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Solvation dynamics on the diffusion timescale
elucidated using energy-represented dynamics
theory†
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Kento Kasahara * and Nobuyuki Matubayasi

Photoexcitation of a solute alters the solute–solvent interaction, resulting in the nonequilibrium relaxa-

tion of the solvation structure, often called a dynamic Stokes shift or solvation dynamics. Thanks to

the local nature of the solute–solvent interaction, the characteristics of the local solvent environment

dissolving the solute can be captured by the observation of this process. Recently, we derived the

energy-represented Smoluchowski–Vlasov (ERSV) equation, a diffusion equation for molecular liquids,

which can be used to analyze the solvation dynamics on the diffusion timescale. This equation expresses

the time development for the solvent distribution on the solute–solvent pair interaction energy (energy

coordinate). Since the energy coordinate can effectively treat the solvent flexibility in addition to the

position and orientation, the ERSV equation can be utilized in various solvent systems. Here, we apply

the ERSV equation to the solvation dynamics of 6-propionyl-2-dimethylamino naphthalene (Prodan) in

water and different alcohol solvents (methanol, ethanol, and 1-propanol) for clarifying the differences of

the relaxation processes among these solvents. Prodan is a solvent-sensitive fluorescent probe and is

thus widely utilized for investigating heterogeneous environments. On the long timescale, the ERSV

equation satisfactorily reproduces the relaxation time correlation functions obtained from the molecular

dynamics (MD) simulations for these solvents. We reveal that the relaxation time coefficient on the

diffusion timescale linearly correlates with the inverse of the translational diffusion coefficients for the

alcohol solvents because of the Prodan-solvent energy distributions among the alcohols. In the case of

water, the time coefficient deviates from the linear relationship for the alcohols due to the difference in

the extent of importance of the collective motion between the water and alcohol solvents.

1 Introduction

Solute–solvent interaction is vital for the mass transport as well
as the chemical reaction of a solute. The friction associated
with the solute motion is affected by such an interaction in
addition to the solvent diffusivity.1–3 The motion of the solvent
molecules around the solute is also different from the simple
diffusion in the bulk phase due to the inhomogeneous environ-
ment produced by a solute.4 Photoexcitation phenomena give
us useful information on the solute–solvent interaction
through spectroscopy techniques. The local solvent environ-
ments can be elucidated by the fluorescence spectra of solvent-
sensitive probes. The spectra are often characterized using

physicochemical concepts such as Stokes shifts and polarity.5,6

Furthermore, the solvent response to the change in the electronic
structure of a solute by the photoexcitation, referred to as solvation
dynamics or dynamic Stokes shift, reflects the dynamic properties of
solvents.4,7,8 The solvation dynamics can be utilized for investigating
the heterogeneous environments such as the ionic liquids,9–11

biomolecular solutions12,13 and biological membranes.14–16

Theoretical and computational methods are useful for
obtaining atomistic information about the photoexcitation
dynamics in solutions which is difficult to be accessed from
the experiments only. Molecular dynamics (MD) simulation is
a representative method to obtain such information.17,18 The
solvation dynamics of small solute molecules such as coumarin
has been extensively studied by means of MD simulations so
far.8,19–21 The recent advances in computers enables us to
investigate the solvation dynamics of macromolecules such as
deoxyribonucleic acids (DNA)22 and proteins23 in aqueous
solutions. Ab initio MD (AIMD) simulation24 is also a powerful
tool for realistically describing solvation dynamics.25,26

Division of Chemical Engineering, Graduate School of Engineering Science,

Osaka University, Toyonaka, Osaka 560-8531, Japan.

E-mail: kasahara@cheng.es.osaka-u.ac.jp

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d4cp00235k

Received 18th January 2024,
Accepted 1st April 2024

DOI: 10.1039/d4cp00235k

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 8

/2
/2

02
5 

2:
47

:4
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0002-3029-2679
https://orcid.org/0000-0002-3461-3660
https://orcid.org/0000-0001-7138-250X
https://orcid.org/0000-0001-7176-441X
http://crossmark.crossref.org/dialog/?doi=10.1039/d4cp00235k&domain=pdf&date_stamp=2024-04-15
https://doi.org/10.1039/d4cp00235k
https://doi.org/10.1039/d4cp00235k
https://rsc.li/pccp
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cp00235k
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP026016


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 12852–12861 |  12853

For instance, the application of this method to the solvation
dynamics of N-methyl-6-oxyquinolinium betaine in water revealed
that the dominant mode for the solvent motion varies depending
on the timescale and that the collective solvent rearrangement
plays an important role on a picosecond timescale.26 However, the
accurate computation of the time correlation functions on the long
timescale often suffers from the insufficient sampling.

The dynamics theories based on the integral equation theory
of molecular liquids with the interaction-site representation27–29

have been also widely used to investigate the solvation dynamics
of the various solutes in molecular liquids.30–40 The governing
equations have a mathematically closed form for both the static
and dynamic properties of solutions, and hence information on
the dynamics can be obtained by solving the equations in an
algebraic manner, meaning that the obtained results are free
from the sampling problem.41–45 The application of these the-
ories to the solvation dynamics is possible with the aid of a
modified linear response theory32,34 or time-dependent density
functional theory (TD-DFT) of liquids.4,45–47 Due to the orienta-
tional average of solvent molecules introduced for avoiding
the explicit treatment of the orientational degrees of freedom,
however, theories with the interaction-site representation are
applicable only to the simple polyatomic solvents. In addition,
the rigidity of the molecules is assumed in these theories. Note
that the flexibility of molecules is known to have an impact on
the dynamic behavior of solutions.48,49

Recently, we have derived an alternative expression for the
molecular diffusion based on the energy representation (ER)
which is amenable to MD simulations.50 In this theory, the
configuration of a solvent molecule is projected onto the solute–
solvent interaction energy, namely the energy coordinate.51–53

It should be noted that the intramolecular degree of freedom is
naturally taken into account using the energy coordinate. This
dimensionality reduction also enables us to construct the one-
dimensional free-energy functional for describing the solvation
thermodynamics in complex solutions including polymer
solutions54 and lipid membrane systems55,56 by means of MD
simulations. By applying the Zwanzig–Mori projection operator
method to the solvent distribution on the energy coordinate,
the energy-represented generalized Langevin equation (ERGLE)
can be derived in an exact way.50 The systematic approxima-
tions about the dynamics such as the overdamped limit give the
energy-represented Smoluchowski–Vlasov (ERSV) equation, a
diffusion equation of solution that describes the self-diffusion,
drift motion, and collective motion of solvents on the energy
coordinate. Once we calculate the static correlation functions and
diffusion coefficient of solvents involved in the ERSV equation,
the time development of the solvent distribution functions can
be obtained by solving this equation. Since the sampling of the
information on the dynamics is not required in this treatment,
the analysis of the long-timescale dynamics is realized without the
sampling problem. It is confirmed that the ERSV equation
reproduces the relaxation time coefficient on the diffusion time-
scale for the solvation dynamics of benzonitrile in water. Further-
more, we revealed the importance of the collective diffusion on the
solvent relaxation on the intermediate timescale.

In the present study, we apply the ERSV equation to the
solvation dynamics of 6-propionyl-2-dimethylamino naphthalene
(Prodan) in water and alcohol solvents (methanol, ethanol, and
1-propanol) for clarifying the differences between the relaxation
processes among these solvents. Prodan is a solvent-sensitive
fluorescence probe that exhibits significant Stokes shifts, making
it possible to analyze the local environments of the systems of
interest.57–62 The excited states of Prodan are well characterized
using quantum chemical calculations.63–66 Prodan is widely used
for analyzing the membrane properties such as local polarity and
gel phase transition.67–70 The time-resolved infrared (IR) spectro-
scopy analysis of the solvent-dependent feature of the excited state
for Prodan probed that the S1(p–p*) state undergoing a solvent-
driven charge redistribution from dimethylamine (DMA) to the
carbonyl (CQO) group dynamically alters the solvation structure
such as the patterns in hydrogen-bonding of Prodan with the
surrounding solvent molecules, suggesting the importance of the
atomistic description of the solvation dynamics.62 Very recently,
the systematic analysis of the membrane properties at the inter-
facial region was proposed based on the fluorescence decays
of Prodan in a series of solvent mixtures.71 The microscopic
information on the solvation dynamics in various solvents could
thus be useful to deepen our understanding of heterogeneous
environments.

We focus on the solvation dynamics of Prodan triggered
by S1(p–p*) excitation described by means of the TD-DFT of
electronic structures. The solvation time correlation function
(STCF) for each solvent is calculated using the ERSV equation
based on the MD simulations with Prodan in its ground state.
Furthermore, we introduce a scheme for decomposing the
diffusion coefficients in the energy representation into the
contributions of the moieties in Prodan to unveil the difference
between the relaxation processes depending on the solvent
species.

2 Methods
2.1 Energy-represented Smoluchowski–Vlasov
(ERSV) equation

In this section, we briefly summarize the energy-represented
dynamics theory and its application to the solvation dynamics.50

The energy representation means that the solvent configuration
around a solute is projected onto the solute–solvent pair inter-
action energy, the energy coordinate. Then, the dynamic processes
of solvents are represented as the time development of the solvent
distribution on the energy coordinate in the theory. This treat-
ment enables us to effectively treat the solvent position and
orientation on one-dimensional space.

Let us consider a dilute solution containing a solute molecule
in a single-component solvent. The formulation for multi-
component solvents is available in ref. 50. Furthermore, we
assume that the solute molecule is fixed in space. We define
the full coordinate (position and orientation with the intra-
molecular degrees of freedom) of the ith solvent molecule as xi.
The instantaneous solvent distribution on the energy coordinate
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(energy distribution), r(e,t), is defined as

rðe; tÞ ¼
X
i

d u xiðtÞð Þ � eð Þ; (1)

where u(�) is an energy function between the solute and solvent
(defining potential). The fluctuation of r(e,t) is also defined as

dr(e,t) = r(e,t) � hr(e)i, (2)

where h� � �i represents the ensemble average at the equilibrium
state. The Zwanzig–Mori projection operator method gives the
energy-represented generalized Langevin equation (ERGLE), an
exact partial differential equation of dr(e,t). Imposing the over-
damped limit on the ERGLE, one can derive the energy-
represented Smoluchowski–Vlasov (ERSV) equation given by

@drðe; tÞ
@t

¼ @

@e
DeðeÞ@drðe; tÞ

@e
�DeðeÞd lnhrðeÞi

de
drðe; tÞ

�

�DeðeÞhrðeÞi
ð
@cðe; ZÞ
@e

drðZ; tÞdZ
�

þ Fðe; tÞ:

(3)

Here, De(e) and F(e,t) mean the energy-represented diffusion
coefficient and fluctuating force, respectively. c(e,Z) is the direct
correlation function that describes the relationship between
the solvent molecules whose values of the defining potential are
e and Z. The approximate expression of De(e) is given by

De(e) = Dh| f G
i |2ie, (4)

where D and f G
i are the translational diffusion coefficient of the

solvent in the bulk and the force acting on the center of mass
(CoM) of the ith solvent molecule conditioned by the value of
the defining potential, respectively. h� � �ie means the ensemble
average conditioned by the energy coordinate e defined as

h� � �ie ¼
1

hrðeÞi
X
i

ð� � �Þd u xið Þ � eð Þh i: (5)

Thanks to the additivity of the solute–solvent interaction,
f G

i can be decomposed into the forces acting on the moieties
(m) of the solute molecule, f m

i , as

f Gi ¼
Xall moieties

m

f mi : (6)

Thus, De(e) can be rewritten as

DeðeÞ ¼
Xall moieties

m

De;mðeÞ; (7)

De,m(e) = Dh f m
i �f G

i ie. (8)

Note that De,m(e) can be regarded as the contribution of moiety
m to De(e).

Each term in the ERSV equation (eqn (3)) has a clear physical
meaning. The first term in the square bracket of eqn (3)
describes the simple diffusion of solvents due to the gradient
of the solvent distribution. Since �ln hr(e)i multiplied by the

inverse temperature is the free energy profile on the energy
coordinate, the drift motion caused by the free energy gradient
is expressed using the second term. The third term describes
the collective diffusion through the direct correlation function,
c(e,Z). If the collective term is neglected in the ERSV equation
(eqn (3)), one can obtain the energy-represented Smoluchowski
equation (ERS) describing the single-particle diffusion
process as

@drðe; tÞ
@t

¼ @

@e
DeðeÞ@drðe; tÞ

@e
�DeðeÞd lnhrðeÞi

de
drðe; tÞ

� �

þ Fðe; tÞ:
(9)

The solvation dynamics triggered by the sudden change of a
solute molecule can be described based on the ERSV equation
and linear response theory.72,73 Let us consider a nonequili-
brium process in which the solute–solvent pair interaction
energy is changed from ug(xi) to uex(xi) due to the photoexcita-
tion of a solute at t = 0. If we assume that the intramolecular
energy of the solute is unchanged during the relaxation pro-
cess, the solvation time correlation function (STCF), S(t), can be
expressed as

SðtÞ ¼ hDEðtÞine � hDEð1ÞinehDEð0Þine � hDEð1Þine
; (10)

where h� � �ine is the nonequilibrium ensemble average and

DEðtÞ ¼
X
i

uex xið Þ � ug xið Þf g: (11)

Next, we introduce a scheme for describing the solvation
dynamics. The solvation dynamics is characterized with the
solvation time correlation function (STCF), S(t). Based on the
linear response theory, S(t) can be expressed as

SðtÞ ¼ hdDEðtÞdDEihdDEdDEi : (12)

Here, h� � �i is the ensemble average at the ground state and
dDE(t) is the fluctuation of DE(t) defined as dDE(t) = DE(t) �
hDEi. If the defining potential is the difference of the solute–
solvent pair interaction energies between the excited and
ground states as u(xi) = uex(xi) � ug(xi), dDE(t) and its auto-
correlation function can be written as

dDEðtÞ ¼
ð
edrðe; tÞde; (13)

hdDEðtÞdDEi ¼
ðð

eZhdrðe; tÞdrðZÞidedZ

¼
ð
eQðe; tÞde;

(14)

where we have introduced a new function Q(e,t) defined as

Qðe; tÞ ¼
ð
Zhdrðe; tÞdrðZÞidZ ¼ hdrðe; tÞdDEi: (15)
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Substituting eqn (14) into eqn (12) yields

SðtÞ ¼
Ð
eQðe; tÞdeÐ

eQðe; t ¼ 0Þde: (16)

By using eqn (3), one can obtain the ERSV equation for Q(e,t) as

@Qðe; tÞ
@t

¼ @

@e
DeðeÞ@Qðe; tÞ

@e
�DeðeÞd lnhrðeÞi

de
Qðe; tÞ

�

�DeðeÞhrðeÞi
ð
@cðe; ZÞ
@e

QðZ; tÞdZ
�
:

(17)

The ERS equation for Q(e,t) can be also derived from eqn (9) as

@Qðe; tÞ
@t

¼ @

@e
DeðeÞ@Qðe; tÞ

@e
�DeðeÞd lnhrðeÞi

de
Qðe; tÞ

� �
: (18)

The STCF can be computed by solving the ERSV or ERS
equation under the following initial conditions.

Qðe; t ¼ 0Þ ¼
ð
ZhdrðeÞdrðZÞidZ: (19)

2.2 Computational details

2.2.1 System modeling. The structure of Prodan (Fig. 1)
was obtained by performing geometry optimization using CAM-
B3LYP/cc-pVDZ level calculations74 at the ground state. Then,
the S1(p - p*) excited state was computed using TD-DFT
(CAM-B3LYP)/cc-pVDZ calculations. Charges from electrostatic
potentials using a grid based method (CHelpG)75 was used for
calculating the atomic point charges for both the ground and
excited states (Table S1 and Fig. S1, ESI†). All the quantum
chemical calculations were performed using Gaussian16.76

We prepared four different solution systems consisting of
one Prodan molecule and solvent molecules, water, methanol
(MeOH), ethanol (EtOH), and 1-propanol (PrOH). The force
field for Prodan, MeOH, EtOH, and PrOH was the CHARMM
generalized force field (CGenFF)77 and the parameters were
obtained using the CHARMM-GUI server,78 while the atomic
charges on Prodan for the ground and excited states were
evaluated using the quantum chemical calculations mentioned
above. The CHARMM-compatible TIP3P model was used for
water.79 The numbers of solvent molecules were 7200, 3100,
2210, and 1690 for water, methanol, ethanol, and 1-propanol
systems, respectively. For all the systems, the initial configura-
tions were prepared using Packmol80 with the cubic box whose

volume is 603 Å3. We also prepared the pure solvent systems
for calculating the diffusion coefficients of the solvents. The
numbers of solvent molecules and the volume are the same as
those for the corresponding solution systems.

2.2.2 Simulation setups. For each solution system with
Prodan in its ground state, we performed three types of NVT
simulations: (i) equilibration, (ii) sampling of the system con-
figurations and (iii) production simulations started from the
configurations obtained from (ii). For equilibration (i), the MD
simulations were performed for 1 ns. Then, we conducted the
simulation (ii) for 1 ns to extract the configurations every 1 ps
(the total number of the samples was 1000 for each system).
After re-distributing the velocities of the sampled configura-
tions so as to generate the Maxwell–Boltzmann distribution,
we performed the simulations (iii) for 0.1 ns equilibration,
followed by 1 ns production simulation for each trajectory.
As for each pure-solvent system, we performed 0.4 ns produc-
tion simulation after 1 ns simulation for equilibration.

For all the simulations, the equation of motion was inte-
grated using the velocity Verlet algorithm81 with a time interval
of 2 fs. The temperature was set at 300 K using the Bussi
thermostat.82 The Prodan molecule was fixed in space by
making the velocities of its atoms zero. The Lennard-Jones
(LJ) interaction was truncated by applying the switching func-
tion, with the switching range of 10–12 Å. The smooth particle
mesh Ewald (SPME) method83,84 was used to calculate the
electrostatic potential. Water molecules were kept rigid using
the SETTLE algorithm85 and the bonds involving the hydrogen
atoms were fixed using the SHAKE/RATTLE algorithm.86,87

All the simulations were performed with GENESIS 2.0.88–90

All the analyses were performed using in-house Fortran90/95
programs combined with the visual molecular dynamics (VMD)
package (ver. 1.9.3),91 PyMOL,92 and ERmod 0.3.7.93

2.3 Solver for ERSV and ERS equations

To solve the ERSV and ERS equations, we used the scheme
developed in our previous study.50 We used the finite volume
method (FVM) to discretize the energy coordinate. For numer-
ical efficiency and accuracy, we used non-uniform grids on the
energy coordinate which are fine around e = 0. The drift terms
of these equations were discretized by the 1st-order upwind
difference scheme. The full implicit algorithm was employed
to integrate the ERSV and ERS equations for the numerical
stability. The time grid Dt was set to be 1 fs. The translational
diffusion coefficients used as the inputs of the ERSV and ERS
equations (Table 1) were calculated from the mean square
displacements (MSD) of the solvent molecules in the pure
solvent systems.

3 Results and discussion
3.1 Distribution functions on the energy coordinate

We first examine the energy distribution function, hr(e)i, for
different solvent systems, water, methanol (MeOH), ethanol
(EtOH), and 1-propanol (PrOH) (Fig. 2(a)). The defining potential,

Fig. 1 Structure of Prodan. The hydrogen, carbon, nitrogen and oxygen
atoms are depicted in gray, green, blue and red, respectively.
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u, is defined as the difference in the solute–solvent pair interaction
energy between the excited and ground states. Hence, the dis-
tributions at e o 0 and e 4 0 respectively correspond to the
stabilized and destabilized solvent molecules due to the excitation
of Prodan. The sharp peak at e B 0 observed for all the systems
comes from the bulk solvent molecules that are not interacted with
Prodan. It is seen that the shapes of the energy distributions in the
different solvents are similar, although the populations of both the
stabilized and destabilized molecules for water are slightly higher
than those for the alcohol solvents. The distribution becomes
broader in the order of water 4 MeOH 4 EtOH 4 PrOH. This
ordering coincides with ascending order of the solvent polarity. For
further analysis, we decompose the defining potential (u) into the
contributions from the moieties of Prodan as N,N-dimethylamine
(uDMA), naphthalene (uNAP), and propionyl (uPRO) moieties (Fig. 1).

u = uDMA + uNAP + uPRO. (20)

The distribution functions on the decomposed defining
potentials defined as

r emð Þh i ¼
X
i

d um xið Þ � emð Þh i;

m ¼ DMA;NAP;PRO;
(21)

are shown in Fig. 2(b)–(d). The profile of hr(eDMA)i reveals that
the water molecules are more destabilized by DMA than other
solvent molecules (Fig. 2(b)). From the spatial distribution
functions (SDFs) corresponding to the destabilized region
(Fig. S2, ESI†), it is confirmed that the destabilized water
molecules are distributed around DMA. On the other hand,
the water molecules are more stabilized by NAP and PRO than
the other solvent molecules (Fig. 2(c) and (d), and Fig. S3, ESI†).
hr(ePRO)i has a small peak around �0.8 kcal mol�1, while the
other distribution functions change monotonically at em o 0
for all the solvents. The radial densities around the carbonyl
oxygen of Prodan indicate that the carbonyl group forms the
hydrogen bonds with the hydroxyl group of the solvent mole-
cules (Fig. S4, ESI†). The oxygen atom of Prodan becomes more
negative upon excitation (�0.441e - �0.456e). Thus, the peak
in hr(ePRO)i around �0.8 kcal mol�1 stems from the strength-
ened hydrogen bonding by the excitation.

3.2 Diffusivity on the energy coordinate

The energy-represented diffusion coefficients, De(e), are calcu-
lated using eqn (4). De(e) can be expressed in terms of the
translational diffusion coefficient of the solvent, D, and the
force associated with the defining potential acting on the
solvent molecule, f G

i . Since De(e)/D = h| f G
i |2ie is a static correla-

tion function, eqn (4) realizes the decomposition of the diffu-
sivity on the energy coordinate into the dynamic contribution
(D) and static contribution (h| f G

i |2ie). As shown in Table 1, water
shows the highest diffusivity. In the case of the alcohol sol-
vents, the translational diffusivity becomes low as the molecu-
lar size increases. For all the systems, De(e)/D has a minimum at
e B 0 (Fig. 3(a)). Since f G

i is negligibly small for the solvent
molecules in the bulk that has a dominant population at e B 0,
the appearance of such a minimum is a typical behavior of
De(e)/D. Interestingly, all the examined alcohol solvents show
almost identical profiles of De(e)/D, indicating that the differ-
ence in the diffusivity on the energy coordinate among the
alcohol solvents dominantly originates from the translational
diffusion coefficients. While the profile of De(e)/D for water is
close to those for the alcohol solvents at e 4 �1 kcal mol�1,
it exhibits a higher diffusivity at e o �1 kcal mol�1.

The decomposition of De(e)/D into the contributions of the
moieties of Prodan is performed based on eqn (7) and (8). In
the case of the solvent distributions also, we decompose Prodan
into the three moieties, DMA, NAP, and PRO (Fig. 1). The
decomposed profiles of De,m(e)/D are shown in Fig. (3)(b)–(d).
The contributions from the DMA (Fig. 3(b)) and PRO (Fig. 3(d))
are almost the same for all the solvents. Furthermore, the
contribution from PRO is found to be negligibly small com-
pared with the other contributions. As for NAP, water shows
a higher diffusivity at e o �1 kcal mol�1 than the alcohol

Table 1 Translational diffusion coefficients of the solvents (D) obtained
from the MD simulations for the pure solvent systems. These values are
used as the inputs of the ERSV and ERS equations

Water Methanol Ethanol 1-Propanol

D (10�5 cm2 s�1) 5.91 3.28 1.51 0.94

Fig. 2 Solvent distribution functions on the energy coordinate (energy
distribution function), hr(e)i. The distribution functions on the decomposed
defining potentials based on the moieties (m) of Prodan, hr(em)i, are also
shown. (a) hr(e)i, (b) hr(eDMA)i, (c) hr(eNAP)i, and (d) hr(ePRO)i. DMA, NAP, and
PRO respectively denote N,N-dimethylamine, naphthalene, and propionyl
moieties of Prodan (Fig. 1).
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solvents. It indicates that the difference of De(e)/D between the
water and alcohol solvents originates from NAP. This behavior
corresponds to the fact that the stabilized water molecules are
highly populated around NAP (Fig. 2 and Fig. S3, ESI†).

3.3 Solvation time correlation functions (STCFs)

The ERSV equation enables us to compute the solvation time
correlation functions (STCFs), S(t), describing the nonequili-
brium solvent relaxation process triggered by the photoexcita-
tion of Prodan with the aid of the linear response theory
(eqn (16)). S(t) can be also computed using the MD simulations
at the ground state using the linear response theory (eqn (12)).
The comparison of S(t) obtained from the two approaches is
useful to understand how the approximations introduced in the
ERSV equation affect the description of the dynamics. The time
derivative of S(t) gives the relaxation time coefficient, t(t).

tðtÞ ¼ � d lnSðtÞ
dt

� ��1
: (22)

The time developments of S(t) and Dt(t) are plotted in
Fig. 4(a) and (b), respectively. In these plots, we use a timescale
scaled with the diffusion coefficients. For all the solvents, S(t)
calculated with the MD simulation shows the fast decay of S(t)

on the short timescale. In addition, S(t) in water shows the
damped oscillation at Dt o 0.2 Å2. In our previous study,50 a
similar oscillation is observed for the solvation dynamics of
benzonitrile in water due to the rotational motion of the water
molecules hydrogen bonded with benzonitrile. The rotational
motion of the water molecules would also bring the oscillation
observed in the present water system. As for S(t) obtained from
the ERSV equations, the fast decay on the short timescale is not
observed for all the solvents. Since the ERSV equation is derived
using the overdamped limit that causes the neglects of the
memory and inertial effects of solvent motions, the discrepancy
between the ERSV equation and MD simulations clearly reveals
the importance of these effects on the short timescale. In the
case of the long timescale (Dt 4 1 Å2), the slope of S(t) on the
logarithmic scale obtained from the ERSV equation are similar
to those from the MD simulations, as also shown in the plots of
Dt(t) (Fig. 4(b)). Petrone et al. revealed that the collective solvent
rearrangement dominates the solvation dynamics on a picose-
cond timescale in the case of N-methyl-6-oxyquinolinium
betaine in water.26 Since Dt = 1 Å2 corresponds to t B 1.7 ps
in water, the good agreement between the ERSV equation and
MD simulations on this timescale for the Prodan system
suggests that such a solvent motion can be described using
the ERSV equation through the collective term expressed with
the direct correlation function, c(e,Z). Note that the ERSV
equation can compute the time developments of t(t) without
the statistical noise observed in those from the MD simula-
tions. Thus, the rigorous estimation of the time coefficient on
the diffusion timescale is possible using the ERSV equation.

3.4 Importance of collective motion of solvents

In this subsection, we focus on analyzing the collective motion
of solvents based on the energy representation. The neglect of
the term for the collective motion of solvents in the ERSV
equation (eqn (17)) leads to the energy-represented Smolu-
chowski (ERS) equation for Q(e,t) (eqn (18)). Therefore, the
comparison of t(t) (eqn (22)) obtained from the ERSV and

Fig. 3 (a) Energy-represented diffusion coefficients scaled with the trans-
lational diffusion coefficients, De(e)/D, and their decomposition into the
contributions from the moieties (m) of Prodan, De,m(e)/D. (a) De(e)/D,
(b) De,DMA(e)/D, (c) De,NAP(e)/D, and (d) De,PRO(e)/D. DMA, NAP, and PRO
respectively denote N,N-dimethylamine, naphthalene, and propionyl moi-
eties of Prodan (Fig. 1).

Fig. 4 (a) Solvation time correlation functions (STCFs), S(t), and (b) relaxa-
tion time coefficients, t(t), defined as the time derivative of ln S(t). The
computed results from the ERSV equation and MD simulations are shown.
The timescale is scaled with the diffusion coefficient for each solvent (D).
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ERS equations enables us to elucidate the importance of the
collective motion on the solvation dynamics.

Fig. 5(a) shows the time development of Dt(t) obtained from
the ERS equation, together with those from the ERSV equation.
It is seen that the ERS equation overestimates the values of t(t)
on the short timescale, indicating that the collective motion of
solvents promotes the relaxation of the solvation structure. For
both the equations, t(t) for all the solvents converge at Dt 4
25 Å2. The convergence for water is faster on the scaled time-
scale (Dt) than for the other solvents in the case of the ERS
equation. It reflects the high diffusivity of water observed in
De(e)/D at eo�1 kcal mol�1 (Fig. 3(a)). A small difference in the
converged values of t(t) for water is discernible between the
ERSV and ERS equations. As for the alcohol solvents, on
the other hand, the converged values for the ERS equation
are larger than those for the ERSV equation. Hence, treating the
collective motion is necessary for the quantitative estimation of
t(t) on the long timescale for the alcohol solvents.

We examine how the relaxation time coefficient on the
diffusion timescale, tD, depends on the solvent species for both
the ERSV and ERS equations. The values of t(t) at Dt = 30 Å2

are denoted as tD. Fig. 5(b) shows the correlation plots of tD

against 1/D. For both the ERSV and ERS equations, the value of
tD is larger, in the order of PrOH 4 EtOH 4 MeOH 4 water.
It indicates that the contribution of the collective motion does
not alter the ordering, while the absolute values of tD are
affected by that motion for the alcohol solvents. Note that the
ordering is apparently changed when t(t) obtained from the
ERSV equation is multiplied by D (Fig. 5(a)). In the case of
the ERS equation, the correlation plot falls into a single line.
Since the ERS equation expresses the time development by the
terms involving D as a product (see eqn (4) and (18)), the linear
relationship between t(t) and 1/D holds when hr(e)i and De(e)/D
are similar among the different solvents. Furthermore, on the
diffusion timescale, the dynamic behaviors are dominated by
hr(e)i and De(e) around e B 0, because the energy distribution
functions decay slowly in this region (almost corresponding to
the bulk). Thus, it can be concluded that the similarities of

hr(e)i and De(e)/D around e B 0 among different solvents
(Fig. 2(a) and 3(a)) give the linear relationship between tD and
1/D. As for the ERSV equation, the alcohol solvents show the
same linear relationship, suggesting that the collective motions
(eqn (17)) in different alcohol solvents are similar except for the
contribution from the translational diffusion coefficient. On
the other hand, tD for water deviates from the linear relation-
ship observed in the case of the alcohol solvents. Since only the
water system shows the small difference of tD between the
ERSV and ERS equations, this deviation reflects the difference
in the extent of importance of the collective motion on the
diffusion timescale between the water and alcohol solvents.

4 Conclusions

We investigated the solvation dynamics of Prodan triggered by
the photoexcitation (S1(p–p*)) using the energy-represented
Smoluchowski–Vlasov (ERSV) equation. The difference in the
dynamics for four solvents (water, methanol (MeOH), ethanol
(EtOH), and 1-propanol (PrOH)) was elucidated. The ERSV
equation enables us to calculate the time development of the
systems from the several quantities on the energy coordinate,
solvent static distribution (energy distribution), hr(e)i, direct
correlation function, c(e,Z), and diffusion coefficient, De(e),
computed using the molecular dynamics (MD) simulations at
the ground state. The defining potential was set to the differ-
ence in the solute–solvent pair interaction energy between the
excited and ground states.

We found that all the solvents had the similar energy
distributions, although the populations of both the stabilized
and destabilized molecules are higher for water. The detailed
analysis of the distributions was realized with the decomposi-
tion of the defining potential into the contributions from the
moieties of Prodan, N,N-dimethylamine (DMA), naphthalene
(NAP), and propionyl (PRO) moieties. The profiles of De(e)/D,
where D is the translational diffusion coefficient of a solvent,
showed no significant difference among the alcohol solvents,
indicating that the difference in the diffusivity on the
energy coordinate is brought by D. De(e)/D for water revealed
the higher diffusivity than those for the alcohol solvents at e o
�1 kcal mol�1, that stems from the water molecules coordi-
nated to NAP. Using the ERSV equation, we computed the time
development of the relaxation time coefficient, t(t), defined as
the time derivative of the logarithm of the solvation time
correlation function (STCF). On the short timescale, t(t) calcu-
lated using the ERSV equation largely deviates from those with
the MD simulations for all the solvents. This deviation clearly
reveals the importance of the memory and inertial effects
ignored in the ERSV equation on that timescale. t(t) on the
long timescale from the MD simulations were well reproduced
with the ERSV equation. We also computed t(t) using the
energy-represented Smoluchowski (ERS) equation derived by
neglecting the term for the collective motion of solvents in the
ERSV equation. As for water, the time coefficient on the diffu-
sion timescale, tD, obtained from the ERS equation was similar

Fig. 5 Comparison of t(t) obtained from the ERSV and ERS equations.
(a) Dt(t), and (b) correlation plots of the relaxation time coefficient on the
diffusion timescale, tD, against 1/D. The values of t(t) at Dt = 30 Å2 are
defined as tD.
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to that from the ERSV equation. On the other hand, tD values
for the alcohol solvents from the ERS equation were larger than
those from the ERSV equation, indicating that the collective
motion tends to promote the solvent relaxation for these
solvents. We found that the set of tD from the ERS equation
is linearly correlated with 1/D because of the similarities of
hr(e)i and De(e)/D among the different solvents. In the case of
the ERSV equation, tD for the alcohol solvents also fell into a
single line, but tD for water deviated from that line. This shows
that the extent of importance of the collective motion on the
diffusion timescale is different between the water and alcohol
solvents.

An advantage of employing the energy representation is
that molecular motion can be effectively described in one-
dimensional space without explicitly treating the orientational
degree of freedom. On the other hand, the dielectric models,
such as the Debye model, have focused upon the reorienta-
tional relaxations within the framework of the continuum
treatment of the solvent.4,7,94–96 Then, to compare the dielectric
and the ERSV methods, the collective reorientation modes need
to be extracted in the energy representation. It will be an
interesting subject to express a variety of solvent motions
effectively over the energy coordinate.

To realize a more realistic description of the solvation
dynamics on the diffusion timescale, a sophisticated theoreti-
cal treatment of the electronic structure of a fluorescent probe
(solute) is necessary. In this study, we approximated that the
electronic structure of the solute was unchanged during the
solvation dynamics. However, it is well known that solute
molecules are polarized depending on the surrounding envir-
onments, affecting the solvation dynamics. In the case of the
integral equation theory with the interaction site representa-
tion, the formulations for treating the polarization effects have
been developed so far. Naka et al. proposed methodologies
of incorporating the polarization effects97,98 into the reference
interaction site model self-consistent field (RISM-SCF)
method99,100 using the charge-response kernel (CRK) model.101

The recently developed theory by Yamaguchi and Yoshida can
describe the solvent polarization effects on the solvation
dynamics45 based on the solvent-polarizable 3D-RISM theory102

and time-dependent density functional theory (TD-DFT).47 Since
the energy coordinate is suitable for treating the flexibility of
solvents and heterogenous environments compared with the
spatial coordinate employed in the above theories, the energy-
represented dynamics theory incorporating the polarization
effects based on the CRK model could be promising for a
realistic description of the solvation dynamics in complex sys-
tems such as polymer solutions and lipid membrane systems.
The importance of solute motion should also be noted. Recent
experimental and simulation studies revealed that the vibra-
tional solute motion has a non-negligible influence on the
dynamics of the solvents inside the first solvation shell for small
probes in water.103,104 Thus, including the solute motion in the
framework of the energy-represented dynamics theory is also
crucial for a more realistic description of the solvation dynamics.
We believe that the ERSV equation and its extension will deepen

our understanding of the nonequilibrium processes at the
excited states.
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