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Deep Mind 21 functional does not extrapolate
to transition metal chemistry†

Heng Zhao, a Tim Gould b and Stefan Vuckovic *a

The development of density functional approximations stands at a crossroads: while machine-learned

functionals show potential to surpass their human-designed counterparts, their extrapolation to unseen

chemistry lags behind. Here we assess how well the recent Deep Mind 21 (DM21) machine-learned

functional [Science, 2021, 374, 1385–1389], trained on main-group chemistry, extrapolates to transition

metal chemistry (TMC). We show that DM21 demonstrates comparable or occasionally superior

accuracy to B3LYP for TMC, but consistently struggles with achieving self-consistent field convergence

for TMC molecules. We also compare main-group and TMC machine-learning DM21 features to shed

light on DM21’s challenges in TMC. We finally propose strategies to overcome limitations in the

extrapolative capabilities of machine-learned functionals in TMC.

I. Introduction

The accuracy of density functional approximations (DFAs) has
become a limiting factor in scientific discoveries driven by
electronic structure calculations and empowered by artificial
intelligence.1–5 At the same time, the development of DFAs is
currently in ‘‘no man’s land’’. On the one hand, machine-
learned DFAs hold promise to overcome the known deficiencies
of human-designed functionals.6–13 Yet, their transferability14

remains a major challenge, essential for the broad applicability
seen in their human-designed counterparts, such as PBE15 or
B3LYP.16–19

A major step forward in machine learning of accurate DFAs
has been achieved by the development of the Deep Mind 21
(DM21) functional.8 From the point of view of DFA’s classifica-
tion, DM21 is a machine-learned local hybrid (see ref. 22 for a
review of local hybrids and ref. 23 for a recent comparison
between human-designed local hybrids and DM21). With the
inclusion of fractional charges (FC) and fractional spin (FS)
data in the training, DM21 has addressed some of the long-
standing deficiencies of standard DFAs linked to their impro-
per behavior for systems with FC and FS.24 However, the
training of DM21 excludes elements heavier than Krypton,
posing questions about its performance in transition metal
chemistry (TMC), a realm generally challenging for quantum

chemistry due to strong correlation effects and a large number
of multireference cases.20,25–27

Trained on fractional spin (FS) DM21 can capture some
multi-reference effects in main group chemistry, such as
stretching covalent bonds, though it encounters difficulties at
intermediate bond distances. For example, training DM21 on
the hydrogen atom with zero polarization ensures the accurate
H2 dissociation limit without breaking spin symmetry. Focus-
ing on dimers, main-group dimers primarily exhibit multi-
reference effects when their bonds are stretched, whereas
transition metal dimers display these effects even at their
equilibrium geometries. Thus, the difference in the nature of
multireference effects between main-group and TMC raises the
question of whether DM21’s ability to capture such effects in
the former can extend to the latter. But, given the known
shortcomings of standard functionals like B3LYP in describing
multireference transition metals (TM), such as TM dimers, even
a far less stringent question arises: Does DM21, which was
pretrained on B3LYP densities, perform at least not much
worse in this domain than B3LYP itself?

Unfortunately, in this paper, we show that the answers to
both questions regarding DM21’s performance in TMC are
negative. While DM21, once it converges, yields accuracy for
transition metal compounds comparable (in some cases even
superior) to B3LYP, it consistently struggles with SCF convergence.
We illustrate the performance of DM21 for TMC in Fig. 1 with
beeswarm plots showing errors of B3LYP and DM21 functionals
(see the caption of the figure for details). The left panel of Fig. 1
shows DM21’s potential to surpass B3LYP in TMC. The data
indicate a decrease in median error from 3 kcal mol�1 for self-
consistent B3LYP calculations to 2.3 kcal mol�1 when DM21 is
applied to B3LYP orbitals. Self-consistent DM21 calculations are in
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between the two in terms of accuracy with the median error of
2.6 kcal mol�1 (other error metrics will follow later). The right
panel of Fig. 1 gives a more critical assessment of DM21 for TMC
as it includes systems that failed to converge with this functional.
For these cases, we (arbitrarily) set errors of 50 kcal mol�1,
a number reflecting the expected upper limit of DFT errors for
the considered TMC reactions. When all reactions are considered
in the right panel, DM21 evaluated on B3LYP densities remains
accurate; however, roughly 30% of the reactions do not reach SCF
convergence under DM21. The major convergence issues with
DM21 not only limit its practical applicability for TMC but could
also render its use impossible in this area.

As we will show later in the paper, these convergence issues
of DM21 cannot be resolved by standard SCF setting adjust-
ments. We demonstrate this by going beyond an SCF procedure
and employing a direct orbital optimization algorithm for
DM21 cases that could not converge with our SCF protocol.
Even then, the DM21 convergence still fails, underscoring
a fundamental limitation in DM21’s ability to extrapolate to
transition metals.

In addition to testing DM21’s accuracy for TMCs, we analyze
SCF convergence failures for specific TMC systems, compare
DFT features of TM molecules against their main-group coun-
terparts (e.g., CrO vs. CaO/CO), and demonstrate that the
former can be easily missed when training machine-learned
functionals.

The paper is organized as follows, computational details are
outlined in Section II, followed by Section III with the key
numerical and convergence results, Section IV with the analysis
of DFT features. Finally, Section V is devoted to conlcusions
and outlook.

II. Computational details
A. Computational setup

All DFT calculations in this work have been obtained in PySCF.28

We use the TMC15120 transition-metal datasets compilation,
developed by Chan et al., to assess the accuracy of DM21 in

TMC. TMC151 includes the TMD60 dataset,29 featuring TM
dimer dissociation energies; MOR41, with 41 metal–organic
reaction energies;30 and TMB50 containing barriers of com-
plexes of second- and third-row transition metals.20 The current
implementation of DM21 is very costly. For example, a single
SCF iteration for n-decane on 4 CPU cores with def2-QZVP basis
set and resolution of identity (RI) approximations (the original
implementation of DM21 in PySCF) takes approximately 7 hours.
In contrast, a complete B2PLYP double hybrid31 calculation with
the same settings, without RI approximations, is completed
within 13 minutes with RI on or 3 hours with RI off. Therefore,
due to the currently high cost of DM21, we excluded reactions
with large systems from MOR41 and TMB50, leading to their
TMB40 and MOR17 subsets, respectively. TMD60 was kept as is,
leading to the streamlined TMC117 subset of TMC151 (TMB40 +
MOR17 + TMD60). For TMD60 calculations, we use the def2-
QZVP basis set, while for TMB40 and MOR17 we use the def2-
TZVP basis set (with corresponding effective core potentials as in
ref. 20 for heavier atoms when applicable).32 RI approximations
are used with corresponding auxiliary basis sets33 to accelerate
the calculation.

To better understand DM21’s relative accuracy to B3LYP
for TMC, in addition to assessing their self-consistent perfor-
mances, we also test their accuracies using cross-evaluated
densities34 (DM21@B3LYP and B3LYP@DM21, where A@B
denotes an evaluation of a functional A on the electron density
computed by functional B). For all calculations, we also include
the D3(BJ) dispersion correction with the Becke–Johnson damp-
ing function21 (the results from the paper without D3(BJ) are given
in the ESI†). Since self-consistent DM21 and B3LYP use the same
D3(BJ) parameters,8 we safely assume that the same parameters
could be used for DM21@B3LYP and B3LYP@DM21.

B. SCF protocol

We establish a self-consistent field (SCF) protocol for achieving
system convergence with DM21. Our methodology starts with
SCF Strategy A, advancing to Strategy B if convergence is not
achieved, and then to Strategy C if necessary. As said, we use

Fig. 1 Beeswarm plots with errors for B3LYP and DM21 functionals across TMC117 dataset variations (see the text for the dataset description). The
number at the horizontal bar denotes the median absolute error. The TMC117 dataset built from the TMC151 dataset20 of Chan and co-workers by
excluding large systems where DM21 calculations were prohibitively resource-intensive. The left plot shows 83 reactions which we could converge with
DM21, whereas the right shows all 117 reactions, where we set 50 kcal mol�1 errors to non-converged cases. A@B denotes functional A’s evaluation on
densities/orbitals from functional B’s Kohn–Sham calculation. The D3(BJ) dispersion correction21 has been applied to all energies.
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PySCF28 for all our SCF calculations, and inspired by the Orca’s
SCF settings,35 we use the following set of A to C Strategies:

Strategy A. Level shifting is set as 0.25, damping factor is 0.7,
direct inversion in the iterative subspace DIIS will start at cycle
12 (some of the settings are similar to NormalConv SCF proto-
col in Orca).

Strategy B. Level shifting is set as 0.25, damping factor is
0.85, DIIS starts at cycle 0 (some of the settings are similar to
SlowConv SCF protocol in Orca).

Strategy C. Level shifting is set as 0.25, damping factor is
0.92, DIIS starts at cycle 0 (some of the settings are similar to
VerySlowConv SCF protocol in Orca).

For cases that don’t converge we also (unsuccessfully in all
attempts) employ Strategy D. This strategy is fundamentally
different from A–C as it involves direct optimization of the
energy with respect to orbitals. It may thus, in principal,
converge for cases where standard SCF procedures break down.
Full details are provided in Appendix A.

Between Strategies A–D we have a set of increasingly diffi-
cult, but in principal increasingly robust, ways to converge
DFAs even in difficult systems. We are now ready to put these
strategies into practice, and see how well DM21 performs.
Further computational details for all approaches are given in
Appendix B.

III. Results
A. Convergence of DM21 for transition metal dimers

Before the detailed analysis of DM21 for the TMC117 dataset,
we first focus on the SCF convergence issues for TMCs, which,
as we will show, represent the major obstacle to the use of
DM21 in TMC applications.

In Table 1, we present the convergence success of different
SCF strategies for each system within the TMD60 dataset.
As said, we start with the SCF Strategy A and move to B or C
only if necessary. From Table 1, we can see that for the TMD60
dataset, which includes 60 dimers and 16 atoms, DM21 SCF
convergence was successful for 59 systems (45 dimers/
14 atoms) using Strategy A. B managed to converge 2 additional
dimers, while C and direct energy optimization with D did not

lead to further convergence. In stark contrast, all 152 species in
the W4-11 (main-group atomization energies)36 dataset con-
verged under Strategy A, likely reflecting the use of main-group
atomization energies in DM21’s training. At the same time,
B3LYP’s SCF convergence for TMD species was far easier, with
almost all directly converging using A and the remaining five
via B. We can also see from Table 1 that species with V and Cr
atoms were particularly difficult for SCF convergence, where
only the VO dimer and the Cr atom converged. We note that the
use of smaller basis set than def2-QZVP, which we use for
TMD60, can lead to the convergence of a few additional species
(e.g., within Strategy D and the cc-pVDZ basis set, we could also
converge the V atom).

The failures of Strategies A–C here raise the question
whether the problem lies in SCF approach or DM21. This was
indeed the reason why we introduced Strategy D, which
involves direct optimization of orbitals and thus bypasses SCF
entirely. In principle, D can converge any energy functional that
is bounded from below; and can bypass issues with orbital
(re-)ordering that are usually treated by level shifting. But, in
practice, it requires the energy to be sufficiently smooth with
respect to variations in the orbitals. That is, the DFA must vary
smoothly in its input features since orbital-dependence is
inherited from the (meta-)densities and energy densities.

Therefore, DM21’s failure to converge for some systems
using D suggests that the functional is highly non-smooth
(i.e. nearly discontinuous) for combinations of input features
that are ‘close’ enough to the minima to be sampled during
optimization. The presence of (near) discontinuities is not
surprising in a machine-learned DFA – the exact density func-
tional is very complicated and the DFA needs to capture that
complexity by fitting to training data, so will inherit a bias
toward its training data. What is surprising is that even simple
systems, like TM atoms, can have combinations of features that
are outside the training data. Section IV will therefore explore
this point in more detail.

Fig. 2 illustrates the convergence behavior of Co atom and FeS
using B3LYP and DM21. The Co atom converges under B3LYP with
Strategies A and B, with a smoother convergence observed using B
[Fig. 2(a)]. For the same atom, DM21’s SCF convergence initiated
with B3LYP-converged orbitals proceeds smoothly with Strategy A.
By contrast, for the FeS molecule, DM21 fails to converge with any
of the Strategies A, B, or C, as indicated by the erratic energy values
with no stabilization even over an extended number of SCF
iterations (Fig. 2(d)). However, Fig. 2(c) shows that B3LYP encoun-
ters no such convergence issues with FeS.

Fig. 3(a) displays DM21 SCF convergence attempts for both
CaO and CrO using Strategy A. It shows straightforward con-
vergence for the main-group oxide CaO, whereas the transition
metal oxide CrO fails to converge with the same strategy.
Fig. 3(b) demonstrates that Strategies B, C, and D are also
unsuccessful in achieving SCF convergence for CrO with DM21.
Section IV will analyze the input features of CaO and CrO to
shed light on their different DM21 SCF convergence behaviors.

The fact that Strategy D [see Fig. 3(b)] tends to increase the
energy of CrO is worth commenting on. This behaviour reflects

Table 1 SCF convergence of all TMD60 species using different strategies
presented in Section IIB. ‘x’ denotes species that failed to converge under
any strategy. A letter A–D indicates the strategy that successfully con-
verged the (di)atom. No system was successfully converged using Strate-
gies C or D

Element Atom H F Cl Br O S

Sc A A A A A A A
Ti A A A A A A A
V x x x x x B x
Cr A x x x x x x
Mn A A A A x x x
Fe x A A A A B x
Co A A A A A A A
Ni A A A A A A A
Cu A A A A A A A
Zn A A A A A A A
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cross-contamination between two numerical issues used in D:
(1) the use of an approximate Hessian in Newton iteration for
the orbital optimization scheme; (2) non-smoothness of the
DM21 DFA as a functional of orbitals. Issue 1 [see eqn (A1) in

Appendix A below] can lead the orbital optimization algorithm
to sometimes ‘‘climb up hills’’ when the approximate Hessian
sometimes has the wrong ‘sign’. In well-behaved systems,
or with well-behaved DFAs, the ascent is followed by a descent

Fig. 2 Energy change (zeroed at first iteration) during SCF cycles of Co and FeS with B3LYP and DM21. Note the semi-logarithmic scale in (a).

Fig. 3 Energy change (zeroed at first iteration) during SCF cycles within DM21 for (a) CaO and CrO using Strategy A. (b) CrO using Strategy B, C, D.
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once the ‘sign’ gets fixed – indeed, ascent sometimes helps the
algorithm iterate to the global minima. But Issue 2 (evidenced
by very large fluctuations in the energy) makes both the Hessian
and its approximation de facto discontinuous. Discontinuities
can trap the algorithm in regions of orbital space where
the energy varies rapidly. Continued iteration may eventually
find the minima, although the fluctuations of around 1 Eh

(i.e. B100 � MAE in atomization energies of converged cases)
in CrO certainly make this challenging.

We finally note that the failure to converge using Strategies
A–D does not strictly prove that the system cannot be converged
(indeed it is unlikely that a minimum does not exist). But, the
fact that these systems fail even in Strategy D, which attempts
to directly minimize the energy with respect to orbitals, reveals
that convergence is extremely difficult.

B. DM21 performance for TMC117

After analyzing DM21 convergence difficulties in the TMD
dataset, Table 2 assesses DM21 across TMC117 datasets: TMD60,
TMB40, and MOR17. For the DM21-converged subsets of these
datasets, labeled ‘‘Sub’’, we present mean absolute errors (MAEs)
for the following functional combinations: B3LYP@B3LYP,
DM21@B3LYP, DM21@DM21, and B3LYP@DM21. For full data-
sets (‘‘Whole’’), only combinations evaluated at B3LYP densities are
shown due to convergence issues, highlighting B3LYP@B3LYP and
DM21@B3LYP. The table indicates DM21 non-convergence for 34
systems within TMC117 (13 from TMB40 and 21 from TMD60).
Given Strategy D’s high cost and its inability to converge those
TMD60 systems where A–C failed, we did not use it for TMB40 and

MOR17 systems. All results in Table 2 include D3(BJ) corrections,
with D3(BJ)-free comparisons in Table S-I in the ESI.†

From Table 2, we can see that DM21 has the potential
for more accurately describing TMC than B3LYP. For example,
we can see that DM21@B3LYP is on average noticeably more
accurate than self-consistent B3LYP@B3LYP. While self-consistent
DM21@DM21 shows a slight decrease in accuracy compared
to DM21@B3LYP, it remains more accurate than B3LYP@B3LYP.
In DM21 converged instances, B3LYP@DM21 shows slightly lower
but still comparable accuracy to DM21@B3LYP.

The MAEs in Table 2 suggest DM21’s potential to outper-
form B3LYP for TMC both in terms of approximate functional
and energetic consequences due to approximate densities.
However, a large number of the DM21 unconverged cases in
the same table cannot be overlooked. This issue makes DM21
of nearly no use in TMC, as even when DM21 SCF solution is
achievable, finding such solution for TMC would require far
more human effort and intervention than for e.g., B3LYP.

Fig. 4–6 focus on the performance of the 4 functional/
density combinations for the individual reactions of the
MOR17, TMB40, and TMD60 sets. Fig. 4 and 5 also contain
examples of the most difficult reactions in their sets.

Fig. 4 shows the errors for the MOR17 set, for which we
could converge all systems within DM21. We can see that the
evaluation of a given functional on the other’s density (A@B) is
somewhat more accurate than self-consistent calculations
(A@A), which is likely due to the error cancellations between
functional errors of A and density-driven errors of B.37–39 More
importantly, we can see that the DM21 functional, whether
paired with its own density or that of B3LYP, provides better
accuracy for MOR17 than the B3LYP functional.

In Fig. 5, we show the errors for the TMB set, split by the
reactions where we could converge the DM21 results [panel (a)],
and those where we could not [panel (b)]. From Fig. 5(a), we can
see that A@A and A@B curves align for small errors, suggesting
that a functional choice determines accuracy. With larger
errors, A@A and A@B pairs are less aligned, indicating densi-
ty’s increasing relevance for the energies. Overall, the MAEs of
the four DM21/B3LYP methods are smaller than that for
MOR17 and lie in a narrow range (1.4–1.8 kcal mol�1).

Table 2 MAEs (kcal mol�1) of different functionals. D3(BJ) correction has
been added to all functionals

Dataset

TMB40 TMD60 MOR17

Whole Sub Whole Sub Whole

B3LYP@B3LYP 2.43 1.61 6.00 6.41 5.31
DM21@B3LYP 1.62 1.51 6.88 6.25 3.41
DM21@DM21 — 1.81 — 6.59 3.70
B3LYP@DM21 — 1.36 — 6.60 4.86
Number of reactions 40 27 60 39 17

Fig. 4 (left) Errors of the four method combinations for MOR17 dataset. def2-TZVP basis set was used and the D3(BJ) correction has been added to all
results. (right) Example of reactions in MOR17 with large errors.
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We can see from Fig. 5(b) that for the TMB cases, when
DM21 does not converge, DM21@B3LYP is much more accu-
rate than B3LYP@B3LYP. This intriguing improvement of
DM21@B3LYP over B3LYP@B3LYP aligns with similar
improvements observed for main-group barriers.8 On the other
hand, this improvement in panel (b) (for TMB40 barriers that
did not converge with DM21) is much larger than in panel (a)
(cases that converge). This discrepancy suggests a potential
trend for TM barriers where DM21 fails to converge, which may
be attributed to the error cancellation between DM21’s func-
tional error and B3LYP’s density-driven errors. However, due to
the limited number of such cases, this observation remains
speculative.

Fig. 6 focuses on the individual errors for the TMD60
dataset. For cases when DM21 converges [panel (a)], the errors
are large and comparable in magnitude across the four
methods. In panel (b) with the cases for which DM21 does
not converge, DM21@B3LYP performs poorer than B3LYP@
B3LYP, which is an opposite trend from Fig. 5. Nevertheless,

recalling Table 2, DM21@B3LYP performs better on average
than B3LYP@B3LYP for TMC117. However, considering the
current cost of DM21 (Section II), even a single SCF cycle with
DM21 needed for DM21@B3LYP would far exceed the cost of
the entire B3LYP@B3LYP calculation.

In summary, we see that DM21 is very effective when it
converges, and where it uses already converged B3LYP densities
and orbitals. Before concluding, we will attempt to understand
why DM21 fails in some cases by examining some of its
features, and compare how they differ between cases that
converge seamlessly, and those that do not.

IV. DFT features analysis

To gain insight into DM21’s performance in main-group versus
TMC, in this section we will compare the DM21 features of
small molecules. All features in standard hybrid DFAs and the
local-hybrid form of DM21 are represented as functions, fa(r),

Fig. 5 (a) Errors of the four method combinations for TMB40 dataset for a subset of barriers for which DM21 converges. def2-TZVP basis set was used
and the D3(BJ) correction has been added to all results. (b) Same as (a) but for barriers for which DM21 did not converge. (c) Examples of reactions from
(a) panel with large errors. (d) Examples of reactions from (b) panel with large errors.
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that are defined at some point r of interest. Then,

Exc ¼
ð
exc f1ðrÞ; . . . ; fnðrÞð Þdr; (1)

where n is the number of features, f1rarn(r), used to define the
local xc energy density, exc. For B3LYP there are five ingredients,
of which only four are used non-trivially and all are employed
analytically – it is thus easy to understand how B3LYP
(mis-)behaves. In contrast, understanding how DM21 varies
with its n = 12 ingredients (i.e. dimensions) is a virtually
impossible task.

We can, however, get some insights into the kinds of
features that DM21 has learned, and those it needs to deal
with in systems where it wasn’t trained on. Combinations of
features that do not appear in the training data are the
most likely source of errors in failure cases. For this task, we

represent the features of a system using two-dimensional projec-
tion heat maps,

M Fa;Fbð Þ /
ð
d faðrÞ � Fað Þd fbðrÞ � Fbð ÞrðrÞ4=3dr; (2)

where fa and fb are the target features (e.g. rs
4|rr|) at a given point

in space. Data is weighted by the LDA exchange energy density
(p r4/3) so that the heat map approximates the relative impor-
tance of different values of fa and fb to the xc energy. Put another
way, it represents the likelihood that errors in the DFA at those
values will contribute substantially to errors in the xc energy for
the system. We focus on features from DM21: the density gradi-

ent, |rr(r)|, kinetic energy density, tðrÞ ¼ 1

2

P
i

rfiðrÞj j2,

Fig. 6 (left) Errors of the four method combinations for TMD60 dataset for a subset of bond energies for which DM21 converges. def2-QZVP basis set
was used and the D3(BJ) correction has been added to all results. (right) Same as (left) but for bond energies for which DM21 did not converge.

Fig. 7 Projection heat maps for different pairs (columns) of unitless features for CO, CaO and CrO (rows). Darker reds indicate more heavily sampled
features. White regions indicate a complete absence of features. Dotting indicates incomplete sampling of regions caused by the discrete grid. The
bottom and right axes show the features and axes are on a logarithmic scale. We exclude points where rs o 1 (r 4 0.24) to remove the nuclear regions
from the plots. Data obtained using B3LYP/def2-QZVP.
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exchange energy density,

eHF
x ðrÞ ¼

1

2

X
ij

fiðrÞfjðrÞ
ð

1

jr� r0jfiðr0Þfjðr0Þdr0; (3)

which yields by integration the exact HF exchange energy. Another
feature that DM21 uses is the long-range (lr) contribution to eHF

x (r),
obtained by splitting the 1/|r � r0| Coloumb interaction into lr:
erf(o|r � r0|)/|r � r0| and short-range (sr) part: erfc(o|r � r0|)/|r �
r0|. In this way, the lr part of eHF

x (r) used by DM21 and is given by:

eoHF
x ðrÞ ¼ 1

2

X
ij

fiðrÞfjðrÞ
ð
erf o r� r0j jð Þ

r� r0j j fi r
0ð Þfj r

0ð Þdr0: (4)

with o set to 0.4 in DM21. The sr part of eHF
x (r) is given by the

difference between eHF
x (r) and eoHF

x (r). We make all features
unitless by multiplying by powers of the Wigner–Seitz radius,
rs = 0.62035r�1/3.

Fig. 7 shows projection heat maps for six combinations of
features for molecular CO, CaO and CrO, all in their lowest
energy spin configuration. The features for CO and CaO differ,
but in both cases the features are tightly confined to the vicinity
of lines. By contrast, CrO has a wider ‘spread’ in feature space,
especially as a function of Hartree–Fock exchange energy
densities. This means that CrO is more susceptible to errors
in the DFA across a wider region of feature space, meaning that
a lack of training data in relevant parts of feature space is likely
to lead to errors in the DM21 model.

By focusing on atoms, Fig. 8 reveals that the difficulties in
CrO are very likely a feature of Cr more than the bond. Indeed,
the Cr atom samples a greater spread in feature space than any
of the other atoms shown. Given the lack of potential training
data even from other transition metals, it is not surprising that
DM21 did not learn how to model Cr bonds from its organic

training set. What is remarkable is that atomic Cr converges at
all, unlike atomic V and Fe that have similar (but less spread)
features.

V. Conclusions and outlook

In conclusion, we have shown that the DM21 functional’s
performance in transition metal chemistry, despite being com-
parable in accuracy to B3LYP, faces challenges in SCF conver-
gence that makes it of little to no practical use in this domain.
Despite these limitations, we also showed that evaluating DM21
functionals on B3LYP densities results in improved perfor-
mance over self-consistent B3LYP for TMC117 reactions.
To shed light on the SCF convergence issues of DM21 with
transition metal molecules, we have analyzed the DM21
features, highlighting the distinctions between transition metal
atoms/oxides and their main-group counterparts.

The improved accuracy of DM21@B3LYP over B3LYP@
B3LYP demonstrates the significant potential of machine-
learned density functionals in transition metal chemistry.
Despite its potential, energy refinement on B3LYP densities
with DM21 is currently not cost-effective, as a single SCF
iteration of DM21 in PySCF for medium-sized molecules can
exceed by far the total time required for a B3LYP or even
B2PLYP calculation. Carrying out DM21 with B3LYP orbitals
seems to offer a useful compromise once DM21 is coupled with
a more efficient implementation of the exact exchange energy
density.40

Moving DFAs beyond the ‘‘no man’s land’’ by creating
machine-learned functionals with a broad applicability to both
main-group and transition metal chemistry remains an open
challenge. On the one hand, incorporating features designed to

Fig. 8 Like Fig. 7 but for atoms (columns) and with fewer features pairs (rows). Note, of these atoms V and Fe did not converge (DNC) using any strategy.
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capture strong correlation effects into machine-learning DFAs may
improve the transferability to transition metal chemistry.38,41,42

On the other hand, addressing this by incorporating transition
metal reactions into machine-learning density functionals comes
with its own obstacles:

(1) The scarcity of accurate benchmark data for transition
metal chemistry is a well-known issue despite recent improve-
ments.43,44 For example, the TMC151 database has about ten/
thirty times fewer reactions than the GMTKN55/MGCDB84
databases for main-group chemistry.45,46 Moreover, within the
TMC151 subsets, only TMD60 uses a higher level of theory than
CCSD(T), which is a single-reference method. To address this
data scarcity, one can either utilize existing9 or design new
data-efficient strategies for machine-learning DFAs.

(2) Naı̈vely including transition metal reactions in machine-
learning DFAs may compromise the accuracy for main-group
chemistry.14 However, this can be addressed by employing
datasets that are explicitly biased towards ensuring higher trans-
ferability to both main-group and transition metal chemistry.14
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Appendices
Appendix A: Strategy D

Strategy D involves a direct orbital minimization algorithm for
the orbital-dependent energy, E[{fi}], with respect to variations
in orbitals within a restricted open-shell theory; with the aim to
find (local) minima that are unstable or difficult to find using
typical self-consistent field convergence strategies. It involves
iteratively solving the approximate-Newton equation, C - C
exp(A), where C is the matrix describing the orbital coefficients;
and A is an anti-symmetric matrix with elements,

Aij ¼
Dij

Dij
2 þ Z2

dE
dfi
jfj

D E
� fijdEdfj

D Eh i
; (A1)

where, Dij ¼ 2 fi � fj
�� �� Ei � Ej

�� �� is a diagonal approximation for

the Hessian and Z = 0.01 is a regularization factor (using
occupation factors, fi, and orbital energies, Ei). For DM21, we
can apply the chain-rule to spin-density ingredients to obtain,
dE
dfj

���
E
: ¼ fj"F̂DM21;" þ fj#F̂DM21;#

� �
fj

�� E
where fis indicates

whether or not orbital i is occupied with spin s in the density;
and F̂DM21,s is the effective Fock operator for spin s. The
optimal solution occurs when 8A8 - 0 is accompanied by a
decrease in energy, indicating that the solution has converged
to a minimum.

In fact, Strategy D goes one step further than the direct
iteration described above, which helps it to converge difficult
cases. After 50 iterations, we set C - C exp(a*A) using an
optimal |a*| o 3. The optimal value, a*, is determined by
quadratically fitting results for a A {0,1,2} to find the minimum
along the line. This modification helps to avoid rapid variations
in energies when outside the radius of convergence for the

global minimum and also helps difficult cases iterate to their
minimum. Typical calculations (which begin within the radius
of convergence) find the minimum within about 30 iterations,
so never require this treatment.

The code is available on request.

Appendix B: Further computational details

For B3LYP calculations, the convergence threshold is set to
10�8, while gradients convergence threshold is set to 10�4.
In DM21 SCF, they are set to 10�6 and 10�3, respectively.
For DM21 calculations, the orbitals obtained from B3LYP SCF
are used as the initial guess. The maximum number of SCF
iterations that we use for Strategy A, B and C are set to 200, 500,
900 respectively.
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