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An efficient method to establish electrostatic
screening lengths of restricted primitive
model electrolytes†

Jan Forsman, *a David Ribar a and Clifford E. Woodward b

We present a novel, and computationally cheap, way to estimate electrostatic screening lengths

from simulations of restricted primitive model (RPM) electrolytes. We demonstrate that the method is

accurate by comparisons with simulated long-ranged parts of the charge density, at various Bjerrum

lengths, salt concentrations and ion diameters. We find substantial underscreening in low dielectric

solvent, but with an ‘‘aqueous’’ solvent, there is instead overscreening, the degree of which increases

with ion size. Our method also offers a possible path to (future) more accurate classical density

functional treatments of ionic fluids.

1 Introduction

Interactions between charged surfaces are crucially important
in many systems of biological and industrial importance, and
they have been extensively studied for many decades. A simple
and common strategy is to adopt a dielectric continuum
description of the solvent – the primitive model – and use the
mean-field Poisson–Boltzmann (PB) theory to predict ion dis-
tributions and surface interactions. This approach was utilised
to construct the famous DLVO theory1,2 of colloidal interactions.
Including ion correlations takes us beyond the mean-field
approach and is of vital importance in systems with strong
electrostatic coupling.3–15 Phenomena resulting from ion corre-
lations, such as overcharging and like-charge attractions are
now relatively well-understood.

The characteristic fluctuation length-scale that emerges
from mean-field treatments of primitive models is the so-called
Debye length, lD, which provides a useful measure for the
effective range of electrostatic potentials of mean force in dilute
salt solutions at low coupling. The Debye length decreases with
concentration for an electrolyte, which is indicative of the
increased ionic screening expected from a mean-field treatment.
However, some recent surface force apparatus (SFA) and surface
force balance (SFB) measurements suggest a remarkable deviation
from this (generally accepted) behaviour.16–19 These measurements

appear to indicate that the decay length for charged surface
interactions in simple aqueous electrolytes, as well as in ionic
liquids, not only significantly exceeds lD, but also increases
with salt concentration, above some threshold value. This
phenomenon can be denoted as anomalous under-screening.20

While qualitatively similar results have been reproduced by
several different groups, its physical explanation has been subject
to considerable debate.

This notwithstanding, it should be noted that there have
been other experimental reports which are seemingly in con-
flict with purported anomalous under-screening. For instance,
recent atomic force microscopy (AFM) measurements by Kumar
et al.21 were consistent with mean-field predictions, without
any indications of anomalies. In earlier AFM measurements on
a pure ionic liquid, by Hjalmarsson et al.,22 there was a peculiar
temperature effect, with short-ranged interactions at 353 K
turning very long-ranged at 393 K. Nayeri and Bergenholtz23

investigated interactions between charged colloidal spheres
using Total Internal Reflection Microscopy. Their data was also
in good agreement with mean-field predictions. Colloidal sta-
bility measurements by Yuan et al.24 indicated a re-dispersion
trend, in aqueous solutions, but for 1 : 1 salts the re-entrant
trend was quite weak and mainly significant at exceptionally
high concentrations.

Theoretical work to date does not seem to indicate any clear
mechanism for the observed anomalous under-screening. One
oft-used argument is that ionic clustering, which is presumably
more prevalent at higher concentration (and at large coupling),
plays an important role. That is, the measured screening length
is a renormalised Debye length dominated by the smaller
number of ‘‘free’’ ions, given that clusters will be few in number
and are likely to have a zero or at least near-neutral charge.
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Recent molecular dynamics (MD) simulations by Härtel et al.,20

using the restricted primitive model (RPM) did predict screen-
ing lengths that exceeded the Debye length, but only when the
dielectric constant used to mimic the solvent was sufficiently
low, and much lower than that indicated by experiments. Those
authors noted a significant degree of ion clustering accompa-
nied the under-screening and were able to semi-quantitatively
explain their results by identifying cluster populations and
calculating a renormalised Debye length of the type described
above. All-atom simulations by Coles et al.,25 as well as Zeman
et al.,26 have established screening lengths for simple salts in
an explicit aqueous solvent. The simulated screening lengths
remained roughly constant for concentrations exceeding a
threshold value of about 1 M, which is not consistent with
the dramatic increase seen in the SFA/SFB measurements at
concentrations even below this value. The story is similar for
analytical and semi-analytical approaches27–29 where, despite
concerted effort, there are to date no calculations (using
realistic parameters) that are able to reproduce the SFA/SFB
results, even qualitatively. In summary then it is fair to say that
more theoretical and experimental studies are required to
establish the physical mechanisms that underpin purported
anomalous under-screening. The work presented here will
unfortunately not provide a definitive answer to that mecha-
nistic question. Instead, we demonstrate a new method to
extract electrostatic electrostatic screening lengths from com-
puter simulations, which is numerically inexpensive and also
provides some new insights as to why they may deviate from the
Debye length. This provides an addition to the theoretical tool-
box that will hopefully help to uncover the physics behind
anomalous underscreening.

In computer simulations, the electrostatic decay length is
invariably obtained by simply fitting to the long-ranged part of
correlation functions. In this regime the values of the correla-
tion functions are both small and generally subject to substan-
tial uncertainty. For this reason, one generally needs long
simulations of large numbers of particles so as to probe these
asymptotic regimes accurately. There is also an unfortunate
ambiguity regarding the range across which the fit is made.
Below, we will introduce an alternative and computationally
cheaper way to obtain these screening lengths. Briefly put, our
method is based on an exact density expansion of the excess
free energy functional. This expansion will relate the screening
length (at least to first-order) to changes in the individual ion
excess chemical potentials upon varying the number density of
only one ion type while maintaining overall neutrality by using
a uniform background density of counterions. As it turns out,
the first-order approximation we use here is very accurate for a
wide range of system parameters for the RPM electrolyte model
studied here. This was ascertained by comparing our results
with direct fits to the correlation functions.

Previous theoretical treatments of the RPM model have
shown that at low density one predicts monotonic decay of
the charge–charge correlations (of a Yukawa form) at long
range. This translates to a long-range exponential decay
of the potential of mean force between flat charged surfaces.

A purely exponential decay is seemingly observed in those
experiments where anomalous under-screening occurs. At low
density, and when the coupling is low, the RPM has been
shown to display correlation functions with an asymptotic
Yukawa form, having a screening length that is equal to, or
below, the Debye length. This monotonic decay transitions to
damped oscillatory (sinusoidal) behaviour beyond a threshold
concentration; the so-called Kirkwood transition. Here, the
sinusoidal variation of the charge correlations oscillates
between positive and negative values with amplitudes that also
decay according to a Yukawa form. This decay length does
increase with concentration, but at a rate too low compared to
anomalous under-screening. Furthermore, the oscillatory form
is not consistent with the purely exponential surface forces seen
in experiments. Indeed, the increase in decay length of the
charge oscillations is more consistent with the onset of long-
range structure as the density of the electrolyte increases, rather
than direct electrostatic screening. Our work here will only
focus on systems which display exponential decay, without
oscillations. From the work of Härtel et al.,20 it seems that in
highly-coupled RPM models, one is able to establish a regime
wherein charge correlations are non-oscillatory, while the
screening length increases with electrolyte concentration, con-
sistent with observed anomalous under-screening.

2 Theory and simulation details
2.1 Density functional theory

In the RPM description, the Coulomb interaction (free) energy
between ions i and j, separated a distance r, is:

bfij
CoulðrÞ ¼ lB

zizj

r
(1)

where b is the inverse thermal energy and the valency of ion i is
denoted by zi. Apart from this, ions interact via a hard sphere
potential, where both ions have a radius of d. We define the
Bjerrum length as lB ¼ be2

�
4pE0Erð Þ; where e is the elementary

charge, Er is the relative dielectric constant of the implicit
solvent, and E0 is the permittivity of vacuum. We will here
restrict the treatment to symmetric RPM electrolytes, i.e., (z:z)
salts whose valencies are equal in magnitude but opposite in
sign (z+ = �z� = z).

Using classical density functional theory (DFT), the grand
potential for an RPM electrolyte solution in the presence of an
external point charge, q0 at r0, can be written as a functional of
the ionic densities, {ni(r); i = �},

bO ¼
X
i

ð
niðrÞ ln½niðrÞ� � 1ð Þdrþ bFex

þ 1

2

X
i

X
j

ðð
ni r1ð Þnj r2ð ÞlBzizj r1 � r2j j�1dr1dr2

þ 1

e

X
i

ð
ni r1ð ÞlBziq0 r1 � r0j j�1dr1 �

X
i

bmi

ð
niðrÞdr

(2)
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where Fex is a functional of {ni(r);i = �} and contains all
excluded volume and ionic correlation terms and mi is the
chemical potential of i type ions in the bulk where ni(r) - nb.
Upon minimisation, wrt to ni(r), we obtain,

niðrÞ ¼ nbe
�bziecðrÞ�b

dFex
dniðrÞþbm

ex
i

� �
(3)

where c(r) is the average electrostatic potential at r:

becðrÞ ¼ lB
q0

e
r� r0j j�1þ

X
j

ð
njðr0Þzj r� r0j j�1dr0

 !
(4)

and bmex
i (=bmi � ln(nb)) is the excess (beyond its ideal value)

chemical potential of species i in the bulk,

mexi ¼
dFex

dni
nb½ � (5)

We now expand the excess free energy:

Fex �Fex nb½ � þ
X
i

ð
Dni r1ð Þ

dFex

dni r1ð Þ
nb½ �dr1

þ 1

2

X
i

X
j

ðð
Dni r1ð ÞDnj r2ð Þ

d2Fex

dni r1ð Þdnj r2ð Þ
nb½ �dr1dr2

(6)

where Dni(r) � ni(r) � nb. This is a valid approximation in the
asymptotic regime at a large distance for the perturbing charge.
In this regime one can also linearize eqn (3). We begin by
writing,

b
d2Fex

dni r1ð Þdnj r2ð Þ
nb½ � ¼ �cð0Þij r1 � r2j jð Þ (7)

If cij(|r1 � r2|) is the direct correlation function, then c(0)
ij (|r1 �

r2|) = cij(|r1 � r2|) � bfij
Coul(r) is the residual part after subtrac-

tion of the (long-ranged) pair interaction contribution. The net
charge density is directly related to the ion densities:

r r1ð Þ ¼ e
X
i

zini r1ð Þ (8)

where we recall that the ion densities themselves were given by
eqn (3). Assuming a relatively weak average potential, we can
linearise the exponential in eqn (3), and by using the expansion
of the excess free energy, eqn (6), we arrive at the following
expression for the net charge density:

r r1ð Þ ¼ �E0ErkD2c r1ð Þ

þ nbe
X
i

X
j

ð
ziDnj r2ð Þcð0Þij r1 � r2j jð Þdr2 (9)

where we have used,

kD2 ¼ bnb
e2

E0Er

X
i

zi
2 (10)

where the Debye screening length is defined as lD = 1/kD.
The second term in eqn (9) can be further expanded to get,

X
i

X
j

ð
ziDnj r2ð Þcð0Þij r1 � r2j jð Þdr2

¼
ð

Drþ r2ð Þcð0Þþþ r1 � r2j jð Þ
�

þ Dr�ðr2Þcð0Þ�� r1 � r2j jð Þ � rðr2Þcð0Þþ� r1 � r2j jð Þ
�
dr2

¼
ð

c
ð0Þ
þþ r1 � r2j jð Þ � c

ð0Þ
þ� r1 � r2j jð Þ

� �
r r2ð Þdr2

(11)

where Dri(r) = ziDni(r). Due to the symmetry of the RPM
electrolyte we have c(0)

++(r) = c(0)
��(r) and from analyticity we also

have c(0)
+�(r) = c(0)

�+(r). This allows us to write,

r r1ð Þ ¼ �E0ErkD2c r1ð Þ þ nb

ð
r r2ð ÞDcð0Þ r1 � r2j jð Þdr2 (12)

where Dc(0)(r) = c(0)
++(r) � c(0)

+�(r), and c(r) is the mean electrostatic
potential. In Fourier space we obtain,

r̂ðkÞ ¼ �E0ErkD2ĉðkÞ þ nbr̂ðkÞDĉð0ÞðkÞ (13)

which can be rewritten as,

r̂ðkÞ ¼ �E0ErkD2 ĉðkÞ
1� nbDĉð0ÞðkÞ

(14)

where the Fourier transform is defined here as

f̂ ðkÞ ¼
ð
f ðrÞeir�kdr (15)

Gauss’s Law gives,

�EE0r2cðrÞ ¼ rðrÞ þ q0dðrÞ (16)

which in Fourier space is,

EE0k2ĉðkÞ ¼ r̂ðkÞ þ q0 (17)

Substitution into eqn (13) gives,

ĉðkÞ ¼ q0

E0Er

1

k2 þ kD2ŵðkÞ (18)

where ŵ(k) = 1/(1 � nbDĉ(0)(k)). Finally we obtain,

r̂ðkÞ ¼ �E0ErkD2ŵðkÞĉðkÞ (19)

The asymptotic decay of r(r) is given by the pole of the
expression on the RHS eqn (18) with the smallest imaginary
part. If that pole is purely imaginary, i.e., k = ik, one obtains a
Yukawa decay (Bexp(�kr)/r). On the other hand, if the pole has
instead non-zero real part then the decay will have a Yukawa
form with an oscillatory amplitude. The thermodynamic point
at which Yukawa decay turns to oscillatory Yukawa decay is
denoted as the so-called Kirkwood transition.

2.2 Connection to dressed ion theory

It is instructive to define the charge correlation function
Dĥ(0)(k) = ĥ(0)

++(k) � ĥ(0)
+�(k). We can relate Dĥ(0)(k) to Dĉ(0)(k) via
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the following Orstein–Zernike equation

Dĥð0ÞðkÞ ¼ Dĉð0ÞðkÞ
1� nbDĉð0ÞðkÞ

(20)

which gives ŵ(k) = 1 + nbDĥ(0)(k). The quantity ziŵ(r) corresponds
to a supposedly short-ranged charge density profile centred
at an ion of species i, which includes the charge zi plus an
associated atmosphere of additional ions. This corresponds to
an ion charge and its ‘‘dress’’, the latter being due to short-
ranged correlations, as described in the dressed ion theory of
Kjellander and Mitchell.30,31 For small k, we write,

ŵðkÞ � ŵð0Þ þ 1

2
ŵð2Þð0Þk2 (21)

As we will discuss in more detail below, the quantity z�i ¼ ziŵð0Þ
can be thought of as the total average charge of ion clusters that
contain the species i. This will be equal in magnitude and
opposite in sign for anions and cations in this symmetric
model. The characteristic average length-scale of these clusters,
denoted by Rc, can be estimated from the second term on the
RHS of eqn (21), which gives the second moment of the so-

called ion dress, i.e., Rc

� ffiffiffi
3
p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŵð2Þð0Þ=ŵð0Þ

p
.

If ionic correlations are neglected, then we have ŵ(k) = 1.
Under these conditions we obtain,

ĉðkÞ � q0

E0E�r

1

k2 þ kD2
(22)

This corresponds to the classic Debye–Hückel (D–H) theory for
the point-like RPM electrolyte. In this case, the potential (and
charge density decays with a Yukawa form), as the pole on the
RHS of eqn (22) is purely imaginary (k = ikD). Including ion
correlations, we consider the asymptotic region of the charge
density profile. In particular, if we assume that in this region
the profile is sufficiently small in magnitude and slowly varying
we can use the second order expansion of eqn (21) in eqn (18).
After a little algebra one obtains the following expression,

ĉðkÞ � q0

E0E�r

1

k2 þ keff 2
(23)

Thus we obtain a D–H like theory with a new effective screening
length, given by leff = 1/keff, where,

keff 2 ¼ bnb
e2

E0E�r

X
i

ziz
�
i (24)

where as stated above z�i is the average cluster charge centred
about an ion of type i. We also have,

E�r ¼ Er 1þ 1

3
kD2ŵð0ÞRc

2

� �
(25)

which is a renormalised dielectric constant. Similar expressions
was first obtained by Kjellander and Mitchell.30,31 We shall
make the approximation that kD

2ŵ(0)Rc
2 is small compared to

unity (allowing us to write E�r � Er) which is equivalent to saying
the screening length, leff, is large compared to Rc, the size of
the dressed ion. This approximation will be verified below in
specific simulated systems.

2.3 Qualitative cluster analysis

The cluster nature of the approach above is not immediately
obvious from eqn (24), but can be elucidated from the following
argument. Consider a given typical configuration of the elec-
trolyte consisting of a total of N anions and the same number of
cations in a volume V. This could be obtained as say a snapshot
from a simulation after equilibration. This configuration could
in principle be divided into ‘‘clusters’’ of ions according to a
set of criteria consistent with the definition of Dh(0)(r). These
criteria are not obvious a priori but would correspond to
collections of ions of average size Rc such that when the ion
distributions within these clusters are averaged over the ensem-
ble they reproduce Dh(0)(r). We note that appropriately defined
clusters may not always be easily identifiable for some systems
in the thermodynamic parameter space of the RPM, especially
at low density and for weakly coupled systems. For this reason,
this analysis is most appropriate to cases where clusters are
easily identifiable and where a subsequent mean-field treat-
ment of the clusters is accurate. This would be when Rc is small
compared to the electrostatic screening length (as assumed
above).

Given this caveat, we can imagine labelling clusters accord-
ing to the number of anions and cations they contain. That is,
clusters of type c say are characterized by having n(c)

� anions and
n(c)

+ cations. We then obtain, z�i ¼ ziwð0Þ; as

z�i ¼
X
c

Ncn
ðcÞ
i

N
Qc

* +
(26)

where Nc is the number of clusters of type c with charge

Qc ¼
P

i zin
ðcÞ
i

� �
and h. . .i denotes the ensemble average. Thus

we can rewrite eqn (24) as,

keff 2 ¼ b
N

V

1

E0Er

X
c

Nc

N

X
i

zin
ðcÞ
i Qc

* +

¼ b
e2

E0Er

X
c

Nc

V
Qc

2

* + (27)

which is the expected expression for a D–H treatment of a
mixture of charges, averaged over the ensemble. This analysis
makes more concrete the connection between dressed ion
theory (and the work in this paper) and ‘‘cluster’’ expressions
for the Debye length, as used in simulation studies.20

2.4 Alternative expression for v̂(0)

We earlier obtained the following expression for the individual
ion excess chemical potential (beyond the ideal value) of the
bulk electrolyte,

mexi nbð Þ ¼
dFex

dni
nb½ � (28)

We now consider increasing the bulk density of just the j
species by an increment dnj, while leaving the i species at
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density nb. This gives the following

bmexi nj ¼ nb þ bdnj
� 	

¼ mexi nbð Þ � dnj

ð
c
ð0Þ
ij r� r0j jð Þdr0 þ lBdnjzjzi

ð
r� r0j j�1dr0

(29)

where we have used

b
d2Fex

dni r1ð Þdnj r2ð Þ
nb½ � ¼ �cð0Þij r1 � r2j jð Þ (30)

In eqn (29), we have accounted for the fact that we need to
use the full direct correlation function to calculate the change
in the excess chemical potential, as the system is no longer
electro-neutral: hence the presence of the last term on the RHS
of eqn (29). In fact, this term becomes infinite in the thermo-
dynamic limit. We can think of this term as being equivalent to
the interaction the i type ions with a uniform background of
density, dnj, consisting of ions of type j. Subtracting this
contribution from both sides of eqn (29), rearranging terms
and letting dnj - 0, we can define the following finite partial
derivative,

b
@mexi nb; nj

� 	
@nj






nj¼nb
¼ lim

dnj!0
b
mexi nb þ dnj
� 	

� mexi nbð Þ
dnj

� lBzjzi

ð
r� r0j j�1dr0

(31)

The function mex
i (nb; nj) which appears in eqn (31) can be

generally defined as the excess chemical potential of species i
in a bulk electrolyte where the average density nj may be
different to that of species i, given by ni (=nb). To avoid
divergence, the system has an implicit neutralizing uniform
background of type i ions with density nj� nb. From eqn (29) we
then obtain,

b
@mexi nb; nj

� 	
@nj






nj¼nb

¼ �
ð
c
ð0Þ
ij r� r0j jð Þdr0

¼ � ĉ
ð0Þ
ij ð0Þ

(32)

which finally gives,

ŵð0Þ�1 ¼ 1þ bnb
@mexþ
@nþ
� @m

ex
þ

@n�

� �
(33)

Under-screening thus corresponds to ŵ(0) o 1, while the
opposite is true for over-screening. This provides us with a
thermodynamic criterion which is intimately related to the
structure within the fluid.

2.5 Simulation details

In the systems we investigate below, we assume that the long-
ranged part of the charge density profile, described above as the
response to a small test charge, q0, can be investigated by
considering the appropriate combination of correlation func-
tions in a bulk electrolyte. That is, a given ion in the bulk
electrolyte effectively acts as a perturbing ‘‘external’’ charge to
the rest of the electrolyte. In order to apply our analysis we
required charge–charge correlations in the bulk solution to

decay monotonically according to a Yukawa form. This was
indeed confirmed by direct observation. The characteristic
decay length of these correlations can then be related to the
value of ŵ(0) (from eqn (33)) for that bulk electrolyte.

We chose to use canonical ensemble simulations and a
modified version of a simulation method to calculate indivi-
dual ion chemical potentials. The latter was suggested by Sloth
and Sörensen,32 as an alternative to an earlier proposition
by Svensson and Woodward.33 Sloth and Sörensen described
an ensemble in which uniform neutralising background
charge densities were employed to treat bulk simulations of
electrolytes in a grand canonical ensemble that allowed non-
electroneutral fluctuations of explicit ions. Thus it is directly
applicable to the system described above for obtaining the
excess chemical potential derivatives that appear in eqn (33).
A neutralising background charge can also be applied to
calculate excess chemical potentials when a virtual ion is either
inserted in the system (Widom method34) or a virtual attempt
is made to remove an ion (the inverse Widom method35).
In principle either of these methods allows us to evaluate
individual ion chemical potentials mex

+ at a given electrolyte
concentration. However, it is well-known that the inverse
Widom method is unable to directly account for excluded
volume contributions to the chemical potential36 which, for
our system, corresponds to the free energy associated with
inserting a hard sphere into the electrolyte. Fortunately, our
expressions require us to calculate differences in excess
chemical potential upon changes in anion or cation densities
and this will lead to cancellation of the excluded volume
contributions in the RPM. It turns out that the inverse Widom
method is computationally much more efficient than the
Widom approach. This is illustrated in the ESI.† More specifi-
cally, we are required to calculate mex

+ upon varying the anion or
cation densities, n� and n+, respectively, by increasing the
number of specific ions to change their concentration from
their bulk value while adding a uniform background charge to
maintain electroneutrality. The excess chemical potentials
determined for these systems will be denoted as mex

+ (c;n+) and
mex

+ (c;n�), where c is the simulated bulk electrolyte concen-
tration. The values for ni in the simulations ranged from
slightly above to slightly below c. This will allow us to numeri-
cally obtain the chemical potential derivatives in the expression
for ŵ(0) in eqn (33).

To summarise our strategy to obtain ŵ(0) is:
	 perform separate canonical simulations and use inverse

(important from a statistical perspective) Widom to estimate
mex

+ , at the target density but also at a small excess of cations,
as well as a small excess of anions, in each case a uniform
background charge is added to maintain electroneutrality.
	 plot mex

+ (c;n+) and mex
+ (c;n�), and perform a linear regression

to the data. A higher order polynomial is an option but a linear
fit was sufficient for our investigated cases.
	 use the slopes of the linear fits to estimate ŵ(0), and thus

the electrostatic screening length, leff = ŵ(0)lD.
Eqn (33) indicates that the screening length is ultimately

determined by the short-ranged functions, c(0)
ij (r). This suggests
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that modest sized simulations may only be required in order to
obtain accurate estimates for the screening length, using the
(inverse) Widom approach. This contrasts with conventional
approaches which attempt to fit the long-ranged tail of correla-
tion functions. These generally involve large simulated systems
in order to obtain reasonably accurate representations of the
tail contributions, especially at high electrolyte concentrations
where short-ranged oscillations can be significant. This not-
withstanding, in order to verify the accuracy of the (inverse)
Widom approach it was necessary for us to simulate large
systems in order to faithfully obtain the decay of correlation
functions at long range. That is, the decay length, leff, deter-
mined via the (inverse) Widom method were compared to those
obtained by directly fitting to the long-ranged tail of Dg(r) �
g+�(r) � (g++(r) + g��(r))/2,‡ which measures the charge–charge
correlations in the bulk electrolyte. Here gij(r) is the radial
distribution function between ion species i and j. In the
systems we studied Dg(r) seemed to decay asymptotically
according to a Yukawa potential, which allowed us to establish
an independent measure of the decay length by numerical
fitting. Note that we perform our fits to Dg(r), and not |Dg(r)|.
We present some arguments favouring our choice in the ESI.†
In order to verify that much smaller simulations could have
been used for the (inverse) Widom approach, we also per-
formed simulations with fewer ion pairs for both high and
low electrolyte concentrations and compared the results of the
with those of the larger systems.

All simulations were performed using the Metropolis Monte
Carlo method, in a cubic simulation box with a side length L.
Standard cubic periodic boundary conditions were applied
along each Cartesian coordinate axis. In all cases investigated,
we have set the temperature to 298 K. With a low-dielectric
solvent, we have combined standard single ion attempted moves
with attempted cluster moves, in order to improve statistics
and convergence. We managed the long-ranged Coulomb inter-
actions using four different methods: (a) minimum image (MI)
truncation; (b) Ewald sums with cubic truncation in real (MI) as
well as reciprocal space; (c) Ewald sums with spherical truncation
in real (with truncation radius equal to L/2) as well as reciprocal
space, and (d) the so-called ‘‘SP3’’ method, suggested by Fanour-
gakis et al.37 The Ewald splitting parameter was set to 6.3/L, and
with cubic truncation of reciprocal space, 1800 reciprocal vectors
were used. As we shall demonstrate, all methods produce iden-
tical results, within statistical errors. With the Widom approach
(from now on we will drop the term inverse, for convenience), we
always utilised MI truncation.

We have focused on two different RPM electrolyte systems.
One with a low-dielectric solvent, Er ¼ 11:04; and the other
using a high-dielectric constant, Er ¼ 78:3; mimicking an aqu-
eous solvent. In the former case, we considered parameters
similar to some of those recently investigated by Härtel et al.20

Only a single ion diameter, d = 3 Å, was used. For the high-
dielectric case, we explored two different choices for the
ion diameter: d = 3 Å, 4 Å. We investigated a range of

concentrations for each system. For the low-dielectric RPM we
used c = 50 mM, 100 mM, 200 mM and 400 mM, and for the
other c = 100 mM, 400 mM, 1 M, 1.5 M and 2 M. Radial
distribution functions were sampled using a fine-grained
histogram (with bin widths dr = 0.05 Å or 0.1 Å) in order to
better resolve short-ranged structure. However, since this work
focuses on the long-ranged tails, we have reduced the noise in
the asymptotic regime by performing running averages over 3 Å
(i.e. approximately one ionic diameter). While the radial dis-
tribution functions, presented here have been averaged in this
manner, the raw data (without averaging) is available upon
request.

We have also made a comparison of our MC results with
calculations using integral equation theory. Here, we utilised a
renormalised Ornstein–Zernike (OZ) approach using the hyper-
netted chain (HNC) closure, which is suitable for ionic fluids.38

A brief introduction is available in the ESI.† A direct iteration
method via Picard mixing was used, with real space discretisa-
tion of 218 points at a spacing interval of 0.005 Å, complying
with the requirement of vanishing zeroth and second order
moments.39,40 Convergence was achieved when the root-mean-
squared difference between consecutive iterations fell below
10�6. The effective screening lengths were here extracted by
fitting to the calculated ln[rDg(r)] functions.

3 Results and discussion

We begin by highlighting a qualitative difference between the
structure of the long-ranged tails of g++(r) (equivalent to g��(r))
and g+�(r), for the high- and low-dielectric RPM systems. In
Fig. 1a we show the correlation functions in the high-dielectric
model at a concentration of 400 mM. For g++(r), the tail
approaches its limiting value (unity) from below, while for
g+�(r) the approach is from above. This is consistent with
simple mean-field treatments wherein the correlation functions
are monotonic. Compare this with results for the low-dielectric
model at a significantly lower concentration of 100 mM. In this
case, both like–like and unlike correlation functions approach
unity from above and, furthermore, are surprisingly similar, see
Fig. 1b. This is obviously a consequence of ion correlations
and will thus not be captured by mean-field treatments. Indeed,
this phenomenon does suggest the formation of ion clusters.
Clusters will contain both positive and negative ions, and will
likely be close to electro-neutral. This means that, as far as
spatial correlations are concerned, anions and cations will
behave similarly at long range. Thus, both like–like and unlike
correlation functions will have similar tails. Some slight differ-
ences may occur due to contributions to the correlations
between unclustered ions, which is why (as we will see later)
we can discern a long-range tail of Dg(r), defined above. As the
density in the electrolyte increases, it is possible that the long-
ranged behaviour of Dg(r) will actually have a shorter decay
than that of density–density correlations (g++(r) + g+�(r)). In this
regime we expect that the asymptotic tails of g++(r) and g+�(r)
will actually coalesce. That is, the solution is essentially‡ with gab(r) denoting the a � b radial distribution function, a,b A {+,-}.
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dominated by neutral clusters. This does not seem to be the
case in the examples studied below.

3.1 Low dielectric model

We will now focus on the results for the RPM with a low-
dielectric solvent. Here we anticipate significant influence of
ion correlations and a noticeable degree of ion clustering. It is
worth noting that, for simulation volumes which are large
enough to capture the tail regions of Dg(r), all four methods
we used to manage long-ranged electrostatics produced the same
results. This is illustrated in Fig. 2 for the case, c = 100 mM.
We refrain from comparing the noise, since the data were
obtained from simulations of different lengths. While we cannot
address computational efficiency from this graph alone, the SP3
method certainly offers advantages due to its simplicity. In any

case, this comparison clearly demonstrates that, for system sizes
we typically used, there is considerable freedom regarding the
choice of method for dealing with finite-size effects.

In Fig. 3, we present excess individual chemical potentials
using two different system sizes: N = 5000, and N = 2800, with a
salt concentration of 100 mM. Here N represents the number of
cations, or anions. We note almost perfect linear dependence of
mex

+ (c;n+) as well as mex
+ (c;n�), with ni and (importantly) there are

no significant size effects. We also tested standard (insertion)
Widom, the results of which are not shown. However, those
results were subject to considerably more noise, so the inverse
method is definitively preferable. Extracting the slopes via
linear regression fits to mex

+ (c;n+) and mex
+ (c;n�), we calculated

the electrostatic screening length leff to be 21.9 Å, using
eqn (33) and (24). This is about six times larger than the Debye
length indicating pronounced under-screening. We compared
this result with a fit to the tail of Dg(r). It should be noted that

Fig. 1 Long-range trends of g++(r) and g+�(r), in a solvent with a high (a)
and low (b) dielectric constant. In both cases, d = 3 Å.

Fig. 2 Structural comparisons, using various approaches for the Coulomb
interactions.

Fig. 3 Inverse Widom results, at c = 100 mM, in a low-dielectric solvent
Er � 11ð Þ.
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the simulation lengths required for obtaining accurate asymp-
totic behaviour of Dg(r) proved much more tedious, even if we
account for the extra simulations required to obtain mex

+ (c;ni) for
ni on either side of c. In Fig. 4, we have tested two different
methods to obtain the decay length from the long-ranged
fitting. In Fig. 4a, we have performed linear regression to fit
ln(rDg), which gave a slope of leff E 22.0 Å. If we instead import
the Widom screening length (21.9 Å), and fit the amplitude A
of Ae�keffr/r to the tail part of Dg, we obtain the blue curve
in Fig. 4b. Both methods indicate an excellent agreement.
Curiously, the screening length measured by Härtel et al. for
an identical model was, as far as we can tell, shorter; around
15 Å. We have no explanation for this discrepancy.

The agreement between the Widom method and the fitted
values suggest that the theoretical approximations inherent in
eqn (33) are vindicated. From our theoretical discussions it is
then justifiable to attribute the substantial under-screening
seen here to ion clustering. That is, it is likely that most clusters
will not be highly charged, which would cause the electro-
static screening as calculated in eqn (28) to be significantly

diminished. Indeed, the presence of clusters is confirmed by
the simulation snapshot shown in Fig. 5. Consistent with this,
from Fig. 3, we note that mex

+ (c;n+) increases with n+ while
mex

+ (c;n�) decreases with n�. This can be explained as follows.
Increasing the number of cations in a system that tends to
cluster will mean some of those cations will join the clusters,
pushing the average cluster charge toward more positive values.
Due to the relatively close proximity of positive ions in a cluster
(stabilised by the presence of anions) the additional electro-
static repulsion within clusters cannot be countered effectively
by a uniform background of neutralizing negative charge.
Thus, mex

+ (c;n+) will generally increase with n+. The opposite is
true when anions are introduced. These excess anions will
likely join clusters and lower the energy of cations there and
this effect will only be partially countered by the neutralizing
positive background density. We would not necessarily expect
this to be the case for the high-dielectric case. Here, the
depletion hole manifest in g++(r) (shown in Fig. 1a) suggests
that it may be quite plausible that mex

+ (c;n+) will decrease with
increasing n+. That is, the small number of additional cations
won’t affect the depletion hole, while the ubiquitous back-
ground will dominate the energy change, due to its ability
to penetrate the depletion hole. On the other hand, whether
mex

+ (c;n�) increases or decreases with n�, depends upon the
degree of association between unlike charged ions (ion pair-
ing). As we shall see below, all the high-dielectric systems
investigated actually display a small degree of over-screening.
At an even lower concentration of 50 mM, see Fig. 6a and b, we
found an even greater degree of under-screening. The esti-
mated screening length was about 6.6 times larger than the
Debye length. Again there is excellent agreement between
the Widom method and the direct fitting to Dg(r), see Fig. 6b.

Fig. 4 Two different ways to fit the tail of Dg to a Yukawa function, at
100 mM salt in a low-dielectric solvent. (a) Linear regression fit to ln(r*Dg).
(b) Amplitude (A) fit of Ae�keffr/r to Dg.

Fig. 5 Simulation snapshot, at c = 100 mM, in a low-dielectric solvent,
Er � 11. Cations and anions are indicated by blue and red spheres. This is a
‘‘zoomed-in’’ view at a central part of the simulation box, illustrating some
typical equilibrium cluster structures, under these conditions. The image
was constructed using the VMD software (developed with NIH support by
the Theoretical and Computational Biophysics group at the Beckman
Institute, University at Illinois at Urbana-Champaign).41
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This indicates similar clustering is at play even at this reduced
concentration. Similar agreement is found at c = 400 mM, as
shown in Fig. 7, though the degree of under-screening is more
modest, with leff E 4.5lD.

Fig. 8 summarises the screening lengths obtained by us for
the low-dielectric system. Note that this graph contains data at
c = 200 mM, but given the results for concentrations on either
side of this value, we did not proceed with the computationally
expensive fit to Dg(r). While under-screening is demonstrated
here, the change in the screening length with salt concentration
is not consistent with the anomalous under-screening seen
in SFA/SFB measurements. Those experiments indicate the
screening length increases directly with salt concentration,
whereas in the systems investigated here the screening length
decreases with concentration (just not as quickly as the Debye
length does). In fact, the approximately linear relation shown
in Fig. 8, suggest the following dependence leff B gkD

�1 � d,
where gB 6.5 and dB 1.

3.2 High-dielectric model

With a larger dielectric constant, the simulations become
computationally cheaper and cluster moves are no longer

required. In Fig. 9 we plot the individual excess chemical
potentials obtained via the Widom method for c = 400 mM
and d = 3 Å. As anticipated above, for this low-coupled system
mex

+ (c;n+) decreases with n+, while the variation of mex
+ (c;n�) with

n� is weak. The end result is overscreening, as ŵ(0) 4 1.
In Fig. 10 we see that the Widom method and the fits to

Dg(r), at c = 400 mM, agree very well for two different ion
diameters d = 3 Å (a), and d = 4 Å. Both systems display a
modest overscreening which increases with the ion diameter.
The larger the ion diameter, the greater is the decrease of
mex

+ (c;n+) with n+ due to the neutralizing background penetrating
a larger core. On the other hand, the decrease of mex

+ (c;n�) with
n� is diminished. Both these effects serve to increase ŵ(0)
further. From a physical point of view, the larger core helps
to keep like ions apart and diminish ion pairing. This acts to
lower the free energy cost of local charge fluctuations and
decreases the characteristic length-scale over which they occur.
In Fig. 11a, we see that the degree of overscreening also
increases with salt concentration and as expected this increase
is more pronounced with larger ions. Predictably, the results

Fig. 6 Estimating the electrostatic screening length in a low-dielectric
solvent Er � 11ð Þ; at a concentration c = 50 mM. (a) Widom results.
(b) Amplitude (A) fit of Ae�keffr/r to the tail part of Dg, using the keff

established by Widom.
Fig. 7 Estimating the electrostatic screening length in a low-dielectric
solvent Er � 11ð Þ; at a concentration c = 400 mM. (a) Widom results. (b)
Amplitude (A) fit of Ae�keffr/r to the tail part of Dg, using the keff established
by Widom.
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converge to the Debye screening length at low salt concentra-
tions. Here we also show the results from our OZ-HNC which
are essentially in quantitative agreement with the simulation
results.

It is possible to use D–H theory to estimate the excess
chemical potentials, mex

+ (c;n+) and mex
+ (c;n�) as follows. As already

described, we require the change in chemical potential upon
incrementing the density of ‘‘real’’ ions, of a particular type
with an accompanying neutralising background. The effect of
this on, say, a chosen cation will be as follows. The added real
ions will be excluded by the hard core of the cation, though they
will still respond to the cationic charge. On the other hand, the
neutralising background will able to penetrate the excluded
volume core of the cation but remain otherwise non-responsive.
If we were to assume that the real ions together with the part of
the neutralising background outside the core cancel their

charge exactly, then the only change in the cation chemical
potential comes from the part of the background that pene-
trates the core. This will mean that mex

+ (c;n+) will be a decreasing
function of n+ and mex

+ (c;n�) will decrease with n�. This explains
over-screening and the role of the ionic radius, but the effect
will be over-estimated. The neglected contribution due to the
ions outside the core can be reintroduced (analytically) using
D–H theory. We simply need to calculate the potential con-
tribution due to the charge profile outside the core which is the
linear response to the background charge inside the core. This
allows us to eventually arrive at an analytical expression for the
over-screening effect,

kD=keff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
kD2d2 þ 1

3

kD3d3

1þ kDd

s
(34)

Fig. 8 The variation of the electrostatic screening length, 1/keff, with the
Debye length, 1/kD, in a low-dielectric solvent Er � 11ð Þ. Estimates of keff

were obtained by the Widom method.

Fig. 9 Widom results, at 400 mM and ‘‘aqueous’’ conditions Er ¼ 78:3ð Þ,
and d = 3 Å.

Fig. 10 Comparing linear regression fits to ln(r*Dg), with Widom predic-
tions of keff, in ‘‘aqueous’’ RPM:s at c = 400 mM, for two different ion
diameters: d = 3 Å (a), and d = 4 Å (b).
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This expression suggests that kD/keff will be a universal func-
tion of kDd. In Fig. 11b we see that this provides a reasonable
scaling of the computer simulation (as well as the OZ-HNC)
results and that our simple D–H expression from eqn (34) also
provides a reasonable estimate of the overall behaviour.

It is interesting to reflect that the agreement between the
Widom method and fitted correlation function tails suggests
that the cluster model is a reasonable one also for the high-
dielectric systems. If this is indeed the case, then over-
screening can be interpreted as the formation of like-
charged clusters, which will enhance electrostatic screening.
This can be interpreted as meaning that like-charged species
will tend to have a greater association (due to ion–ion corre-
lations) than is predicted by mean-field theory. While the
simulations do not indicate the presence of compact like-
charged clusters, even loose clustering in a system which is

dilute enough to be treated via mean-field theory will display
over-screening. While this picture is reasonable at low con-
centrations, it likely breaks down at higher concentrations,
as will the accuracy of the Widom method we employ here.
In fact, it is known that the high dielectric RPM system will
undergo a Kirkwood transition at high enough concentration,
which is outside of the thermodynamic regime to which the
method we describe here is applicable.20 We noted that with
increasing concentration, our plots of ln[rDg(r)] functions
begin to demonstrate extensive curvature, indicative of sys-
tems approaching the Kirkwood transition, thus increasing
the difficulty of fitting a linear function to extract the effective
screening lengths. This is exemplified in the ESI.† For con-
centrations above 1 M, OZ-HNC underestimates the Widom
method results.

Fig. 11 Electrostatic screening lengths, in an ‘‘aqueous’’ solvent, at various
salt concentrations, and for two different ion sizes. Comparisons between
data from the Widom method and OZ calculations. (a) The variation of keff/
kD with salt concentration. The dashed lines are splined fits. The OZ data,
which are based on tail fits, are subject to significant uncertainty at high
concentrations. (b) The variation of keff/kD with dkD. The dashed line shows
predictions by eqn (34).

Fig. 12 Comparing linear regression fits to ln(r*Dg), with Widom predic-
tions of keff, in ‘‘aqueous’’ RPM:s at c = 100 mM, d = 3 Å, and a low-
dielectric solvent Er � 11ð Þ; for various system sizes: 100, 625 and 5000 ion
pairs (N). The Widom approach (graph (b)) is compared with results from
fits to the tail of Dg(r) (graph (a)). As indicated, the fitted effective screening
lengths, obtained via regression (graph (a)), are 1/keff(N = 100) = 7.1/kD,
1/keff(N = 625) = 7.3/kD, and 1/keff(N = 5000) = 6.2/kD. The calculated
effective screening lengths, obtained with the Widom method (graph (b)),
are 1/keff(N = 100) = 6.10/kD, 1/keff(N = 625) = 6.04/kD, and 1/keff(N =
5000) = 6.08/kD, where the last digit is subject to statistical noise. (a) Tail
regression approach. (b) Widom approach.
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3.3 Accuracy of the Widom approach for small simulated
systems

As stated earlier, the Widom approach is based on an expres-
sion for the screening length in terms of short-ranged correla-
tion functions. Thus, while keff determines long-ranged
correlations, it is itself, largely independent of them. In order
to test this, we repeated our screening length calculations for
the low dielectric system at 100 mM using 5000, 625 and 100
ion pairs. Fig. 12(a) shows the result of fitting the tails of Dg(r).
We see that the measured decay lengths increases significantly
at smaller system sizes (though not monotonically). On the
other hand, the Widom calculations, Fig. 12(b), display essen-
tially no variation with system size. It is worth noting that,
while the absolute values of the chemical potentials, mex

+ (c;ni),
did vary with system size, their derivatives did not. That is, the
variation of these functions with respect to density is deter-
mined primarily by short-ranged correlations. We note that
similar results were obtained for even higher concentrations,
even at system sizes that were too small to discern a monotonic
tail in the correlation functions. That is the Widom approach
gave an accurate estimate of keff, for simulations which were
too small to properly fit the tail of Dg(r).

4 Conclusions

We have described a new Widom method for calculating electro-
static screening in systems which display Yukawa (monotonic)
decay of the charge–charge correlation functions. We have
established the connection between our approach and the
dressed ion theory of Kjellander and co-workers and also
elucidated the connection to a cluster model within a mean-
field setting. This latter interpretation is most obviously
suitable when the characteristic cluster size is small compared
to the electrostatic decay length, which can been established
by the agreement between the Widom method and direct fits
to the correlation function decay. Thus, our method strength-
ens the argument that clusters in highly-coupled systems are
responsible for anomalous under-screening. It also appears
that even for less-coupled systems, such as in the high-
dielectric RPM, loose clustering (between like charges) is also
a useful explanatory model, at least for low to moderate
electrolyte concentrations.

Alternatively, our method provides us with a direct thermo-
dynamic criterion for under- and over-screening, via eqn (33).

Specifically, the relative values of
@mex

0
þ

@nþ
and

@mex
0
þ

@n�
determines

whether the observed decay length is greater or less than the
Debye length. These individual chemical potential derivatives
are determined by the opposing effects of adding real charged
particles together with a neutralizing uniform background of
counter-charge. Ion correlations are important to explain these
contributions, both core exclusion (real particles exclude one
another, whereas the uniform background can penetrate into
particle cores) as well as short-ranged electrostatic correlations
(oppositely charged particles tend to cluster and like charges

repel). In the case of the high-dielectric RPM system the
dominance of core exclusion allowed us explain the effect of
concentration and ion size on the observed over-screening.

Finally, we need to point out that the systems we have
investigated here unfortunately do not corroborate the anom-
alous under-screening seen in experiments. Further theoretical
investigations will be required in order to confirm the veracity
of those measurements.
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