CH_3I .^{48,60,109} The energy profile of the conventional stationary points of the Walden-inversion pathway (PreMIN → WaldenTS → WaldenPostMIN/PostHMIN) is also profoundly comparable with that of the HO^- case.^{24,38} For instance, the classical (adiabatic) barrier heights of WaldenTS are 10.3 (10.1), 2.3 (2.2) and 0.2 (0.1) kcal mol^{−1} for $\text{Y} = \text{F}, \text{Cl}$ and Br , respectively, while in the case of HO^- at the same level of theory, these values are 11.2 (11.4), 2.4 (2.4) and 0.2 (0.1) kcal mol^{−1}, in the same order. The global minimum of $\text{S}_{\text{N}2}$ is also located at PostHMIN, although, compared to $\text{HO}^- + \text{CH}_3\text{Y}$, higher classical energies of −49.7, −65.6, −70.9 and −74.7 kcal mol^{−1} can be determined for HOO^- in the case of $\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I , respectively. In tandem with this, a notable disparity emerges in the reaction enthalpies of the $\text{S}_{\text{N}2}$ channels: $\text{HOO}^- + \text{CH}_3\text{Y}$ happens to be more endothermic by exactly 6.1 kcal mol^{−1} in all cases. As a result, in the case of the $\text{S}_{\text{N}2}$ reactions of HOO^- , larger dissociation energies can be observed for the leaving Y^- at PostHMIN, indicating a more significant post-reaction hydrogen-bonded complex formation. Here, one may highlight the relevance of peroxide ion substitution, as well, because the formation of the $\text{CH}_3\text{OO}^- + \text{HY}$ products is also more exothermic than that of the HO^- cases, predicting a substantially increased probability for peroxide ion substitution, especially for $\text{HOO}^- + \text{CH}_3\text{F}$.⁴⁰ WaldenPostHMIN also plays a significant role, as Zhao *et al.*⁹⁵ uncovered, and the reaction can proceed through this minimum towards PostTS, leading to the unusual $\text{CH}_2\text{O} + \text{HY} + \text{HO}^-$ products. In the case of $\text{Y} = \text{Cl}$, WaldenPostHMIN could not be identified at the CCSD(T)-F12b/aug-cc-pVnZ [$n = 2, 3$] levels of theory. It is noteworthy that for $\text{Y} = \text{F}$, the novel mechanism of $\text{S}_{\text{N}2}$ -induced elimination is exceedingly more exothermic than $\text{S}_{\text{N}2}$, submerged by 29.9 (36.3) kcal mol^{−1}. The global minimum of the PES is situated at the double H-bonded PostDHMIN complex, and the most exothermic process corresponds to the $\text{S}_{\text{N}2}$ -induced rearrangement channel, but it is supposedly an improbable reaction route considering the multiple bond-breaking and -forming processes involved. Concerning the $\text{S}_{\text{N}2}$ pathways that result in the retention of the initial CH_3Y configuration, two different transition states (FSTS1 and FSTS2) can be identified for front-side attacks. According to the study of Ma *et al.*,¹¹⁰ double inversion may not be an IRC path through a DITS-like transition state; despite that, theoretical investigations underscored its crucial character in the mechanism.^{111,112} Similarly to the HO^- case, the transition state of double inversion has lower energy than that of front-side attack; however, no submerged DITS can be obtained.^{24,38} The most endothermic channel is proton abstraction with reaction enthalpies

Table 2 The best available experimental and our benchmark *ab initio* 0 K reaction enthalpies (kcal mol⁻¹) of several product channels for the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions

$\text{HOO}^- + \text{CH}_3\text{F}$	CCSD(T)-F12b				ΔZPE^e	Adiabatic ^f	Experiment ^g
	MP2 ^a	DZ ^a	DZ ^b	TZ ^c	QZ ^d		
$\text{CH}_3\text{OOH} + \text{F}^-$	-18.24	-13.38	-13.06	-13.13	1.46	-11.67	-11.82 ± 0.14
$\text{CH}_2\text{F}^- + \text{H}_2\text{O}_2$	34.54	34.87	35.22	35.32	-1.84	33.48	—
$\text{CH}_3\text{OO}^- + \text{HF}$	-11.24	-10.28	-10.08	-10.02	-1.11	-11.12	-11.00 ± 0.15
$\text{CH}_2\text{O} + \text{HF} + \text{HO}^-$	-51.98	-43.50	-42.94	-43.06	-4.92	-47.98	-47.99 ± 0.10
$\text{CH}_2(\text{OH})\text{O}^- + \text{HF}$	-85.40	-79.85	-79.22	-79.15	-0.70	-79.85	—
$\text{HOO}^- + \text{CH}_3\text{Cl}$	MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f	Experiment ^g
$\text{CH}_3\text{OOH} + \text{Cl}^-$	-48.79	-45.72	-45.61	-45.83	2.44	-43.39	-43.07 ± 0.14
$\text{CH}_2\text{Cl}^- + \text{H}_2\text{O}_2$	22.01	21.82	21.80	21.81	-1.33	20.48	21.64 ± 0.49
$\text{CH}_3\text{OO}^- + \text{HCl}$	-3.64	-3.44	-3.10	-2.89	-1.77	-4.66	-4.31 ± 0.14
$\text{CH}_2\text{O} + \text{HCl} + \text{HO}^-$	-44.38	-36.66	-35.97	-35.93	-5.58	-41.51	-41.30 ± 0.09
$\text{CH}_2(\text{OH})\text{O}^- + \text{HCl}$	-77.81	-73.01	-72.24	-72.02	-1.36	-73.39	—
$\text{HOO}^- + \text{CH}_3\text{Br}$	MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f	Experiment ^g
$\text{CH}_3\text{OOH} + \text{Br}^-$	-54.91	-54.21	-53.65	-53.98	2.85	-51.14	-50.60 ± 0.14
$\text{CH}_2\text{Br}^- + \text{H}_2\text{O}_2$	18.32	16.94	17.14	17.15	-1.17	15.98	—
$\text{CH}_3\text{OO}^- + \text{HBr}$	-0.72	-1.04	-0.51	-0.37	-1.86	-2.23	-1.85 ± 0.14
$\text{CH}_2\text{O} + \text{HBr} + \text{HO}^-$	-41.46	-34.26	-33.37	-33.41	-5.68	-39.08	-38.84 ± 0.10
$\text{CH}_2(\text{OH})\text{O}^- + \text{HBr}$	-74.89	-70.61	-69.65	-69.50	-1.46	-70.96	—
$\text{HOO}^- + \text{CH}_3\text{I}$	MP2 ^a	DZ ^b	TZ ^c	QZ ^d	ΔZPE^e	Adiabatic ^f	Experiment ^g
$\text{CH}_3\text{OOH} + \text{I}^-$	-61.29	-60.78	-60.32	-60.89	3.25	-57.64	-56.97 ± 0.14
$\text{CH}_2\text{I}^- + \text{H}_2\text{O}_2$	13.49	11.84	11.92	11.84	-0.95	10.89	—
$\text{CH}_3\text{OO}^- + \text{HI}$	2.44	1.68	2.14	2.24	-1.93	0.32	0.83 ± 0.14
$\text{CH}_2\text{O} + \text{HI} + \text{HO}^-$	-38.30	-31.54	-30.72	-30.80	-5.74	-36.54	-36.16 ± 0.10
$\text{CH}_2(\text{OH})\text{O}^- + \text{HI}$	-71.72	-67.89	-67.00	-66.89	-1.52	-68.41	—

^a MP2/aug-cc-pVDZ. ^b CCSD(T)-F12b/aug-cc-pVDZ. ^c CCSD(T)-F12b/aug-cc-pVTZ. ^d CCSD(T)-F12b/aug-cc-pVQZ at CCSD(T)-F12b/aug-cc-pVTZ geometry. ^e $\Delta\text{ZPE}(\text{CCSD(T)-F12b/aug-cc-pVTZ})$. ^f QZ + ΔZPE . ^g Data obtained from the latest version (1.130) of the Active Thermochemical Tables (ATcT).^{113,114} The uncertainties are derived using the Gaussian error-propagation law on the uncertainties of each 0 K enthalpy of formation provided in ATcT.

of 33.5 (F), 20.5 (Cl), 16.0 (Br) and 10.9 (I) kcal mol⁻¹. The entrance channel of proton abstraction is found to be the same as that for $\text{S}_{\text{N}}2$ and is supported by IRC calculations, in which three stationary points (two minima and one transition state) are explored along the pathway: ABSTS [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I], ABSMIN1 [$\text{Y} = \text{Br}$ and I], and ABSMIN2 [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I].

The structures of the stationary points featuring the selected bond lengths and angles are shown in Fig. 2. The associated stationary points in the reactant channels (HMIN1/HTS1 and HMIN2/HTS2) demonstrate slight differences in their geometries, and the most pronounced disparity is discerned in the orientation of the corresponding HOO^- group. Regarding WaldenTS, two distinct structures are characterized depending on Y : the dihedral angle of $\text{O}-\text{O}\cdots\text{C}-\text{H}$ is $\sim 180^\circ$ (*trans* arrangement) at $\text{Y} = \text{F}$, whereas a value of $\sim 0^\circ$ (*cis* arrangement) is obtained at $\text{Y} = \text{Cl}$ and Br , as seen in Fig. 2. According to earlier investigations on $\text{S}_{\text{N}}2$ reactions, similar discrepancies observed at CH_3F are not uncommon;²⁴ for instance, in the case of $\text{HO}^- + \text{CH}_3\text{Y}$,³⁸ for $\text{Y} = \text{Cl}, \text{Br}$ and I FSTS has C_s symmetry, while for $\text{Y} = \text{F}$, the symmetry is broken. It should be noted that previous studies on the $\text{HOO}^- + \text{CH}_3\text{Cl}$ $\text{S}_{\text{N}}2$ reaction reported a *trans* alignment for the $\text{O}-\text{O}\cdots\text{C}-\text{H}$ torsion angle of WaldenTS computed at the MP2/6-311++G(d,p) level of theory.^{96,97} The geometries of PreMIN and WaldenTS defined in the early work of

Evanseck *et al.* are discrepant from our benchmark results due to their implemented symmetry-constrained geometry optimizations.⁷⁴ Moreover, Ren *et al.* revealed two different transition states for Walden inversion with a *trans* alignment of the corresponding $\text{O}-\text{O}\cdots\text{C}-\text{H}$ torsion angle for both cases.⁷⁸ Nevertheless, in other investigations, the geometry of the uncovered WaldenTS of $\text{HOO}^- + \text{CH}_3\text{Cl}$ is in accordance with that presented in this benchmark work.^{79,88,95} It should also be highlighted that Wu *et al.* identified PreMIN and WaldenTS for $\text{Y} = \text{I}$ at the MP2/6-311++G(d,p) level of theory,⁹⁶ although, in the course of the present study, WaldenTS cannot be found for $\text{Y} = \text{I}$ at the MP2/aug-cc-pVDZ and CCSD(T)-F12b/aug-cc-pVnZ [$n = 2, 3$] levels of theory. Hence, the issues regarding these stationary points underline the relevance of employing higher-level *ab initio* methods for theoretical investigations. Concerning PostHMIN, alternative conformational isomers cannot be determined in contrast to the $\text{HO}^- + \text{CH}_3\text{F}$ reaction.⁴⁰ As shown in Fig. 2, the transition states of the front-side attack mechanism differ from each other in the orientation of the HOO^- group, and owing to the additional $\text{Y}\cdots\text{HO}$ bond, FSTS2 is below FSTS1 in the case of $\text{Y} = \text{F}$ and Cl . It is noteworthy that all the stationary-point characterizations can be performed without imposing symmetry restrictions, except for ABSMIN1, which has C_s symmetry. There are cases, where a C_s symmetry

Fig. 2 Structures of the stationary points of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions showing the most important bond lengths (\AA) and angles ($^\circ$) obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory. [†] MP2/aug-cc-pVDZ structure; *CCSD(T)-F12b/aug-cc-pVDZ structure. Note that for $\text{Y} = \text{F}$ at WaldenTS, a distinct structure can be identified compared to the case of $\text{Y} = \text{Cl}$ and Br .

would also be expected (e.g., HTS1, ABSTS); however, the corresponding geometry optimizations do not converge. The most accurate, CCSD(T)-F12b/aug-cc-pVTZ Cartesian coordinates of the stationary points, as well as of reactants and products, are provided in the ESI.[†]

The calculated classical and adiabatic *ab initio* relative energies of the products and the available “experimental” reaction enthalpies obtained from the active thermochemical tables (ATcT)^{113,114} are given in Table 2. The benchmark structures of the reactants and products are shown in Fig. 3. The reaction enthalpies of S_N2 and proton abstraction decrease with increasing atomic weight of Y, whereas for the other pathways, a reverse tendency is revealed. Alongside the proton-abstraction channels for Y = F, Cl, Br and I, peroxide ion substitution is also an endothermic pathway in the case of Y = I. It is notable that for Y = F, the difference between the reaction enthalpies of S_N2 and peroxide ion substitution is only 0.5 kcal mol⁻¹. In most instances, our benchmark results are in satisfactory agreement with the experimental data, except for the CH₂Cl⁻ + H₂O₂ products, where a difference of 1.2 kcal mol⁻¹ emerges. However, it should be noted that the derived uncertainty of the experimental reaction enthalpy is remarkably substantial (± 0.5 kcal mol⁻¹). Similarly, for the F⁻ + CH₃Cl \rightarrow CH₂Cl⁻ + HF proton-abstraction channel, a large deviation (0.9 kcal mol⁻¹) can also be observed between the experimental and our calculated benchmark reaction enthalpy with a significant uncertainty (0.5 kcal mol⁻¹) of the experimental value.¹¹² Thus, these cases may highlight the inaccuracy of the available 0 K enthalpy of formation for CH₂Cl⁻ in the ATcT. In the case of the HOO⁻ + CH₃Y [Y = F and Cl] S_N2 reactions, the reaction energies of -13.0 (F) and -45.3 (Cl) kcal mol⁻¹, obtained by Wu *et al.* utilizing CCSD(T)/aug-cc-pVTZ(-PP) energy calculations at the MP2/6-311++G(d,p) geometries,⁹⁶ in kcal mol⁻¹ are in conformity with our benchmark values of -13.0 (F) and -45.8 (Cl) kcal mol⁻¹. Although, for Y = Br and I, their S_N2 reaction energies of -50.9 and -56.4 kcal mol⁻¹ are higher than our results by 3.1 and 4.5 kcal mol⁻¹, respectively. The classical

energies of the stationary points of the present work can also be compared with the results of Wu *et al.*⁹⁶ They characterized five stationary points (HMIN1, HTS2, PreMIN, WaldenTS and PostHMIN) along the back-side attack Walden inversion, mainly, their computed CCSD(T)/aug-cc-pVTZ(-PP) energies are in good agreement with our benchmark data. In an earlier study on HOO⁻ + CH₃Cl by Zhao *et al.*,⁹⁵ the reported energies of PreMIN and PostHMIN at the MP2/6-31+G(d,p) level of theory are in good agreement with the present benchmark values. For WaldenTS, a difference of more than 2 kcal mol⁻¹ occurs; moreover, an enormous deviation of 13.2 kcal mol⁻¹ is obtained at Walden-PostHMIN, remarkably. Motivated by this discrepancy, we characterized the corresponding stationary points of HOO⁻ + CH₃Cl at the MP2/6-31+G(d,p) level of theory using the MOLPRO program package.¹⁰⁸ In the course of computations, spherical harmonic basis functions are used; however, it is noteworthy that by employing Cartesian functions, comparable relative energies can be obtained within ± 0.3 kcal mol⁻¹. Our obtained MP2/6-31+G(d,p) classical energies of -14.9 (PreMIN), -10.5 (WaldenTS), -64.6 (PostHMIN), -53.2 (WaldenPostHMIN), -31.5 (PostTS), and -136.5 (PostDHMIN), in kcal mol⁻¹, are in conformity with the benchmark data. While our optimized structures of the stationary points show satisfactory alignment with those determined by Zhao *et al.*,⁹⁵ significant inexplicable disparities are unveiled for the classical energies in a few cases. We also determined the classical (adiabatic) energies of the products at the MP2/6-31+G(d,p) level; CH₂Cl⁻ + H₂O₂: 29.4 (27.7), CH₃OOH + Cl⁻: -45.7 (-43.5), CH₃OO⁻ + HCl: -2.1 (-3.7), CH₂O + HCl + HO⁻: -40.0 (-45.8) and CH₂(OH)O⁻ + HCl: -75.2 (-76.8), in kcal mol⁻¹. It can be seen that for certain cases, the provided energies differ from the experiment by more than 4 kcal mol⁻¹; especially for proton abstraction, an enormous difference of 6.1 kcal mol⁻¹ occurs, which casts doubt on the reliability of MP2/6-31+G(d,p). The G2+ adiabatic energies of WaldenTS (-13.5 kcal mol⁻¹) and the S_N2 products (-43.2 kcal mol⁻¹), computed by Ren *et al.* for HOO⁻ + CH₃Cl, are also in consonance with the present study.⁷⁹

Fig. 3 Structures of the reactants and products of the HOO⁻ + CH₃Y [Y = F, Cl, Br, I] reactions showing the most important bond lengths (Å) obtained at the CCSD(T)-F12b/aug-cc-pVTZ level of theory.

Fig. 4 Convergence of the CCSD(T)-F12b relative energies for the stationary points of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions utilizing the aug-cc-pVDZ (DZ), aug-cc-pVTZ (TZ) and aug-cc-pVQZ (QZ) basis sets.

Fig. 5 Convergence of the CCSD(T)-F12b relative energies for the product channels of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}, \text{I}$] reactions utilizing the aug-cc-pVDZ (DZ), aug-cc-pVTZ (TZ) and aug-cc-pVQZ (QZ) basis sets.

As shown in Fig. 4 and 5, the basis-set convergence of the CCSD(T)-F12b relative energies is also investigated for the title reactions. In most cases, a fast and smooth basis-set convergence can be recognized, except for WaldenTS [$\text{Y} = \text{F}$ and Br], HBTS [$\text{Y} = \text{Br}$], FSTS1 [$\text{Y} = \text{Cl}$] and $\text{CH}_3\text{OOH} + \text{Y}^-$ [$\text{Y} = \text{Cl}, \text{Br}$ and I], as in these instances the relative energy differences between aug-cc-pVDZ (DZ) and aug-cc-pVQZ (QZ) are smaller than the corresponding values of aug-cc-pVTZ (TZ) and QZ. The largest differences emerge at PostTS [$\text{Y} = \text{Br}$ and I] and $\text{CH}_2(\text{OH})\text{O}^- + \text{HBr}$, where the deviations between the DZ and QZ relative energies are found to be in the range of $1.1\text{--}1.4$ kcal mol $^{-1}$. In contrast, the energy differences between TZ and QZ are within ± 0.4 kcal mol $^{-1}$, except at $\text{CH}_3\text{OOH} + \text{I}^-$ (0.57 kcal mol $^{-1}$). Regarding the ZPE effects, the most significant contributions appear at the post-reaction stationary points (PostHMIN, WaldenPostHMIN, PostTS and PostDHMIN) and for the products of $\text{CH}_3\text{OOH} + \text{Y}^-$ and $\text{CH}_2\text{O} + \text{HY} + \text{HO}^-$. The vast majority of the stationary points have positive ZPE corrections, whereas, in the case of the reaction channels, positive ZPE effects occur only for the $\text{CH}_3\text{OOH} + \text{Y}^-$ products.

IV. Summary and conclusions

In this study, we have characterized the complex potential energy surfaces of the $\text{HOO}^- + \text{CH}_3\text{Y}$ [$\text{Y} = \text{F}, \text{Cl}, \text{Br}$ and I] reactions using the modern explicitly-correlated CCSD(T)-F12b

method with the aug-cc-pVnZ [$n = 2\text{--}4$] basis sets. For $\text{S}_{\text{N}}2$, we have considered the pathways of back-side attack Walden inversion, front-side attack, double inversion¹⁹ and halogen-bonded complex formation.⁴⁸ In most cases, the entrance channel of $\text{HOO}^- + \text{CH}_3\text{Y}$ comprises seven stationary points: two H-bonded, a front-side halogen-bonded and a traditional ion-dipole minima, as well as two H-bonded and front-side halogen-bonded transition states. Similar to the $\text{HO}^- + \text{CH}_3\text{Y}$ $\text{S}_{\text{N}}2$ reactions,^{24,38} no typical transition state has been identified for the Walden inversion in the case of $\text{Y} = \text{I}$, and in light of the discrepancy of the earlier findings, we have clarified the accurate structure of the Walden-inversion transition state for $\text{Y} = \text{Cl}$. In the exit channel of $\text{S}_{\text{N}}2$, two H-bonded minima are situated: $\text{Y}^- \cdots \text{HOOCH}_3$ and $\text{Y}^- \cdots \text{HCH}_2\text{OOH}$. Based on the findings of Xie and co-workers,⁹⁵ the $\text{HOO}^- + \text{CH}_3\text{Cl}$ reaction can proceed through $\text{Cl}^- \cdots \text{HCH}_2\text{OOH}$ towards the $[\text{Cl} \cdots \text{H} \cdots \text{CH}_2\text{O} \cdots \text{OH}]^-$ transition state generating the unusual products of $\text{CH}_2\text{O} + \text{HCl} + \text{HO}^-$. It should be highlighted that for $\text{HOO}^- + \text{CH}_3\text{F}$, the reaction enthalpy of this novel $\text{S}_{\text{N}}2$ -induced elimination is more negative by 36.3 kcal mol $^{-1}$ than the corresponding $\text{S}_{\text{N}}2$ process. Concerning the retention paths of $\text{S}_{\text{N}}2$, two distinct transition states have been recognized for front-side attacks, and as observed for $\text{HO}^- + \text{CH}_3\text{Y}$, double inversion is a lower-energy process than front-side attack.^{24,38} Building upon the earlier work of Xie and co-workers,⁹⁵ besides $\text{S}_{\text{N}}2$ -induced elimination, we have also investigated other channels such as proton abstraction ($\text{CH}_2\text{Y}^- + \text{H}_2\text{O}_2$), peroxide ion substitution ($\text{CH}_3\text{OO}^- + \text{HY}$) and

S_N2 -induced rearrangement ($\text{CH}_2(\text{OH})\text{O}^- + \text{HY}$). In the case of $\text{Y} = \text{F}$, Cl and Br , the peroxide ion substitution has been found to be exothermic with reaction enthalpies of -11.1 (F), -4.7 (Cl) and -2.2 (Br) kcal mol $^{-1}$. The most exothermic path is S_N2 -induced rearrangement; however, it is presumed to be an improbable reaction channel due to the complex bond-breaking and -forming processes involved. The benchmark reaction enthalpies presented in this work are usually in excellent agreement with those obtained from ATcT.^{113,114} We have also assessed the basis-set convergence of the CCSD(T)-F12b method and the ZPE contributions of the stationary points.

We are confident that the present benchmark characterization of $\text{HOO}^- + \text{CH}_3\text{Y}$ supports further theoretical and experimental investigations regarding reaction dynamics as well as the influence of the α -effect related to HOO^- .

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

We acknowledge the financial support of the National Research, Development and Innovation Office-NKFHI, K-125317 and K-146759; project no. TKP2021-NVA-19 provided by the Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding scheme; the National Young Talent Scholarship (Grant no. NTP-NFTÖ-22-B-0050 for D. A. T.); and the Momentum (Lendület) Program of the Hungarian Academy of Sciences.

References

- 1 A. Dedieu and A. Veillard, *J. Am. Chem. Soc.*, 1972, **94**, 6730.
- 2 W. N. Olmstead and J. I. Brauman, *J. Am. Chem. Soc.*, 1977, **99**, 4219.
- 3 A. Merkel, R. Zahradník and Z. Havlas, *J. Am. Chem. Soc.*, 1988, **110**, 8355.
- 4 S. S. Shaik, H. B. Schlegel and S. Wolfe, *Theoretical Aspects of Physical Organic Chemistry: The S_N2 Mechanism*, Wiley, New York, 1992.
- 5 W. L. Hase, *Science*, 1994, **266**, 998.
- 6 M. L. Chabiny, S. L. Craig, C. K. Regan and J. I. Brauman, *Science*, 1998, **279**, 1882.
- 7 J. K. Laerdahl and E. Uggerud, *Int. J. Mass Spectrom.*, 2002, **214**, 277.
- 8 E. Uggerud, *Adv. Phys. Org. Chem.*, 2017, **51**, 1.
- 9 T. A. Hamlin, M. Swart and F. M. Bickelhaupt, *Chem. Phys. Chem.*, 2018, **19**, 1315.
- 10 R. Wester, *Mass Spectrom. Rev.*, 2022, **41**, 627.
- 11 A. J. R. Heck and D. W. Chandler, *Annu. Rev. Phys. Chem.*, 1995, **46**, 335.
- 12 M. N. R. Ashfold, N. H. Nahler, A. J. Orr-Ewing, O. P. J. Vieuxmaire, R. L. Toomes, T. N. Kitsopoulos, I. A. Garcia, D. A. Chestakov, S. M. Wu and D. H. Parker, *Phys. Chem. Chem. Phys.*, 2006, **8**, 26.
- 13 D. C. Clary, *Proc. Natl. Acad. Sci. U. S. A.*, 2008, **105**, 12649.
- 14 J. Mikosch, S. Trippel, C. Eichhorn, R. Otto, U. Lourderaj, J. X. Zhang, W. L. Hase, M. Weidemüller and R. Wester, *Science*, 2008, **319**, 183.
- 15 J. Meyer and R. Wester, *Annu. Rev. Phys. Chem.*, 2017, **68**, 333.
- 16 J. Li, B. Zhao, D. Xie and H. Guo, *J. Phys. Chem. Lett.*, 2020, **11**, 8844.
- 17 J. I. Brauman, *Science*, 2008, **319**, 168.
- 18 P. Manikandan, J. Zhang and W. L. Hase, *J. Phys. Chem. A*, 2012, **116**, 3061.
- 19 I. Szabó and G. Czakó, *Nat. Commun.*, 2015, **6**, 5972.
- 20 M. Stei, E. Carrascosa, M. A. Kainz, A. H. Kelkar, J. Meyer, I. Szabó, G. Czakó and R. Wester, *Nat. Chem.*, 2016, **8**, 151.
- 21 J. Xie and W. L. Hase, *Science*, 2016, **352**, 32.
- 22 L. Sun, K. Song and W. L. Hase, *Science*, 2002, **296**, 875.
- 23 L. Sun, K. Song, W. L. Hase, M. Sena and J. M. Riveros, *Int. J. Mass Spectrom.*, 2003, **227**, 315.
- 24 D. A. Tasi, Z. Fábián and G. Czakó, *Phys. Chem. Chem. Phys.*, 2019, **21**, 7924.
- 25 S. R. Hare, L. A. Bratholm, D. R. Glowacki and B. K. Carpenter, *Chem. Sci.*, 2019, **10**, 9954.
- 26 T. Tsutsumi, Y. Ono, Z. Arai and T. Taketsugu, *J. Chem. Theory Comput.*, 2020, **16**, 4029.
- 27 D. A. Tasi, C. Tokaji and G. Czakó, *Phys. Chem. Chem. Phys.*, 2021, **23**, 13526.
- 28 T. Tsutsumi, Y. Ono and T. Taketsugu, *Chem. Commun.*, 2021, **57**, 11734.
- 29 T. Tsutsumi, Y. Ono and T. Taketsugu, *Top. Curr. Chem.*, 2022, **380**, 19.
- 30 S. Zhao, G. Fu, W. Zhen, L. Yang, J. Sun and J. Zhang, *Phys. Chem. Chem. Phys.*, 2022, **24**, 24146.
- 31 H. Tachikawa, M. Igarashi and T. Ishibashi, *J. Phys. Chem. A*, 2002, **106**, 10977.
- 32 H. Tachikawa and M. Igarashi, *Chem. Phys.*, 2006, **324**, 639.
- 33 H. Yin, D. Wang and M. Valiev, *J. Phys. Chem. A*, 2011, **115**, 12047.
- 34 Y. Xu, T. Wang and D. Wang, *J. Chem. Phys.*, 2012, **137**, 184501.
- 35 S. Giri, E. Echegaray, P. W. Ayers, A. S. Nuñez, F. Lund and A. Toro-Labbé, *J. Phys. Chem. A*, 2012, **116**, 10015.
- 36 J. Chen, Y. Xu and D. Wang, *J. Comput. Chem.*, 2014, **35**, 445.
- 37 T. Tsutsumi, Y. Ono, Z. Arai and T. Taketsugu, *J. Chem. Theory Comput.*, 2018, **14**, 4263.
- 38 D. A. Tasi, Z. Fábián and G. Czakó, *J. Phys. Chem. A*, 2018, **122**, 5773.
- 39 Y. G. Proenza, M. A. F. de Souza and R. L. Longo, *Chem. - Eur. J.*, 2016, **22**, 16220.
- 40 D. A. Tasi and G. Czakó, *Chem. Sci.*, 2021, **12**, 14369.
- 41 J. Qin, Y. Liu and J. Li, *J. Chem. Phys.*, 2022, **157**, 124301.
- 42 R. Otto, J. Brox, S. Trippel, M. Stei, T. Best and R. Wester, *Nat. Chem.*, 2012, **4**, 534.
- 43 J. Xie, R. Otto, J. Mikosch, J. Zhang, R. Wester and W. L. Hase, *Acc. Chem. Res.*, 2014, **47**, 2960.

44 J. Xie, J. Zhang and W. L. Hase, *Int. J. Mass Spectrom.*, 2015, **378**, 14.

45 J. Xie, R. Otto, R. Wester and W. L. Hase, *J. Chem. Phys.*, 2015, **142**, 244308.

46 E. Carrascosa, J. Meyer and R. Wester, *Chem. Soc. Rev.*, 2017, **46**, 7498.

47 J. Xie, X. Ma, J. Zhang, P. M. Hierl, A. A. Viggiano and W. L. Hase, *Int. J. Mass Spectrom.*, 2017, **418**, 122.

48 X. Ji, C. Zhao and J. Xie, *Phys. Chem. Chem. Phys.*, 2021, **23**, 6349.

49 R. Otto, J. Xie, J. Brox, S. Trippel, M. Stei, T. Best, M. R. Siebert, W. L. Hase and R. Wester, *Faraday Discuss.*, 2012, **157**, 41.

50 J. Xie, R. Sun, M. R. Siebert, R. Otto, R. Wester and W. L. Hase, *J. Phys. Chem. A*, 2013, **117**, 7162.

51 J. Xie, S. C. Kohale, W. L. Hase, S. G. Ard, J. J. Melko, N. S. Shuman and A. A. Viggiano, *J. Phys. Chem. A*, 2013, **117**, 14019.

52 J. Xie, J. Zhang, R. Sun, R. Wester and W. L. Hase, *Int. J. Mass Spectrom.*, 2019, **438**, 115.

53 D. A. Tasi, T. Győri and G. Czakó, *Phys. Chem. Chem. Phys.*, 2020, **22**, 3775.

54 T. Győri and G. Czakó, *J. Chem. Theory Comput.*, 2020, **16**, 51.

55 D. A. Tasi, T. Michaelsen, R. Wester and G. Czakó, *Phys. Chem. Chem. Phys.*, 2023, **25**, 4005.

56 S. Rao and D. Wang, *Chin. J. Chem. Phys.*, 2023, **36**, 169.

57 D. A. Tasi and G. Czakó, *J. Chem. Phys.*, 2024, **160**, 044305.

58 E. Carrascosa, M. Bawart, M. Stei, F. Linden, F. Carelli, J. Meyer, W. D. Geppert, F. A. Gianturco and R. Wester, *J. Chem. Phys.*, 2015, **143**, 184309.

59 Z. Kerekes, D. A. Tasi and G. Czakó, *J. Phys. Chem. A*, 2022, **126**, 889.

60 D. A. Tasi and G. Czakó, *J. Chem. Phys.*, 2022, **156**, 184306.

61 X. Liu, S. Tian, B. Pang, H. Li and Y. Wu, *Phys. Chem. Chem. Phys.*, 2023, **25**, 14812.

62 X. Liu, W. Guo, H. Feng, B. Pang and Y. Wu, *J. Phys. Chem. A*, 2023, **127**, 7373.

63 A. Gutal and M. Paranjothy, *Phys. Chem. Chem. Phys.*, 2023, **25**, 15015.

64 W. P. Hu and D. G. Truhlar, *J. Am. Chem. Soc.*, 1996, **118**, 860.

65 S. M. Villano, N. Eyet, W. C. Lineberger and V. M. Bierbaum, *J. Am. Chem. Soc.*, 2009, **131**, 8227.

66 L. Junxi, W. Yanbin, Z. Qiang, L. Yu, G. Zhiyuan and W. XiuHong, *J. Mol. Model.*, 2013, **19**, 1739.

67 L. Junxi, S. Qiong, L. Yu, Z. Qiang and G. Zhiyuan, *Can. J. Chem.*, 2014, **92**, 868.

68 L. Junxi, S. Qiong, W. Yanbin and G. Zhiyuan, *Bull. Chem. Soc. Jpn.*, 2015, **88**, 110.

69 F. Yu, *J. Phys. Chem. A*, 2016, **120**, 1813.

70 L. Yun-Yun, Q. Fang-Zhou, Z. Jun, R. Yi and L. Kai-Chung, *J. Mol. Model.*, 2017, **23**, 192.

71 T. Hansen, P. Vermeeren, F. M. Bickelhaupt and T. A. Hamlin, *Angew. Chem., Int. Ed.*, 2021, **60**, 20840.

72 S. Hoz and E. Buncel, *Isr. J. Chem.*, 1985, **26**, 313.

73 J. O. Edwards and R. G. Pearson, *J. Am. Chem. Soc.*, 1962, **84**, 16.

74 J. D. Evanseck, J. F. Blake and W. L. Jorgensen, *J. Am. Chem. Soc.*, 1987, **109**, 2349.

75 E. Buncel and I. H. Um, *Tetrahedron*, 2004, **60**, 7801.

76 C. H. DePuy, E. W. Della, J. Filley, J. J. Grabowski and V. M. Bierbaum, *J. Am. Chem. Soc.*, 1983, **105**, 2481.

77 E. V. Patterson and K. R. Fountain, *J. Org. Chem.*, 2006, **71**, 8121.

78 Y. Ren and H. Yamataka, *Org. Lett.*, 2006, **8**, 119.

79 Y. Ren and H. Yamataka, *Chem. – Eur. J.*, 2007, **13**, 677.

80 Y. Ren and H. Yamataka, *J. Org. Chem.*, 2007, **72**, 5660.

81 A. M. McAnoy, M. R. L. Paine and S. J. Blanksby, *Org. Biomol. Chem.*, 2008, **6**, 2316.

82 Y. I. Ren and H. Yamataka, *J. Comput. Chem.*, 2009, **30**, 358.

83 J. M. Garver, S. Gronert and V. M. Bierbaum, *J. Am. Chem. Soc.*, 2011, **133**, 13894.

84 J. M. Garver, Z. Yang, N. Wehres, C. M. Nichols, B. B. Worker and V. M. Bierbaum, *Int. J. Mass Spectrom.*, 2012, **330–332**, 182.

85 Y. Ren, X. G. Wei, S. J. Ren, K. C. Lau, N. B. Wong and W. K. Li, *J. Comput. Chem.*, 2013, **34**, 1997.

86 I. H. Um, L. R. Im and E. Buncel, *J. Org. Chem.*, 2010, **75**, 8571.

87 X. G. Wei, X. M. Sun, X. P. Wu, Y. Ren, N. B. Wong and W. K. Li, *J. Org. Chem.*, 2010, **75**, 4212.

88 D. L. Thomsen, J. N. Reece, C. M. Nichols, S. Hammerum and V. M. Bierbaum, *J. Am. Chem. Soc.*, 2013, **135**, 15508.

89 D. L. Thomsen, J. N. Reece, C. M. Nichols, S. Hammerum and V. M. Bierbaum, *J. Phys. Chem. A*, 2014, **118**, 8060.

90 D. L. Thomsen, C. M. Nichols, J. N. Reece, S. Hammerum and V. M. Bierbaum, *J. Am. Soc. Mass Spectrom.*, 2014, **25**, 159.

91 W. Y. Zhao, J. Yu, S. J. Ren, X. G. Wei, F. Z. Qiu, P. H. Li, H. Li, Y. P. Zhou, C. Z. Yin, A. P. Chen, H. Li, L. Zhang, J. Zhu, Y. Ren and K. C. Lau, *J. Comput. Chem.*, 2015, **36**, 844.

92 N. Singh, Y. Karpichev, R. Sharma, B. Gupta, A. K. Sahu, M. L. Satnam and K. K. Ghosh, *Org. Biomol. Chem.*, 2015, **13**, 2827.

93 E. Juaristi, G. Dos Passos Gomes, A. O. Terent'ev, R. Notario and I. V. Alabugin, *J. Am. Chem. Soc.*, 2017, **139**, 10799.

94 F. Yu, *J. Chem. Phys.*, 2018, **148**, 014302.

95 C. Zhao, X. Ma, X. Wu, D. L. Thomsen, V. M. Bierbaum and J. Xie, *J. Phys. Chem. Lett.*, 2021, **12**, 7134.

96 X. Wu, C. Zhao and J. Xie, *ChemPhysChem*, 2022, **23**, e202200285.

97 Y. Hu, X. Wu and J. Xie, *Phys. Chem. Chem. Phys.*, 2023, **25**, 1947.

98 D. J. Anick, *J. Phys. Chem. A*, 2011, **115**, 6327.

99 C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 618.

100 T. H. Dunning, *J. Chem. Phys.*, 1989, **90**, 1007.

101 R. Van de Vijver and J. Zádor, *Comput. Phys. Commun.*, 2020, **248**, 106947.

102 M. Kuwahara, Y. Harabuchi, S. Maeda, J. Fujima and K. Takahashi, *Digit. Discovery*, 2023, **2**, 1104.

103 E. Kraka, J. J. Antonio and M. Freindorf, *Chem. Commun.*, 2023, **59**, 7151.

104 K. Raghavachari, G. W. Trucks, J. A. Pople and M. Head-Gordon, *Chem. Phys. Lett.*, 1989, **157**, 479.

105 T. B. Adler, G. Knizia and H. J. Werner, *J. Chem. Phys.*, 2007, **127**, 221106.

106 G. Knizia, T. B. Adler and H. J. Werner, *J. Chem. Phys.*, 2009, **130**, 054104.

107 K. A. Peterson, D. Figgen, E. Goll, H. Stoll and M. Dolg, *J. Chem. Phys.*, 2003, **119**, 11113.

108 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and M. Schütz, *et al.*, *Molpro, version 2015.1, a package of ab initio programs*, see <https://www.molpro.net>.

109 I. Szabó, B. Olasz and G. Czakó, *J. Phys. Chem. Lett.*, 2017, **8**, 2917.

110 Y.-T. Ma, X. Ma, A. Li, H. Guo, L. Yang, J. Zhang and W. L. Hase, *Phys. Chem. Chem. Phys.*, 2017, **19**, 20127.

111 B. Olasz and G. Czakó, *Phys. Chem. Chem. Phys.*, 2019, **21**, 1578.

112 G. Czakó, T. Győri, B. Olasz, D. Papp, I. Szabó, V. Tajti and D. A. Tasi, *Phys. Chem. Chem. Phys.*, 2020, **22**, 4298.

113 B. Ruscic, R. E. Pinzon, M. L. Morton, G. Von Laszewski, S. J. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff and A. F. Wagner, *J. Phys. Chem. A*, 2004, **108**, 9979.

114 D. H. Ruscic and B. Bross, *Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network*, 2023, available at ATcT.anl.gov.

