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Extensive reference set and refined computational
protocol for calculations of 57Fe Mössbauer
parameters†

Golokesh Santra, Frank Neese * and Dimitrios A. Pantazis *

Mössbauer spectroscopy is a powerful technique for probing the local electronic structure of iron

compounds, because it reports in an element-selective manner on both the oxidation state and

coordination environment of the Fe ion. Computational prediction of the two main Mössbauer

parameters, isomer shift (d) and quadrupole splitting (DEQ), has long been targeted by quantum chemical

studies, and useful protocols based on density functional theory have been proposed. Here we present

an extensive curated reference set of Fe compounds that is considerably larger and more diverse than

literature precedents. We make a distinction between low-temperature and high-temperature

experimental subgroups. This set is employed for optimizing a refined computational protocol utilizing

the scalar version of the exact 2-component (X2C) Hamiltonian with the finite nucleus approximation.

Attention is devoted to having an accurate and flexible all-electron basis set for Fe. We assess the

performance of several DFT methods that cover all representative families and rungs of functionals and

find that hybrid functionals with ca. 25–30% exact exchange offer the best accuracy for isomer shifts.

The work establishes a refined general protocol of wide applicability that achieves good performance for

the prediction of isomer shifts in a wider variety of systems than before, but the limitations of DFT

for quadrupole splittings are also highlighted. Finally, comparison of calculated values with high-

temperature experimental results shows that the use of an empirical correction factor is required to

account for the second-order Doppler shift and to achieve the same quality of correlation as with the

low-temperature data.

1. Introduction

After the discovery of the Mössbauer effect in 1958,1–3 Möss-
bauer spectroscopy has emerged as a powerful analytic tool in
solid state physics, chemistry, metallurgy, biological- and geo-
sciences as well as in industrial and materials science applica-
tions. This spectroscopic technique is based on the phenom-
enon of recoilless resonant absorption of gamma-ray photons
by an atomic nucleus and it can successfully probe minute
changes in the nuclear energy levels originating from hyperfine
interactions of the active center with surrounding electrons.
Over the years, the Mössbauer effect has been observed for
nearly 90 g-ray transitions in 72 isotopes of 42 different
elements.4 However, 57Fe Mössbauer spectroscopy is the most
common due to the importance of iron in homogeneous and
heterogeneous catalysis as well as the abundance of different

spin and oxidation states of this element in biologically rele-
vant systems.5–9

The two most important parameters encoded in a Möss-
bauer spectrum are the isomer shift (d) and the quadrupole
splitting (DEQ). The isomer shift of a metal center is directly
related to the electron density at the nucleus, while DEQ is
proportional to the electric field gradient (EFG), which origi-
nates from a nonsymmetrical distribution of electrons in the
valence shell as well as charges on the neighboring ligands.

The isomer shift of 57Fe measures the shift in the energy of
the g-ray absorption relative to a standard, usually iron foil. The
isomer shift is sensitive to the electron density at the nucleus,
and indirectly probes changes in iron–ligand bond lengths,
covalency and nature of its bonds, and shielding due to the 3d
orbital occupation pattern. As a result, it can successfully probe
oxidation and spin states, and the coordination environment of
Fe. This shift between an absorber (A) and a source (S) comes
from the difference in the electrostatic interactions between
electronic and nuclear charge distributions, which originates
from the difference in their electron densities as well as
the change in the nuclear radius upon gamma transition.
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Considering the nucleus to be a uniformly charged sphere, the
mathematical expression for the Mössbauer isomer shift is

d = a(�rA
e � �rS

e) (1)

where �re denotes the ‘‘effective’’ electron density, i.e., the
weighted average of the electron density within the finite
volume the nucleus; a is the isomer shift ‘‘calibration constant’’
and can be expressed with the following form

a ¼ 4pcZ
5Eg

R0
2 DR0

R0

� �
(2)

where c, Eg, R0, and Z are the speed of light, energy of the
gamma quantum, radius of the nucleus, and the nuclear
charge, respectively. The DR0/R0 ratio in eqn (2) describes
the relative change of the nuclear radius upon excitation.
For a specific Mössbauer isotope, with the exception of �rA

e

all terms in eqn (1) are constant. In the standard computa-
tional approach, the ‘‘effective’’ electron density is usually
approximated by the contact density, r(0). Although for lighter
elements like 57Fe this approximation produces negligi-
ble error, for heavier nuclei this error is nontrivial.10

Considering this approximation, eqn (1) can be written in a
simple form as

d = a[r(0) � C] + b (3)

where a and b are the ‘‘fitting’’ or ‘‘correlation’’ constants,
which can be determined from a linear fit of the computed r(0)
vs. experimental isomer shifts (dexp) for a set of iron complexes.
These fitting constants contain not only nuclear information,
but also cover for the deficiencies of the quantum-chemical
treatment. Hence, the fitting constant ‘‘a’’ is different from the
calibration constant a defined in eqn (1). The constant, C is
introduced only for a convenient scaling of the very large values
of contact densities. The success of such ansatz to predict good
correlation between theory and experiment relies to some
extent on error cancellation11 and suffers from the fact that
each new combination of quantum chemical protocol would
require new correlation constants. We should note that there
is a physically ‘‘correct’’ slope of the correlation line, with
a = �0.31 � 0.04.12

Over the years, linear regression analysis has been exten-
sively applied for the calculation of isomer shifts using semi-
empirical, Hartree–Fock (HF), density functional theory (DFT),
and wave function based ab initio methods like the domain
based local pair-natural orbital coupled-cluster theory (DLPNO-
CCSD).11,13–34 All these studies have demonstrated good corre-
lation between theory and experiment. Despite its simplicity,
this approach is fairly reliable and efficient and is known to
predict isomer shifts with an accuracy of up to B0.1 mm s�1.27

Accurate computation of the contact density is challenging and
depends on factors like the choice of the quantum chemical
method, the basis set, and the proper treatment of relativistic
effects. An ideal basis set which can adequately describe
the contact density of Fe has to be sufficiently large in the
region where a cusp in the electron density will occur. The
known nonrelativistic HF limit for r(0) is B11 903.987 a.u.�3,

whereas with a good basis set one can only obtain up to
11 820 a.u.�3.16,19 Although in terms of absolute contact density
this error is negligible, compared to the variation of the
electron density over the chemical range (B10 a.u.�3) it is
nontrivial.

The relativistic effects on the electron density at the nucleus
are large for iron, increasing r(0) by a factor of 1.3 compared to
the nonrelativistic electron density of 57Fe.17,19 On the other
hand, Saue and co-workers have shown that for the calcula-
tion of Mössbauer isomer shifts spin–orbit coupling can be
safely ignored while using the eXact 2-Component (X2C)
Hamiltonian35–38 and a finite nucleus model,39 therefore the
consideration of scalar relativistic effects is sufficient.40 As
already demonstrated,11 the contributions from the core 1s
and 2s orbitals remain nearly constant to the absolute contact
density at the iron nucleus. The major contribution to the
variation of the contact density due to its electronic configu-
ration and ligand environment arise from the valence and
subvalence regions. Hence, these inner valence and outer
valence orbitals of iron matter the most for obtaining a correct
calibration.11,19

The other important parameter in a Mössbauer spectrum is
the quadrupole splitting (DEQ), which arises from the inter-
action of the nuclear quadrupole moment of the excited state
with the EFG at the nucleus. Quadrupole splittings can also be
used as a sensitive probe for the coordination environment of
iron centers. The quadrupole splitting is obtained from the
EFGs using the expression

DEQ ¼
1

2
eQVzz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

3

Vyy � Vxx

�� ��
Vzz

� �2
s

(4)

where e is the elementary charge and Q denotes the nuclear
quadrupole moment (in barn, b, where 1 barn = 10�28 m2), and
Vxx, Vyy, and Vzz indicate the components of the EFG tensor in
the principal axis system {x, y, z}. Although DFT has become the
workhorse for the prediction of isomer shifts with reasonable
success, the predictions of quadrupole splittings are often
associated with larger errors. This is presumably because of
the inability of such calculations to represent the finer details
of the asymmetry in electron density.

Another important factor is the absence of an accurate value
of the 57Fe nuclear quadrupole moment (NQM). As the NQM is
impossible to determine experimentally, the only possible way
to obtain those values is via linear regression analysis using the
experimental DEQ values and the theoretical EFGs. Therefore, a
wide range of values between 0.1 to 0.3b can be found in the
literature. In the present study, we have used Q = 0.160b for the
calculation of quadrupole splittings.17

Over the years, several benchmark studies on 57Fe Möss-
bauer parameters have been performed by employing scalar
relativistic Hamiltonians like ZORA (zero-order regular
approximation),41 DKH2 (second-order Douglas–Kroll–Hess),42–48

and X2C (exact two-component).18,19,21,22,40,49 Although changing
the Hamiltonian had little effect on the overall correlation of
experimental d and calculated contact densities of iron,18,22
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a detailed evaluation of a variety of density functional methods
and basis sets with the scalar relativistic X2C Hamiltonian
against a large and diverse dataset is still absent. Another
potential constraint of previous studies is related to the set of
iron complexes considered for benchmarking quantum-
chemistry methods. These datasets are either composed of
limited number of compounds, a mixture of molecular and
solid-state systems, a specific type of ligand, or only a limited
number of spin and oxidation states of iron. The main objec-
tives of the present study are:

(a) To construct a complete database of Fe complexes with
well-established Mössbauer parameters, which is curated so
that it includes most of the known spin and oxidation state of
iron and is representative of the wide range of chemical types
encountered in iron coordination chemistry;

(b) To conduct a thorough benchmark study of basis sets
and DFT functionals against our new database in order to
develop a refined computational protocol based on the popular
X2C Hamiltonian.

2. Reference set

Starting from 155 iron-containing systems with one Fe center,
116 unique entries were sorted out depending on the nature
of ligands, spin and oxidation states of the Fe center, and
distribution of the experimental isomer shift (dexp) and quad-
rupole splitting (DEQ) values. Among these, 101 are molecular
iron complexes, where 80 experimental isomer shifts were
recorded at low temperature (4.2–80 K) and the remaining 21
were recorded at – or close to – room temperature. In the
following, we shall focus on the subset of 80 molecular iron-
complexes for which low-T dexp values are known. We call this
dataset MPMIC80 (Mössbauer Parameters of 80 Molecular Iron
Complexes). Among these complexes, dexp ranges from �0.72 to
1.11 mm s�1, and the absolute quadrupole splitting (|DEQ|)
values range from 0.0 to 4.25 mm s�1 (see Fig. 1). The
complexes in our dataset cover the known oxidation and spin
states of iron. For detailed information on spin, oxidation
states, dexp, |DEQ|, and corresponding references see Table S1
in the ESI.†

3. Methodology

All the calculations were carried out using a development
version of ORCA.50 All molecular iron complexes were optimized
at the gas-phase using the scalar relativistic X2C Hamiltonian,51

the TPSSh52,53 functional, the D3BJ dispersion corrections,54,55

and the x2c-TZVPall basis sets.56 During optimization, the Def-
Grid2 integration grid, TightSCF convergence criteria, RIJCOSX
approximation,57 and picture change effects58–61 were included.
Using two selected complexes, we validated that DefGrid2 is
already fully converged for optimizations with the above-
mentioned methodology (see Table S3, ESI†). For the scalar
relativistic calculations of Mössbauer parameters, we used

the x2c-TZVPPall56 basis set for the ligand atoms, we employed
first-order picture change effects and the finer DefGrid3 inte-
gration grids throughout.

In the present study the performance of 10 different basis
sets for iron is evaluated: CP(PPP),11 x2c-TZVPPall,56 x2c-
TZVPPall-s,62 aug-cc-pVTZ-J (or aVTZ-J),63 DKH-def2-TZVPP
(exponents from def2-TZVPP64 were recontracted for scalar-
relativistic DKH243–47,65 Hamiltonian), ANO-RCC-VTZP,66

s-decontracted x2c-TZVPPall, s-decontracted aug-cc-pVTZ-J,
s-decontracted aug-cc-pVTZ-J(-dfg), and aug-cc-pVTZ-Jmod.67

The last basis set was proposed by Gómez-Piñeiro et al. for
the calculations of Cu(II) core properties, where the aug-cc-
pVTZ-J was modified by decontracting the s functions and
removing the three innermost primitives.67 On the other hand,
the outermost d-, f- and g-primitives are removed from s-
decontracted aug-cc-pVTZ-J to obtain the s-decontracted aug-
cc-pVTZ-J(-dfg) basis set. For the ligand atoms, x2c-TZVPPall56

was used throughout. 15 different density functionals from
all five rungs of Jacob’s ladder68 were calibrated: SVWN5,69,70

BP86,71,72 PBE,73 BLYP,72,74 TPSS,53 PBE0,75 B1LYP,76

B3LYP,74,77,78 TPSSh,52,53 TPSS0,79 M06,80 LC-BLYP,81 CAM-
B3LYP,82 oB97X,83 and B2PLYP.84 For the PT2 part of the
double hybrid functionals, we correlated all core electrons
and employed both relaxed and unrelaxed densities. The ORCA
sample input files for the calculation of Mössbauer properties
and the modified basis sets are provided in the ESI.† In a
previous study, the accuracy of selected DFT functionals was
evaluated on a small set of 20 iron-containing compounds.18

The structures were optimized there using the TPSS functional
and def2-TZVP85 basis set. Following the same protocol
for purposes of comparison, the complexes of MPMIC80 were
also reoptimized and the nonrelativistic Mössbauer parameters

Fig. 1 Distribution of experimental isomer shifts dexp (mm s�1) and quad-
rupole splitting values |DEQ| (mm s�1) for different oxidation states of Fe
and total spin multiplicities (2S + 1) of the complexes present in the
MPMIC80 data set.
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were calculated by employing the B3LYP functional, CP(PPP)11

basis set for iron, and def2-TZVP64 for the ligand atoms.

4. Results and discussion
4.1. Isomer shifts (ISs) for the MPMIC80 set

First, to orient ourselves, linear regression analysis was performed
for the calculated nonrelativistic electron densities using the
originally proposed protocol18 against the experimental isomer
shifts of MPMIC80. The coefficient of determination (R2), a and b
values obtained from the linear fit were 0.927, �0.446, and 1.168,
respectively (see Fig. 2).

These results are worse than literature expectations,18,22

owing to the considerably expanded reference set of com-
pounds in the present study. The mean absolute error and
standard deviation of calculated isomer shift (dcal) with respect
to dexp are 0.07 and 0.09 mm s�1, respectively. Closer inspection
reveals that the calculated isomer shifts of all nine Fe(ii)
complexes with quintet spin multiplicity (2S + 1 = 5) deviate
significantly from the experimental data. This stresses the
necessity of reconsidering the linear correlation parameters
obtained from more restricted reference sets.

4.1.1 Basis set definition. Aiming to identify suitable basis
sets to obtain a good correlation between dexp and r(0), slope
of the linear fit close to the experimentally determined
‘‘a’’ value,12 and calculated contact density close to the four-
component fully relativistic HF electron density of Fe(II)86 we
evaluated the performance of ten different basis sets for iron
using the B3LYP functional, the Gaussian finite nucleus model
of Visscher and Dyall,87 and first-order picture change effects.
The values of different fitting parameters and coefficient of
determination (R2) obtained from the linear regression analy-
sis, mean absolute deviation, standard deviation, and maxi-
mum deviation of dcal from dexp are listed in Table 1. For the

results with the point nucleus model and picture change effect,
see Table S4 in the ESI.†

Our evaluation included first some standard basis sets. With
the default x2c-TZVPPall basis set the calculated r(0) values,
which are reflected in the very large value of C in eqn (3), are
significantly smaller than the fully relativistic electron density
15 070 a.u.�3.86 The coefficient of determination (R2) obtained
from linear regression analysis is very low and the value of ‘‘a’’
is far from the experimentally determined value (see Table 1).
As a result, the MAD of the calculated isomer shifts from the
experimental ones is also high (0.108 mm s�1). This is to be
expected because of the lack of enough tight s basis functions
in the x2c-TZVPPall basis set of Fe, which has been proven to be
critical to obtain correct r(0) values.11 For the same reason,
shifting from the default x2c-TZVPPall to Weigend’s segmented
contracted relativistic basis set for NMR shielding constants
(x2c-TZVPPall-s),62 which has no additional s-space flexibility,
does not result in any improvement.

The CP(PPP) basis set was originally proposed precisely for
the prediction of Mössbauer parameters, albeit in a non-
relativistic context.11 Nevertheless, we test it and is a clear
improvement also using the X2C Hamiltonian, underlining
the leading importance of core flexibility for these properties.
However, even though the calculated contact densities are
better than those obtained with x2c-TZVPPall, those are still
significantly smaller than 15 070 a.u.�3. Next, we test the aug-
cc-pVTZ-J basis set, which was optimized by Sauer and cow-
orkers for the calculation of electron paramagnetic resonance
(EPR) hyperfine coupling constants.63 Interestingly, we get a
good R2 value from the linear fit and the MAD is close to what
was obtained with CP(PPP). However, the calculated r(0) values
are very small and consequently the ‘‘a’’ value obtained from
linear fit significantly deviates from the experimental calibra-
tion constant a = �0.31 � 0.04. The probable reason behind
this unusually small contact densities could be the presence of
contracted s functions in aug-cc-pVTZ-J, which restricts the core
flexibility of Fe. Due to the lack of sufficiently tight s-primitives,
the r(0) values calculated using the relativistically contracted
ANO-family basis set for iron, ANO-RCC-VTZP,66 has very poor
linear correlation (R2 = 0.414) with the experimental isomer
shifts. As a result, the fitted parameter ‘‘a’’ deviates signifi-
cantly from the experimentally determined value (see Table 1).

Another standard basis set we have tested for Fe is DKH-
def2-TZVPP, where the exponents of def2-TZVPP64 were recon-
tracted for the DKH2 Hamiltonian with a looser contraction.43–47,65

Although the calculated r(0) values are still not close to the fully
relativistic density, the R2 and ‘‘a’’ obtained from the linear
regression analysis are considerably improved. Additionally, the
mean absolute error and standard deviation of dcal relative to dexp

are significantly better than those obtained with the x2c-TZVPPall
basis set. The importance of flexibility in the s-functions is high-
lighted when we look at the correlation between the calculated r(0)
and experimental isomer shifts with the s-decontracted x2c-
TZVPPall, which is clearly better than standard x2c-TZVPPall.
By using s-decontracted aug-cc-pVTZ-J the calculated contact den-
sities of the iron centre are very close to the fully relativistic value

Fig. 2 Linear fitting of the nonrelativistic contact densities relative to the
experimental isomer shifts of the 80 complexes in MPMIC80. The contact
densities are obtained with the TPSS0 functional and the CP(PPP) basis
set for Fe.
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15 070 a.u.�3. Moreover, we also achieve a very good correlation
between r(0) and dexp (R2 = 0.958).

Finally, we test two more modifications of aug-cc-pVTZ-J: (a)
fully decontracted s functions and removal of the three inner-
most s-primitives (i.e., aug-cc-pVTZ-Jmod),67 (b) fully decon-
tracted s-functions and removal of the outermost d-, f-, and
g-primitives (denoted s-decontracted aug-cc-pVTZ-J(-dfg)). The
first one was recommended for the prediction of Cu(II) hyper-
fine coupling constants in a scalar relativistic approach,67

whereas the second modification might be useful for large
Fe-complexes where linear dependencies in the basis set
may arise if diffuse functions are included. These modified
basis sets yield effectively indistinguishable results. However,
the calculated r(0) values with s-decontracted aug-cc-
pVTZ-J(-dfg) are closer to the fully relativistic electron density
(i.e., 15 070 a.u.�3) than those obtained with aug-cc-pVTZ-Jmod
(see Table 1). With s-decontracted aug-cc-pVTZ-J and its two
modifications, the mean absolute errors and the R2 and ‘‘a’’
values obtained from the linear regression analysis are the
same. We note that using a set of 12 iron clusters, Kurian
and Filatov also found that the computed isomer shift values
are only marginally affected by the addition (or subtraction) of
the tightest primitive functions to a sizable, uncontracted basis
set.88 Unlike that study, however, here we find that the perfor-
mance of contracted basis sets is noticeably worse compared to
the large decontracted ones for the MPMIC80 set.

For each basis set, the mean absolute error of the isomer
shifts calculated using the point nucleus model is slightly
higher than those obtained with the Gaussian finite nucleus
model (see Table 1 and Table S4 in the ESI†). Except for the aug-
cc-pVTZ-J and its modifications, the linear fitting parameters of
other basis sets are quite similar regardless of whether a point
nucleus or finite nucleus model is used.

Our conclusion regarding basis set selection for the calcula-
tion of the Mössbauer isomer shifts is that within the X2C
approach with the Gaussian finite nucleus model a basis set
with very tight s functions is necessary. Among the standard

and non-standard basis sets evaluated here, s-decontracted
versions of aug-cc-pVTZ-J and aug-cc-pVTZ-J(-dfg) are equally
good and are among the best choices. For the next step,
we benchmark different DFT methods in combination with
s-decontracted aug-cc-pVTZ-J, CP(PPP), and DKH-def2-TZVPP.

4.1.2. Comparison of DFT methods. For each of the three
selected basis sets, fifteen different density functional approx-
imations are tested. The parameters obtained from the linear
regression analysis, coefficient of determination (R2), and error
statistics of dcal with respect to dexp are listed in Table 2. For the
calibration parameters and error statistics obtained using the
s-decontracted aug-cc-pVTZ-J(-dfg) basis set for Fe, see Table S5
in ESI.†

Unlike the different basis sets, using different density func-
tionals does not have much influence on the calculated contact
densities. Based on the R2 and mean absolute errors, climbing
the rungs of ‘‘Jacob’s ladder’’ improves accuracy gradually from
the 1st to the 4th rung. As in earlier findings, hybrid functionals
demonstrate a significant improvement over the performance
of pure GGA and meta-GGA approaches.26,27,33,88,89 The inferior
correlations obtained with pure density functionals can be
attributed to their incorrect behavior near the nucleus.90 The
only exception is the extensively parametrized hybrid func-
tional M06, which offers accuracy similar to the pure meta-
GGA functionals. Among the hybrid functionals, range separa-
tion offers no benefit over the global hybrid variants, and it
does more harm than good when there is no short-range HF-
exchange involved (e.g., in LC-BLYP). Contrary to what Römelt
et al.18 found with the scalar-relativistic ZORA Hamiltonian41,91,92

on a much smaller dataset, the performance of the double hybrid
functional for the extensive MPMIC80 set is inferior to standard
hybrids like PBE0 and TPSS0.

For the TPSS exchange- and correlation-based hybrid func-
tionals, increasing the percentage of exact exchange from 10%
to 25% improves its accuracy. Therefore the question may arise,
what is the optimum percentage of exact exchange for predict-
ing the isomer shifts in MPMIC80? To investigate this, we chose

Table 1 Calibration constants and statistical parameters obtained from the linear fitting of eqn (3) using ten different basis sets for iron and the B3LYP
functionalab

Basis set for Fe a b C R2 MADc (mm s�1) Max. dev.d (mm s�1) St. dev.e (mm s�1)

CP(PPP) �0.30 0.9704 14 362 0.956 0.054 0.191 0.070
x2c-TZVPPall �0.22 1.0294 13 651 0.820 0.108 0.346 0.142
x2c-TZVPPall-s �0.22 0.8917 13 652 0.806 0.113 0.356 0.147
aug-cc-pVTZ-J �0.41 1.3456 10 511 0.956 0.054 0.181 0.070
ANO-RCC-VTZP �0.18 0.8903 15 631 0.414 0.184 0.752 0.255
DKH-def2-TZVPP �0.30 1.0315 14 076 0.956 0.055 0.190 0.070
s-decontracted x2c-TZVPPall �0.31 1.1020 13 688 0.955 0.054 0.197 0.071
s-decontracted aug-cc-pVTZ-J �0.29 1.1073 14 930 0.958 0.053 0.180 0.069
s-decontracted aug-cc-pVTZ-J (-dfg) �0.29 1.1051 14 930 0.958 0.053 0.181 0.069
aug-cc-pVTZ-Jmod67 �0.29 1.1015 14 804 0.958 0.053 0.180 0.069

Exp.12 �0.31 � 0.04

a With first-order picture change effect and finite nucleus model. For the results obtained with the point nucleus model and picture change effect,
see Table S4 in the ESI. b a and b are the fitting coefficients obtained from the linear fit of eqn (3). C is a constant, which is very close to the
calculated r(0) value. The units of a, b, and C are a.u.3 mm s�1, mm s�1, and a.u.�3, respectively. R2 is the coefficient of determination from the
linear fit. c Mean absolute deviations of the calculated ISs with respect to the experimental ISs, where the former ones are obtained by using
eqn (3). d Maximum deviation of the calculated ISs from the experimental ISs. e Standard deviation of the calculated ISs.
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the BLYP and TPSS functionals and their hybrid counterparts
with varying percentage of exact (Hartree–Fock, HF) exchange
(i.e., %HFx) while employing the s-decontracted aug-cc-pVTZ-J
basis set for iron. Polynomial fitting of MADs with respect to
the %HFx suggest minima near 30% for the BLYP-based and
near 25% for the TPSS-based functionals (see Fig. 3 and Table
S6 in the ESI†). The MAD gap between the BLYP- and TPSS-
based functionals decreases with the increase of exact
exchange. We obtained the lowest mean absolute error with
TPSS0 (25% HFx) among all functionals, and it starts to
increase rapidly with higher percentage of exact exchange.
For the present dataset the fitting parameter ‘‘a’’ from linear

regression has strong dependence on the exact exchange, but it
is not sensitive to specific exchange and correlation combina-
tions (Fig. S1, ESI†). Finally, we note that despite having 27%
HF exchange, the M06 functional gives inferior electron den-
sities and hence its performance for isomer shifts is inferior to
other hybrid functionals (Table 2).

As the GGA exchange and correlation parts of B2PLYP
(i.e., B88 and LYP) work fine for our dataset, the origin of the
poor performance of the double hybrid functional could be
either the PT2 correlation part or the amount of exact exchange
used. We note that for the calculation of Cu(II) hyperfine
coupling constants, the use of relaxed densities for the PT2

Table 2 Calibration constants and statistical parameters from the linear regression analysis of the computed contact densities using different DFT
functionals and the experimental isomer shiftsa

Basis set for Fe Methods a b C R2 MADb (mm s�1) Max. dev.c (mm s�1) St. dev.d (mm s�1)

s-decontracted aug-cc-pVTZ-J SVWN5 �0.32 0.8946 14 831 0.913 0.071 0.296 0.098
BP86 �0.32 0.9957 14 960 0.922 0.067 0.270 0.093
PBE �0.32 0.9970 14 933 0.921 0.067 0.267 0.094
BLYP �0.32 1.0974 14 954 0.917 0.070 0.275 0.096
TPSS �0.32 1.0045 14 917 0.935 0.060 0.243 0.085
PBE0 �0.28 1.1225 14 920 0.965 0.050 0.148 0.063
B1LYP �0.28 1.1358 14 936 0.961 0.054 0.150 0.066
B3LYP �0.29 1.1073 14 930 0.958 0.053 0.180 0.069
TPSSh �0.30 1.1976 14 913 0.954 0.052 0.227 0.072
TPSS0 �0.28 1.1425 14 908 0.967 0.049 0.122 0.060
M06 �0.31 0.9446 15 010 0.936 0.065 0.277 0.084
LC-BLYP �0.29 1.0845 14 951 0.950 0.062 0.168 0.075
CAM-B3LYP �0.27 1.2024 14 939 0.960 0.055 0.137 0.067
oB97X �0.27 1.1689 15 034 0.958 0.055 0.147 0.068
B2PLYP �0.24 1.1367 14 916 0.939 0.066 0.183 0.083

CP(PPP) SVWN5 �0.33 1.1214 14 272 0.910 0.072 0.295 0.100
BP86 �0.33 0.8681 14 388 0.919 0.068 0.270 0.095
PBE �0.33 1.1551 14 371 0.917 0.068 0.266 0.096
BLYP �0.33 1.1620 14 382 0.914 0.070 0.275 0.098
TPSS �0.33 1.1673 14 358 0.932 0.061 0.253 0.087
PBE0 �0.29 1.0344 14 359 0.965 0.049 0.157 0.063
B1LYP �0.29 1.1515 14 367 0.963 0.051 0.159 0.064
B3LYP �0.30 0.9704 14 362 0.956 0.054 0.191 0.070
TPSSh �0.32 0.9775 14 355 0.952 0.053 0.237 0.073
TPSS0 �0.29 1.1373 14 349 0.966 0.049 0.127 0.062
M06 �0.32 1.0447 14 427 0.934 0.065 0.277 0.085
LC-BLYP �0.30 1.2454 14 379 0.951 0.061 0.177 0.074
CAM-B3LYP �0.29 1.0531 14 370 0.961 0.054 0.134 0.066
oB97X �0.28 1.1687 14 450 0.959 0.055 0.147 0.068
B2PLYP �0.25 1.1856 14 350 0.940 0.066 0.176 0.082

DKH-def2-TZVPP SVWN5 �0.33 0.9272 14 010 0.909 0.074 0.305 0.101
BP86 �0.33 0.9640 14 094 0.919 0.069 0.277 0.095
PBE �0.33 1.1343 14 086 0.919 0.069 0.273 0.095
BLYP �0.33 1.0651 14 089 0.914 0.072 0.280 0.098
TPSS �0.33 1.1151 14 078 0.934 0.061 0.247 0.086
PBE0 �0.29 1.0853 14 078 0.964 0.051 0.156 0.063
B1LYP �0.29 1.1600 14 080 0.962 0.054 0.161 0.065
B3LYP �0.30 1.0315 14 076 0.956 0.055 0.190 0.070
TPSSh �0.32 0.9873 14 076 0.953 0.053 0.220 0.072
TPSS0 �0.29 1.0877 14 072 0.967 0.049 0.127 0.060
M06 �0.32 1.2105 14 105 0.934 0.067 0.282 0.086
LC-BLYP �0.30 1.0128 14 087 0.945 0.065 0.163 0.078
CAM-B3LYP �0.29 1.2614 14 081 0.957 0.058 0.138 0.069
oB97X �0.28 1.2380 14 087 0.957 0.056 0.146 0.069
B2PLYP �0.25 1.1934 14 070 0.938 0.66 0.178 0.083

a a and b are the fitting coefficients obtained from the linear fit of eqn (3). C is a constant, which is very close to the calculated r(0) value. The units
of a, b, and C are a.u.3 mm s�1, mm s�1, and a.u.�3, respectively. R2 is the coefficient of determination from the linear fit. b Mean absolute
deviations of the calculated ISs with respect to the experimental ISs, where the former ones are obtained by using eqn (3). c Maximum deviation of
the calculated ISs from the experimental ISs. d Standard deviation of the calculated ISs.
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part was recommended.67 Following the same protocol and
using the s-decontracted aug-cc-pVTZ-J basis set for Fe
improves the ‘‘a’’ value of the linear fit from �0.24 to �0.27.
However, R2 and mean absolute error are worse than the
unrelaxed density calculations, allowing us to rule out the first
possible source of error (see Table S7, ESI†). Hence, the high
fraction of exact exchange (53%) used in the B2PLYP seems
to be the principal reason behind its poorer performance
compared to standard hybrid DFT functionals.

Earlier studies have shown that spin-component scaled
double hybrids are more accurate than simple double hybrids
like B2PLYP for calculating the energetics and spectral proper-
ties of transition metal complexes.93–96 The contact densities
computed using the DSD-PBEP86 functional and the s-
decontracted aug-cc-pVTZ-J basis set for iron, along with the
relaxed PT2 density, were fitted to the experimental isomer
shifts. This resulted in the fitting parameter a = �0.26 with R2 =
0.895 (see Fig. S2, ESI†). The relatively high percentage (68%) of
HF exchange used in DSD-PBEP86 could be the reason behind
its marginally poorer performance than B2PLYP. However, for
most of the quintet FeII and sextet FeIII complexes of our
dataset, the isomer shifts calculated using DSD-PBEP86 are
closer to the experimental values than dcal using TPSS0 or
B2PLYP (see Table S11, ESI†). We note in passing that a double
hybrid calculation with relaxed density is approximately three
times more expensive and requires more memory alloca-
tion than a similar calculation with unrelaxed density. The
‘‘unrelaxed’’ PT2 density corresponds to simple PT2 expectation
value density, whereas the ‘‘relaxed’’ one incorporates orbital
relaxation.

In conclusion, hybrid functionals incorporating ca. 25–30%
exact exchange offer the best linear correlation and accuracy for
predicting isomer shifts. Among all methods tested, our best
picks are TPSS0 and PBE0, combined with the s-decontracted
aug-cc-pVTZ-J basis set for Fe.

With respect to the literature, we note that using 15 iron-
containing compounds and the CP(PPP) basis set for Fe, an

R2 = 0.972 was obtained from the linear regression analysis of
the nonrelativistic electron densities calculated with B3LYP
against experimental isomer shifts.11 The reported standard
deviation for the theoretical prediction of isomer shifts was
0.09 mm s�1. Later, with a slightly larger and more diverse set,
B3LYP offered a marginally better correlation (R2 = 0.980) and a
standard deviation of 0.09 mm s�1, while using a larger dataset,
Pápai and Vankó found R2 = 0.975 and MAD = 0.06 mm s�1 for
B3LYP.30 However, Kurian and Filatov found a better correla-
tion with experimental results using BH&HLYP instead of
B3LYP, which might be a result of employing a small dataset.88

Using a dataset comprising 69 iron compounds, Comas-Vilà and
Salvador showed that replacing the density at the iron nucleus
with the density integrated in a sphere of radius 0.06 au surround-
ing the iron center can provide excellent correlation (R2 = 0.976)
when using the conventional def2-TZVP basis set.89 In a recent
study, using 20 molecular Fe complexes, Gallenkamp et al. found
the best performance with TPSSh and PBE0 (R2= 0.978 and 0.976)
with mean absolute errors of 0.05 and 0.06 mm s�1, respectively.33

With a set of 21 iron-complexes, using the scalar-relativistic ZORA
Hamiltonian and ZORA-def2-TZVP basis set for Fe, hybrid,
and double hybrid functionals offered similar accuracy (R2 =
0.970 and Standard deviation = 0.08 mm s�1).18 Employing the
DKH2 Hamiltonian and custom-defined basis sets for Fe did not
offer any further improvement in the performance of hybrid
functionals.22 Although our best pick, TPSS0 with the s-
decontracted aug-cc-pVTZ-J basis set for Fe, has a slightly smaller
R2 value, the standard deviation is better than what was reported
previously. The smaller R2 can be attributed to using a dataset that
is more than three times larger than what was used in ref. 18 and
22, Perdew and coworkers argue that highly parameterized density
functional methods are often significantly inferior to the func-
tionals developed by constraint satisfaction while calculating the
electron densities.97 Among the 128 functionals tested in their
work, PBE0 is one of the best for calculating electron density
distributions compared to the all-electron coupled cluster singles
and doubles (CCSD-full) densities. PBE0 and TPSS0 should there-
fore yield reliable electron densities and, hence, good performance
for Mössbauer isomer shift computations.

4.2. High-temperature isomer shifts

It is well known that the Mössbauer parameters are temperature-
dependent, and this behavior originates from the temperature
dependence of the Lamb–Mössbauer factor f. With increasing
temperature, the second-order Doppler shift (SODS) appears owing
to significant thermal motions of the source and absorber nuclei,
which leads to a lower isomer shift.5,9 The SODS-corrected
chemical isomer shift of a Mössbauer spectrum is sometimes
referred to in literature as the center shift (CS),98 which has the
following expression

CS = d + SODS (5)

Although at temperature up to 77 K the SODS contributes less
than 0.02 mm s�1 to the measured isomer shift, it can be as
large as 0.1 mm s�1 at room temperature. A fair comparison
between computational and experimental isomer shifts is

Fig. 3 Effect of the percentage of exact exchange (%HFx) used in BLYP-
and TPSS-based hybrid functionals on the MAD values of the calculated
isomer shifts relative to the experimentally measured shifts.
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therefore guaranteed only at temperatures of a few Kelvin (K).
Since the influence of the temperature may exceed the uncer-
tainties from density functional methods and basis sets, com-
parison with experimental data obtained above 80 K needs
special treatment before comparing them with the calculated
counterparts. In multiple occasions, Noodleman and co-
workers have proposed a linear SODS correction of the experi-
mentally recorded isomer shifts by 0.12 mm s�1 for a tempera-
ture decrease from 300 K to 4.2 K.25,99–101 However, Friesner
and co-workers recommended to avoid such empirical correc-
tions in a benchmark study because of the nontrivial tempera-
ture dependence of the 57Fe Mössbauer parameters.27

As we already have a curated subset of molecules (21 Fe-
complexes) with high-T experimental isomer shirts, we can
examine whether the solution proposed by Noodleman is
transferable (see Table S2 in the ESI†). For this purpose, we
chose the TPSS0 functional with the s-decontracted aug-cc-
pVTZ-J basis set for iron. Considering the 80 low-temperature
isomer shifts, linear regression analysis of r(0) vs. dexp gives
R2 = 0.967. Adding the 21 high-T isomer shifts to the MPMIC80
and refitting the linear equation we obtain a significantly lower
R2 value of 0.922. However, if Noodleman’s correction is

applied to the 21 high-T isomer shifts, linear regression analy-
sis for the mixed set of 101 compounds almost recovers
the correlation obtained with the original MPMIC80 set
(see Fig. 4a–c). The same trend is observed with PBE0/s-
decontracted aug-cc-pVTZ-J(Fe) and B3LYP/CP(PPP)(Fe) (see
Fig. S3 and S4, ESI†).

Now, refitting a high-T isomer shift correction factor against
21 complexes we get the value 0.16 mm s�1. However, using a
larger IS correction factor only marginally improves correlation
compared to Noodleman’s correction (see Fig. 4c and d).

4.3. Quadrupole splittings in the MPMIC80 set

Similar to isomer shifts, we start with the non-relativistic
quadrupole splitting calculation using TPSSh functional and
CP(PPP) basis set for Fe. Relative to the experimental |DEQ|,
non-relativistically obtained quadruple splittings yield mean
absolute deviation and root-mean-square deviation 0.331 and
0.443 mm s�1, respectively. Although deviation from |DEQ,exp|
is distributed among all the oxidation states of Fe, the largest
error was obtained for iron(III) phthalocyanine chloride and
octaethylporphyrinato-iron(II) (i.e., molecules #35 and #65 from
the MPMIC80 dataset; see Fig. S5, ESI†).

Fig. 4 Plot of the calculated TPSS0/s-decontracted aug-cc-pVTZ-J+x2c-TZVPPall level contact densities against the (a) low-T isomer shifts of
MPMIC80; (b) 80 low-T and 21 high-T isomer shifts; (c) 80 low-T isomer shifts and 21 isomer shifts with Noodleman’s high-T SODS correction (0.12 mm s�1) and
(d) 80 low-T isomer shifts and 21 isomer shifts with refitted high-T SODS correction (0.16 mm s�1).
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The mean absolute and root-mean-square errors of calcu-
lated |DEQ| with respect to the experimental |DEQ| for ten
different basis sets evaluated using B3LYP functional, finite
nucleus model, and first-order picture change effect are listed
in Table 3. Among the six standard basis sets, DKH-def2-TZVPP
and x2c-TZVPPall are the best and the worst performer, respectively.
Unlike what we observed for isomer shifts, x2c-TZVPPall-s basis set,
developed for NMR shielding constants, offers a noticeably better
accuracy than x2c-TZVPPall. Decontraction of the s primitives does
more harm than good for x2c-TZVPPall.

Next, for the evaluation of DFT methods to calculate |DEQ|
values three basis sets were chosen: CP(PPP), DKH-def2-TZVPP,
and s-decontracted aug-cc-pVTZ-J. The MAD and RMSD statis-
tics for each the method and basis set combinations are
listed in Table 4. (For the error statistics obtained using the
s-decontracted aug-cc-pVTZ-J(-dfg) basis set for Fe, see Table S9
in the ESI†).

For all these basis sets, GGA and meta-GGA functionals offer
better accuracy than the LDA functional. Importantly, and
unlike what we observed for the isomer shifts, hybrid func-
tionals produce larger errors than GGA and meta-GGA func-
tionals. Range separation leads to deterioration rather than
improvement. The only exception is when the DKH-def2-TZVPP
functional is used, in which case hybrid functionals are better
performers than the 2nd and 3rd rung functionals. Interestingly,
using either the CP(PPP) or the s-decontracted aug-cc-pVTZ-J basis
set for Fe combined with TPSSh functional provides noticeably
lower mean absolute error than TPSS0.

Once again, B2PLYP is the worst performer among all
functionals tested. While using the s-decontracted aug-cc-
pVTZ-J basis set for Fe, employing relaxed density for PT2
correlation improve its accuracy (MAD goes down from 0.648
to 0.485 mm s�1). A large percentage of exact exchange in
B2PLYP also contributes a significant share to its large mean
absolute error. Analyzing the results obtained from varying
percentage of exact exchange in PBE-, BLYP-, and TPSS-based
hybrid functionals, it is evident that beyond 10% the mean
absolute error in calculated |DEQ| compared to experiment

increases rapidly (see Table S10 in the ESI†). However, pure
GGA and meta-GGA functionals are also good and cheaper
alternatives. This observation agrees with the recommendation
of Nemykin and Hadt for using the pure GGA functional BPW91
over B3LYP to predict quadrupole splittings in ferrocenes
accurately.26 Overall, the quadrupole splittings are harder to
reproduce systematically with equally high level of reliability as
the isomer shifts and remain a challenge that will have to be
addressed more satisfactorily in future studies.

So far, we have used the 57Fe nuclear quadrupole moment
Q = 0.16b to calculate the quadrupole splitting values. A reason-
able question is whether there is anything to be gained by
refitting the quadrupole moment of the 57Fe nucleus against
the MPMIC80 set. Using the s-decontracted aug-cc-pVTZ-J basis
set for iron, we selected nine representative functionals for this

Table 3 Mean absolute deviations (MADs) and root-mean-square devia-
tions (RMSDs) of calculated quadrupole splittings for ten basis sets with
respect to the experimental values. The scalar-relativistic calculations were
performed with the B3LYP functional and the finite nucleus modela

Basis set for Fe MAD (mm s�1) RMSD (mm s�1)

CP(PPP) 0.312 0.451
x2c-TZVPPall 0.357 0.504
x2c-TZVPPall-s 0.299 0.436
aug-cc-pVTZ-J 0.352 0.495
DKH-def2-TZVPP 0.241 0.381
ANO-RCC-VTZP 0.283 0.421
s-decontracted x2c-TZVPPall 0.361 0.514
s-decontracted aug-cc-pVTZ-J 0.347 0.487
s-decontracted aug-cc-pVTZ-J (-dfg) 0.349 0.489
aug-cc-pVTZ-Jmod67 0.347 0.487

Non-relativisticb 0.331 0.443

a For the results with point nucleus model, see Table S8 in the ESI.
b With CP(PPP) basis set for Fe and def2-TZVP for the ligand atoms.

Table 4 Performance statistics of fourteen different density functionals
for the calculation of 57Fe quadrupole splittings in the MPMIC80 dataset

Basis set for Fe Methods MAD (mm s�1) RMSD (mm s�1)

s-decontracted
aug-cc-pVTZ-J

SVWN5 0.319 0.495
BP86 0.274 0.450
PBE 0.280 0.457
BLYP 0.272 0.450
TPSS 0.269 0.437
PBE0 0.374 0.523
B1LYP 0.404 0.557
B3LYP 0.347 0.487
TPSSh 0.261 0.410
TPSS0 0.383 0.525
M06 0.544 0.949
LC-BLYP 0.432 0.562
CAM-B3LYP 0.474 0.632
oB97X 0.493 0.649
B2PLYP 0.648 0.857

CP(PPP) SVWN5 0.348 0.516
BP86 0.308 0.473
PBE 0.319 0.484
BLYP 0.303 0.475
TPSS 0.305 0.463
PBE0 0.326 0.457
B1LYP 0.346 0.480
B3LYP 0.312 0.451
TPSSh 0.251 0.405
TPSS0 0.353 0.489
M06 0.500 0.891
LC-BLYP 0.371 0.487
CAM-B3LYP 0.409 0.553
oB97X 0.419 0.546
B2PLYP 0.587 0.779

DKH-def2-TZVPP SVWN5 0.451 0.602
BP86 0.398 0.545
PBE 0.408 0.557
BLYP 0.396 0.542
TPSS 0.396 0.534
PBE0 0.258 0.399
B1LYP 0.258 0.392
B3LYP 0.241 0.381
TPSSh 0.291 0.431
TPSS0 0.270 0.412
M06 0.423 0.813
LC-BLYP 0.270 0.381
CAM-B3LYP 0.301 0.440
oB97X 0.305 0.423
B2PLYP 0.466 0.635
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purpose and plotted the experimental QSs following eqn (4).
The new Q(57Fe) value is determined from the slope of the
linear fit to the plot (see Table 5). With TPSS-based hybrid
functionals, increasing the percentage of HF-exchange gradu-
ally decreases the fitted Q(57Fe).

Using the nuclear quadrupole moment thus obtained, we
reevaluated the quadrupole splittings and calculated the MAD
and RMSD errors against the experimental DEQ values (see
Table 5). It can be seen that refitting the 57Fe NQMs only
marginally improves the performance of pure GGA and mGGA
functionals. This improvement is negligible for the hybrid
functionals at a small fraction of HF exchange, and increasing
the %HFx also increases the performance gap.

5. Conclusions

We have presented the largest and most extensive molecular
dataset, namely MPMIC80, for the calculation of 57Fe Möss-
bauer isomer shifts and quadruple splittings. This new set of
complexes covers most of the known spin and oxidation states
of iron, a diverse set of ligands, and with each complex having
one unique iron center and low-temperature experimentally
determined Mössbauer parameters. After an extensive survey of
density functional methods and basis sets with the aid of the
MPMIC80 data set, we can conclude the following:
� Irrespective of the choice of basis sets and density func-

tional methods, use of finite nucleus model and picture change
effect is recommended with the scalar relativistic X2C-
Hamiltonian.
� Tight s-primitives are necessary for the calculation of

contact densities close to the fully relativistic limit (r =
15 070 a.u.�3). Consequently, standard basis sets that are either
general-purpose or have been optimized for other properties
(e.g., for NMR chemical shifts) are inappropriate poor choices
for these calculations, whereas the s-decontracted version of
aug-cc-pVTZ-J is a solid choice.
� For isomer shifts, 25–30% is the optimum percentage

of exact (HF) exchange for hybrid functionals with scalar

relativistic X2C Hamiltonian. Best accuracy was found with
the TPSS0 and PBE0 functionals with s-decontracted aug-cc-
pVTZ-J. Range separation has no benefit over global hybrid
functionals.
� Double hybrid functionals are not recommended. The

performance of B2PLYP is worse than any hybrid functional,
which is most likely the result of the high percentage of exact
exchange used.
� Refitting the original 80 isomer shifts and 21 high-T

isomer shifts adjusted to 4.2 K by a linear correction against
the calculated contact densities almost fully recovers the R2

value obtained with the low-temperature MPMIC80.
� Quadruple splitting values are less systematically predicted

with DFT. Unlike isomer shifts, pure GGA, meta-GGA, and
hybrid functionals with small fraction of HF exchange
(B10%) are preferred for these calculations, but there is con-
siderable room for improvement.
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shift in Mössbauer spectra by density functional theory,
Inorg. Chim. Acta, 2002, 337, 181–192.

12 J. Ladrière, A. Meykens, R. Coussement, M. Cogneau,
M. Boge, P. Auric, R. Bouchez, A. Benabed and J. Godard,
Isomer shift calibration of 57Fe by life-time variations in
the electron-capture decay of 52Fe, J. Phys., Colloq., 1979,
40, C2-20–C2-22.

13 K. J. Duff, Calibration of the isomer shift for 57Fe, Phys.
Rev. B: Condens. Matter Mater. Phys., 1974, 9, 66–72.

14 A. Trautwein, F. E. Harris, A. J. Freeman and J. P. Desclaux,
Relativistic electron densities and isomer shifts of 57Fe in
iron-oxygen and iron-fluorine clusters and of iron in solid
noble gases, Phys. Rev. B: Condens. Matter Mater. Phys.,
1975, 11, 4101–4105.

15 R. Reschke, A. Trautwein and J. P. Desclaux, Limitation of
semi-empirical mo-calculations in deriving charge densi-
ties r(0) in iron-oxygen compounds, J. Phys. Chem. Solids,
1977, 38, 837–841.

16 W. C. Nieuwpoort, D. Post and P. T. V. Duijnen, Calibration
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89 G. Comas-Vilà and P. Salvador, Accurate 57Fe Mössbauer
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