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Allosteric regulation in SARS-CoV-2 spike protein†

Yong Wei,a Amy X. Chen,b Yuewei Lin, c Tao Wei*d and Baofu Qiao *e

Allosteric regulation is common in protein–protein interactions and is thus promising in drug design.

Previous experimental and simulation work supported the presence of allosteric regulation in the SARS-

CoV-2 spike protein. Here the route of allosteric regulation in SARS-CoV-2 spike protein is examined by

all-atom explicit solvent molecular dynamics simulations, contrastive machine learning, and the Ohm

approach. It was found that peptide binding to the polybasic cleavage sites, especially the one at the

first subunit of the trimeric spike protein, activates the fluctuation of the spike protein’s backbone, which

eventually propagates to the receptor-binding domain on the third subunit that binds to ACE2.

Remarkably, the allosteric regulation routes starting from the polybasic cleavage sites share a high

fraction (39–67%) of the critical amino acids with the routes starting from the nitrogen-terminal

domains, suggesting the presence of an allosteric regulation network in the spike protein. Our study

paves the way for the rational design of allosteric antibody inhibitors.

1. Introduction

Allosteric regulation refers to the mechanism that an event
(e.g., ligand binding) at one place of a protein leads to influ-
ences on a remote domain of the protein, such as the local
mobility of the distal domain and interactions with another
protein.1–6 In addition to the design of drugs that directly bind
the active sites of proteins, allosteric regulation provides a new
route for drug design.7–9 Nevertheless, our current understand-
ing of allosteric regulation is remarkably limited and its mole-
cular mechanism remains mostly unrevealed due to the
complicated folded structures of proteins.10 It thus limits the
progress of allosteric regulation-based drug design.

Coronavirus disease 2019 (COVID-19), due to infection of the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has caused a global pandemic for three years, leading to over
6.9 million deaths and about 0.77 billion confirmed cases
worldwide according to the report of the World Health Orga-
nization (https://covid19.who.int/). SARS-CoV-2 virus attacks

human cells via the binding of its spike protein with the
angiotensin-converting enzyme 2 (ACE2) receptor, which is highly
expressed on the surface of type II cells.11–13 The coronavirus spike
protein, typically known as the spike protein, is a trimeric glycopro-
tein. It appears on the virus surface as outward-facing 23 nm
molecular ‘‘spikes’’14 and thus plays a key role in binding
receptors.15 A spike protein is composed of three subunits, each
composed of around 1270 amino acids.16 Therefore, each trimeric
spike protein has around 3800 amino acids, where there exists a
huge amount of protein–protein interactions, standing for a highly
complicated example of folded proteins.

The allosteric regulation of SARS-CoV-2 spike protein has been
reported experimentally17–21 and in computer simulations.22

Specifically, Chi, et al.17 found that antibody 4A8, which was
isolated from recovered patients, binds to the nitrogen-terminal
domains (NTDs) of the spike protein. These NTDs are around 4–
8 nm away from the binding interface between the spike’s
receptor-binding domain (RBD) and human cell receptor ACE2.
Another antibody CR3022, also isolated from a recovered patient,
was found to target a highly conserved epitope of SARS-CoV-2
(and SARS-CoV in 2013), which is distal from the spike RBD.18

And antibody 47D11 was reported to bind to a non-RBD epitope
of the SARS-CoV-2 (and SARS-CoV) spike protein.19 Very recently,
Tulsian et al.20 presented extensive studies on the allosteric
regulation in the SARS-CoV-2 spike protein upon the binding of
nine antibodies (four from their work and five existing ones,
including 4A8 and CR3022). Same as 4A8, antibody LSI-CoVA-017
was found to bind to the spike NTD. Impressively, upon the LSI-
CoVA-017 binding to NTD, the S1/S2 cleavage site and other distal
domains of the spike protein displayed notable changes in the
conformational dynamics using the hydrogen–deuterium exchange
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mass spectrometry (HDX-MS). Conformational changes were
also observed in distal sites of NTD and the S2 subunits of the
spike protein when the other antibodies were bound to the
spike RBD. The allosteric regulation between the S1/S2 cleavage
site and RBD was also predicted by Qiao and Olvera de la Cruz22

using all-atom explicit solvent molecular dynamics (MD) simu-
lations and reported by Chen et al.21 using HDX-MS. Note that
the influences of glucans on allosteric regulation in the SARS-CoV-2
spike protein were also examined20 as well as the possible allosteric
regulation in ACE2.23,24 Taken together, these experimental observa-
tions and in silico prediction support that the allosteric regulation in
the SARS-CoV-2 spike protein could reach up to a distance of around
4–8 nm between NTD and RBD,17,20 around 10 nm between the S1/
S2 cleavage site and RBD,20–22 or more than 10 nm between the S2
subunit and RBD.20

Even though the allosteric regulation in the spike protein has
been reported, the mechanism remains elusive. Specifically, the
pathway of signal transmission from the allosteric sites (NTD, the
S1/S2 cleavage site) to the active site (RBD) is unknown, which is
nevertheless required for the rational design of allosteric neutra-
lizing ligands for the SARS-CoV-2 spike protein. Inspired by the
recent findings on the allosteric regulation between the S1/S2
cleavage site and RBD20–22 and between NTD and RBD,17,20 here
we examined the routes for the allosteric regulation in the SARS-
CoV-2 spike protein. All-atom explicit solvent MD simulations
were carried out along with the contrastive learning25 and Ohm26

approaches. These methods collectively reveal the route of the
allosteric regulation in the spike protein, which will be beneficial
for our understanding of the mechanism of allosteric regulations
as well as allosteric inhibitor design.

2. Methods
2.1. All-atom explicit solvent MD simulations

All-atom MD simulations were carried out for the spike–ACE2
complex. Each subunit of the spike trimer was composed of 1273
amino acids (M1–T1273) along with 597 amino acids (S19–D615) for
ACE2. Three parallel simulations were performed on the spike–
ACE2 complex with one tetrapeptide EELE (Glu-Glu-Leu-Glu)
which was bound to the polybasic cleavage site (R682RAR685,
PCS) on the subunit A (PCS-A). PCS is a part of the S1/S2 cleavage
site (residues 672–69520). The initial structure is provided in Fig. S1
(ESI†). Note that although all three subunits of the spike trimer
have the same amino acid sequence, they are structurally different
in the ‘‘Up’’ conformation when ACE2 binds to the RBD on the
subunit C (RBD-C). We examined the structural change of the
spike protein that could be activated by the electrostatic binding
between the negatively charged tetrapeptide EELE and the posi-
tively charged PCS motif.

These simulations were performed using the package GRO-
MACS (version 2019.6)27 at the Texas Advanced Computing Center.
Like in our previous work,22 the CHARMM 36m potential28 was
used, along with the recommended CHARMM TIP3P water
model29 with the water structures constrained using the SETTLE
algorithm.30

The spike–ACE2 complex structure was downloaded from
the Zhang-Server.15 The subunit C of the spike protein was in
the ‘‘Up’’ conformation and binding to ACE2. The spike–ACE2
complex was solvated in a water box with a size of 16 nm �
18 nm� 24 nm. A salt concentration of 0.15 M was applied. The
system had 692 370 atoms in total.

The energy minimization of the whole system was first
conducted using the steepest descent algorithm to remove pos-
sible close contact between different molecules. Subsequent
equilibrations were conducted for one simulation of 1 ps using
the canonical ensemble (constant number of particles, volume,
and temperature, NVT) and another simulation of 1 ps using the
isothermal–isobaric ensemble (constant number of particles,
pressure, and temperature, NPT). The velocity-rescale tempera-
ture coupling and the Berendsen pressure coupling were applied.
Afterward, the solvated system was equilibrated for another 10 ns
under the NPT ensemble with the Nosé–Hoover temperature
coupling at 298 K and the Parrinello–Rahman barostat at 1.0
bar.31 The integration time step of 2 fs was used with all the
hydrogen-involved covalent bonds constrained using the LINCS
algorithm.32,33 In the equilibration simulations above, the coor-
dinates of the non-hydrogen atoms of the spike protein trimer,
ACE2, and the tetrapeptides were restrained using a force con-
stant of 1000 kJ mol�1 nm�2 to preserve the binding structure.
The restraints were then removed in the production simulations.
The other parameters were the same as those in the production
simulation. Each production simulation was carried out for a
duration of 100 ns using the NPT ensemble. The simulation
trajectory was saved at a frequency of 10 frames per 1 ns. A total
of 1000 snapshots were thus extracted for each system to collect
the contact map of the spike protein Ca atoms.

The contact map between all the Ca atoms of the spike
protein from each extracted snapshot was calculated using gmx
distance, a utility program of GROMACS. The evolution trajec-
tory of the spike protein was represented by a sequence of
contact maps. A contact map C was a two-dimensional matrix
whose element, C(i, j), was the spatial Euclidean distance
between the Ca atoms of the ith and jth amino acids of the
spike protein at a particular moment.

It is noteworthy that additional simulations were performed
which had three tetrapeptides EELE, each binding to one of the
three PCSs on the spike trimer. These simulations suggested
the relatively stronger binding affinity between PCS-A and the
peptide EELE neighbor. Specifically, only the binding between
PCS-A and the associated peptide EELE was stable for the whole
simulation duration of 100 ns. In contrast, the peptides bound
to PCS-B and PCS-C became dissociated at less than 100 ns: the
peptide EELE bound to PCS-B became dissociated at around
10 ns in the first parallel simulation and was stable for 100 ns
in the second simulation; the peptide bound to PCS-C became
dissociated at around 40 ns and 30 ns in the two parallel
simulations. This is qualitatively consistent with our previous
observations.22 The observed dissociation of peptides bound to
PCS-B and PCS-C also rationalized the simulation duration of
100 ns for protein–peptide interactions here, though it is likely
too short for protein–protein interactions of specifically the
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large-sized spike protein. Moreover, calculations of the RBD–
ACE2 binding affinity in the presence of varying number of
neutralizing peptide EELE also supported the dominant role of
PCS-A in destabilizing the distal RBD–ACE2 binding (Table S1,
ESI†). Therefore, in what follows only the simulations with one
peptide EELE bound to PCS-A were further analyzed.

2.2. Contact map feature extraction using contrastive learning

Machine learning (ML) has proven its efficacy in comprehending
protein structures, even when dealing with unlabeled data. The MD
simulation trajectories of protein structures typically lack labels,
necessitating an unsupervised approach for interpretation. To
address this, data feature extractors, such as autoencoders com-
bined with clustering algorithms, have been employed to identify
phases of protein structure changes or fluctuations.34,35 Self-
supervised learning stands as another ML category that can yield
robust feature representations from unlabeled data for subsequent
tasks.36 Backbone models responsible for generating data feature
representations are trained through solving ‘‘pretext’’ tasks, encom-
passing activities like predicting rotations,37 learning inpainting,38

solving jigsaw puzzles,39 and image coloring.40 However, these
hand-crafted pretext tasks often rely on ad hoc heuristics, limiting
the generality of the data representations.

Contrastive learning25 represents a state-of-the-art self-supervised
learning algorithm. It is dataset-agnostic and has demonstrated its
efficacy across a broad spectrum of applications, including the study
of protein structures.41,42 As shown in Fig. 1, the contrastive learning
algorithm learns the feature representations of contact maps by

maximizing the agreement between a positive pair (x̃i, x̃j) via a
loss function, in which x̃i and x̃j are correlated views of the same
contact map x, generated by stochastic data augmentations t B
T and t0 B T, respectively. The loss function between a positive
pair is defined in eqn (1).

li;j ¼ � log

exp
sim yi; yj
� �
t

� �

P2N
k¼1 1 kai½ � exp

sim yi; ykð Þ
t

� �; (1)

in which 1[kai] A {0, 1} is an indicator function, sim u; vð Þ ¼

uTv

uk k vk k is cosine similarity of contact maps (u, v). t is a

temperature parameter, which is empirically determined. In
Fig. 1, f (�) is the backbone representation encoder. Resnet50 is
used for this purpose. g(�) is a projection head, which in this
work is a multilayer perceptron with one hidden layer. Both f (�)
and g(�) are trained to maximize the agreement between the
positive pairs of augmented views of contact maps using the
loss function. The dimension of the extracted contact map
representation is a 2048 � 1 vector in our work. The augmenta-
tion candidate set T are the following that are sequentially and
randomly (with a probability of 0.5) applied: random cropping
followed by resizing back to the original size, Sobel filtering,
random horizontal flipping, and Gaussian blurring. After the
contrastive learning model is trained, the projection head is
thrown away. The output of the backbone representation

Fig. 1 The framework of contrastive learning contact map feature extraction and protein structure transition stage detection. (x̃i, x̃j) are considered a
positive pair when they represent correlated views of the same contact map x, produced through stochastic data augmentations t B T and t0 B T,
respectively. The augmentation sequence T, employed in this study, is executed sequentially and applied randomly with a 0.5 probability, encompassing
random cropping followed by resizing back to the original dimensions, Sobel filtering, random horizontal flipping, and Gaussian blurring. The backbone
representation encoder, denoted as f (�), specifically employs Resnet50. g(�), a compact projection head, is designed as a multilayer perceptron (MLP)
featuring a single hidden layer. Both f (�) and g(�) are trained with the primary objective of maximizing agreement among positive pairs of augmented
contact map views using the loss function outlined in eqn (1). The feature extractor, obtained via contrastive learning, processes the contact maps.
Subsequently, the k-means clustering algorithm is used to group the series of contact maps into stages representing structural transitions.
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encoder is the feature representation of the corresponding
contact map. The feature representation vectors of contact maps
obtained by the all-atom MD simulations are then grouped via
the k-means clustering algorithm to reveal the evolution stages
of SARS-CoV-2 spike protein structures in the process of binding
to the human cell receptor ACE2.

2.3. Ohm for allosteric regulation pathway

Based on the contact matrix of proteins, Wang, et al. very recently
proposed the Ohm method.26 In the Ohm method, a perturbation
propagation algorithm was developed, which was a repeated
stochastic process of perturbation propagation on a network of
interacting amino acids in a protein. Therefore, Ohm specializes in
characterizing the allosteric regulation of proteins by examining
the propagation of protein structure perturbation. To predict the
allosteric regulation pathway, Ohm relies exclusively on the protein
structure, making it computationally efficient. Ohm was found to
be able to successfully map allosteric networks for a database of 20
proteins for which the allosteric sites were experimentally known.
Wang, et al. further developed an automated web server (https://
dokhlab.med.psu.edu/ohm/) for mapping, visualizing, and char-
acterizing allosteric communication networks.

Here, the Ohm server was employed. By specifying the start
of the allosteric pathway (PCS and NTD, see Table S2, ESI†) and
the end which is the RBD on the subunit C (residues L455–Y505),
Ohm reports all the critical amino acids on the allosteric route.

Note that antibody 4A8 primarily binds to two motifs of NTD3
and NTD5 of the spike protein.17 After examining the amino acids
on the NTD3 and NTD5 epitopes, we found that the NTD3 epitope
(L141GVYYHK147NNK150SWMESE156) is similar to PCS. Specifically,
the central fragment K147NNK150 is positively charged and exposed,
akin to PCS. It might be promising to design NTD3-targeting,
negatively charged neutralizing peptides that could destabilize the
spike–ACE2 binding given the fact that the spike protein and ACE2
are both negatively charged.22 Therefore, in the present work we are
focusing on the NTD3 motif when identifying the allosteric regula-
tion routes from NTD to the RBD on the subunit C.

3. Results and discussion

We first carried out all-atom explicit solvent MD simulations on
the spike–ACE2 complex. One tetrapeptide EELE was initially
associated with the PCS on the subunit A of the spike trimer.
Note that the subunit C was in the ‘‘Up’’ conformation and
formed direct binding with ACE2. Illustrated in Fig. 2 is the final
structure of one simulation. The parallel simulations supported
the stable binding between PCS-A and the EELE peptide.

We hypothesize that the strong electrostatic attractions
between the positively charged PCS motif (R682RAR685) and
the negatively charged EELE tetrapeptides trigger a local struc-
tural fluctuation that might eventually lead to a global con-
formational adaptation of the spike protein. In this work, we
are primarily examining the route from the tetrapeptide EELE-
triggered local structural fluctuation to the distal influence in
destabilizing the RBD–ACE2 binding.

3.1. Stages of the spike protein structure transition obtained
via contrastive learning and clustering

Each atomistic simulation ran 100 ns, where 1000 frames were
saved at the frequency of 0.1 ns per frame. The contact map of
the spike protein Ca atoms was consequently generated as a
function of the simulation time. See the Methods section for
the details. Contrastive ML and clustering were subsequently
performed for the obtained contact maps, and the character-
istic structures and stages were determined accordingly.

Fig. 3 shows the results of the contrastive ML analysis of one
of the three parallel MD trajectories of spike protein structure
transition in the process of protein–ACE2 binding. The corres-
ponding contrastive ML analyses for the other two parallel MD
trajectories are provided in Fig. S2 (ESI†). A sequence of 1000
contact maps of the spike protein was generated based on the
atomistic MD trajectory. Feature vectors of the contact maps are
extracted by the backbone feature extractor of the contrastive
learning model, which is a deep resnet50 model43 in this work.
The contrastive learning model is trained by maximizing the
agreement of positive pairs (augmented views of the same
contact maps). The details of contrastive learning are discussed
in the Methods section. After the contrastive model is trained,
the feature extractor is utilized to generate feature vectors of the
contact maps. A feature vector in this work is a 2048 � 1 vector.
These contact map feature vectors are then grouped using the
k-means algorithm to find the stages of the protein structure
transition. To find the optimal number of clusters k, cluster
numbers ranging from 1 to 15 were tried, and the elbow
method and the average silhouette scores method were utilized
(Fig. 3(a) and (b)) to determine the optimal number of clusters.
Both the elbow and silhouette score methods indicate an
optimal number of clusters of k = 10. The contact map that is
the closest to the centroid of a cluster is used as the represen-
tative of the state. As shown in Fig. 3(c), these contact map IDs
are 26, 91, 222, 351, 467, 567, 644, 729, 860, and 954 (occurred

Fig. 2 Molecular structure of the spike–ACE2 complex in the presence of
the neutralizing tetrapeptides EELE. (a) Front view and (b) back view. The
three subunits of the trimeric spike protein are colored in ice blue/cyan/
orange for the subunits A/B/C, respectively. The spike protein’s PCS, NTD,
and RBD are colored in blue, dark blue, and orange, respectively. The ACE2
receptor and the tetrapeptide EELE are colored in silver and red,
respectively.
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at 2.6 ns, 9.1 ns, 22.2 ns, 35.1 ns, 46.7 ns, 56.7 ns, 64.4 ns, 72.9
ns, 86.0 ns, and 95.4 ns, respectively).

3.2. Structural fluctuations in the spike structure in the stages
from contrastive ML

As provided in the contrastive ML learning and clustering
(Fig. 3(c)), a total of 10 stages were identified in the spike–
ACE2 complex in the presence of the tetrapeptides EELE.
Accordingly, we calculated the root-mean-square fluctuation
(RMSF) of the spike protein Ca atoms for all the ten stages.
The calculated RMSFs are presented in Fig. 4.

As demonstrated in Fig. 4(a), PCS-A displays the strongest
structural fluctuation in the first stage which is ascribed to the
tetrapeptide EELE binding, which became gradually weakened
over the simulation time. The RBD on the subunit C, which
directly binds ACE2, displayed elevated structural fluctuation
from stage 2 till the end of the simulation (Fig. 4(c)). In contrast
with the remarkable structural fluctuation of PCS-A, it is much

weaker for the PCSs (R682RAR685) on the subunits B and C
(Fig. 4(b) and (c)), indicating their negligible impacts.

The residues close to the N-terminal (residue numbers less
than 300) display relatively larger fluctuations for all three
subunits. This motif is actually the N-terminal domain (NTD),
which is known to bind antibodies 4A817 and LSI-CoVA-017.20

The calculated RMSFs thus support the intrinsically flexible
feature of NTD, which is desired for structural fluctuation and
propagation. The relatively large fluctuations on the C-terminal
residues (residues 1000–1273), which are located on the S2
subunits, are ascribed to the partially unstructured features
and are thus ignored here.

3.3. Pathway of the allosteric regulation from PCS to RBD, and
from NTD to RBD

As illustrated in Fig. 4, the contrastive ML supports the corre-
lated structural fluctuation between PCS-A and RBD on the
subunit C. However, the detailed route is still missing. In this

Fig. 3 SARS-CoV-2 spike protein structure transition analysis using contrastive learning and k-means clustering. (a) Elbow method using inertia. (b) The
average silhouette score with different numbers of clusters. Both criteria indicate that k = 10 is the optimal number of clusters. (c) Ten clustered stages of
spike protein structure transition in the process of the spike–ACE2 binding, in chronological order. The red dots are the corresponding positions of the
contact map that are closest to the centroid of each cluster.

Fig. 4 Structural fluctuations of the spike protein in the presence of a tetrapeptide EELE obtained from the atomistic MD simulation. (a) Subunit A, (b)
subunit B, and (c) subunit C. The Ca RMSFs were calculated for the 10 stages derived from the contrastive ML. The RMSFs are shifted by (n � 1) � 0.5 nm
for the display, where n = 1–10 stands for the corresponding stage ID provided on the right of panel (c).
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regard, the Ohm approach26 is employed to predict the allos-
teric regulation pathway.

We examined the allosteric regulation route from all three
PCSs to the RBD on the subunit C. As illustrated in Fig. 5, the
backbone atoms of the critical residues are highlighted to direct
the pathway. Impressively, the allosteric regulation route is
found to propagate across different subunits. For instance, the
route starting with PCS-A propagates starting from subunit A to
subunit C, to subunit B, and eventually to subunit C (Fig. 5(a)),
indicating the nonlinear nature of allosteric regulation.

Moreover, the protein backbone-labeled route is shown to be
discontinuous at a couple of sites. See also the Movies (ESI†). It
supports that in addition to the backbone atoms, the side
chains of the critical residues are also involved in the structural
propagation, which is absent in the contrastive ML (Fig. 3) and
the RMSF calculations (Fig. 4). That said, for a complete
understanding of the allosteric regulation route, different
approaches are collectively desired.

Owing to the long distance of approximately 10 nm from the
PCSs to the RBD, there exist 27 amino acids on the allosteric

Fig. 5 Pathway of the allosteric regulation in the spike protein obtained via Ohm from (a) PCS-A, (b) PCS-B, and (c) PCS-C, to the RBD on subunit C. The
three subunits of the trimeric spike protein are colored in ice blue/cyan/orange for the subunits A/B/C, respectively. PCSs are colored in blue and the RBD
on subunit C in orange, which is in direct contact with ACE2 (in silver). The backbone atoms on the connecting amino acids are indicated by magenta; the
names of the connecting amino acids are provided in the illustration. The corresponding rotation movies are provided as Movie S1 (ESI†).

Fig. 6 Pathway of the allosteric regulation in the spike protein obtained via Ohm from (a) NTD-A, (b) NTD-B, and (c) NTD-C, to the RBD on subunit C.
NTDs are colored in dark blue. The other color codes are the same as those in Fig. 5. The corresponding rotation movies are provided as Movie S2 (ESI†).
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regulation routes from PCS-A to RBD, and 23 amino acids from
the other two PCSs to RBD.

Given the significant role of NTD observed in the experiments17,20

and our RMSF calculations (Fig. 4), we also examined the route of
the allosteric regulation from NTD to RBD (Fig. 6). Even though
NTD-A is physically closer (B9.1 nm) to the RBD–ACE2 binding
interface than PCS-A to the interface (B10.6 nm), there exist more
critical residues than that for PCS-A (33 vs. 27), indicating the
indirect feature of allosteric regulation. Surprisingly, the route from
NTD-A to RBD shares a large number (i.e., 18) of critical residues
with the route from PCS-A to RBD. This accounts for 54.5% (18/33)
for the NTD-A–RBD route and 66.7% (18/27) for the PCS-A–RBD
route, respectively. Similarly, the route starting with NTD-B shares
63.6% (14/22) critical residues with the route starting with PCS-B (14/
23 = 60.9%), and the route from NTD-C shares 39.1% (9/23) critical
residues with the one from PCS-A (9/23 = 39.1%). It thus indicates
that the routes from the PCSs and the NTDs are likely correlated,
that is, the presence of an allosteric regulation network in the spike
protein (Movie S3, ESI†).

4. Conclusions

We demonstrate the route of allosteric effects in the spike
protein of SARS-CoV-2. The EELE tetrapeptides prefer binding
to the polybasic cleavage site on the first subunit of the trimeric
spike protein. The fluctuation of the spike protein was activated
upon the binding of the EELE tetrapeptide. The structural
fluctuation is found to propagate across different subunits,
and amino acid side chains are also contributing to the propa-
gation. Impressively, we found that the routes from the PCSs to
RBD share a large number of the critical amino acids, ranging
from 39% up to 67%, with the corresponding routes from the
NTDs to RBD. It thus suggests the presence of an allosteric
regulation network in the SARS-CoV-2 spike protein and likely in
other proteins.

In summary, by coupling contrastive learning-based contact
map feature extraction, all-atom explicit solvent MD simula-
tions, and Ohm, we have revealed the route of allosteric
regulation in the spike protein of SARS-CoV-2. Impressively,
the NTDs are found to share the majority of route of allosteric
regulations with the PCSs. This work thus sheds insights into
the fundamental understanding of allosteric regulations in
protein–protein interactions as well as into the rational design
of allosteric drugs.
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