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Tunneling splittings in the vibrationally
excited states of water trimer

Mihael Erakovića and Marko T. Cvitaš *b

Tunneling splitting (TS) patterns in vibrationally excited states of the water trimer are calculated, taking

into account six tunneling pathways that describe the flips of free OH bonds and five bifurcation

mechanisms that break and reform hydrogen bonds in the trimer ring. A tunneling matrix (TM) model is

used to derive the energy shifts due to tunneling in terms of the six distinct TM elements in symbolic

form. TM elements are calculated using the recently-developed modified WKB (Wentzel–Kramers–

Brillouin) method in full dimensionality. Convergence was achieved for the lowest six excited vibrational

modes. Bifurcation widths of the pseudorotational quartets are shown to be of comparable size to the

ground-state widths, obtained using instanton theory, or increased for some particular modes of

vibration. The largest increase is obtained for the excited out-of-phase flip of two adjacent water

monomers with free OH bonds pointing in opposite directions relative to the ring plane. Bifurcation

widths in (D2O)3 are found to be two orders of magnitude smaller than in (H2O)3. Geometrical

arguments were used to explain the order of states in some TS multiplets in vibrationally excited water

trimers.

1 Introduction

Extensive studies of small water clusters over several decades
aimed to quantify their structure, interactions and dynamics in
order to develop an accurate molecular description of liquid
water.1,2 Interactions that govern the cooperative hydrogen-
bond dynamics in water also control the tunneling rearrange-
ments between equivalent minima of water clusters.2–4 These
rearrangements produce splittings in rovibrational spectra that
can be measured using high-resolution far-infrared
spectroscopies.2,5–9 Tunneling splittings, which vary over many
orders of magnitude, are thus a sensitive probe of intermole-
cular water interactions at far-from-equilibrium geometries.
They were first measured for the dimer10 and trimer11,12 and,
subsequently, for other water clusters up to the decamer.7,13–18

Computational modeling of vibrational spectra provides a
means to interpret the measurements19–21 and assists in spec-
tral assignments.8,9

The water trimer is the smallest cyclic water cluster. It
displays rich hydrogen bond dynamics of the flips of free
hydrogens and bifurcations, in which a hydrogen bond that
forms the ring is broken and reformed with the previously free
hydrogen.22,23 Similar dynamics is also present in larger

clusters24 such as the water pentamer.25 Tunneling splitting
(TS) patterns of homoisotopic trimers, (H2O)3 and (D2O)3,
have been observed for both the torsional (flip) states and
also bifurcations.5,12,20,26,27 Partially deuterated trimers have
also been studied11 and produce qualitatively different TS
patterns.28 Recently, a drastic increase in TS due to bifurcations
in vibrationally excited states was observed in water dimer8,29

(40�), trimer9,29 (400�) and pentamer30 (4000�).
State-of-the-art calculations of tunneling spectra usually

proceed by solving the nuclear Schrödinger equation in the
electron potential. Recent water potentials are based on a fit to
ab initio electronic energies and employ a many-body expansion
of monomer potentials. The commonly used potentials are the
so-called CC-pol,31 WHBB4,32,33 and MB-pol34–36 and contain a
contribution of three-body interactions. The exact full-
dimensional quantum treatments of water dimer8,37,38 on the
above electronic potentials achieve a reasonable agreement
with experiment. The full quantum treatment of the water
trimer is probably also within reach using recently developed
methods,39,40 and is expected to yield the TS patterns of
torsional states in the near future. Fine splittings of torsional
levels due to bifurcations are unlikely to be captured this way.

The calculation of vibrational tunneling spectra of water
trimer and larger water clusters with many equivalent minima
can be decomposed into a number of smaller tasks using the
tunneling matrix (TM) model.22,23 The TM elements represent
tunneling transition amplitudes between two minima and can
each be calculated separately using quantum or approximate
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semiclassical methods. TM eigenvalues then provide the spec-
trum. Formally exact treatments employ diffusion Monte-
Carlo41,42 and path-integral molecular dynamics43 (PIMD)
methods. The TM model was also recently employed to treat
the interactions beyond that of the nearest neighbors in a PIMD
approach and was used to calculate the pseudorotational TS
pattern in water trimers in excellent agreement with
experiment.44 Earlier studies determined and analysed the TS
patterns for flips and bifuractions using WKB (Wentzel–
Kramers–Brillouin) approximation.45–47 More recently, the
semiclassical instanton theory48 was applied in full dimension-
ality in a series of studies of water clusters.6,17,21,24,25,49 In
particular, it was utilized to determine the six dominant
rearrangement pathways of flips and bifurcations in water
trimer.21 The same paths were also used to interpret qualita-
tively different TS patterns in some partially deuterated water
trimers.28 Prominently, a combined study of instanton theory
with experiment revealed the signature of the double hydrogen-
bond breaking dynamics in the spectra of the water hexamer
prism.6 All TM calculations mentioned above were only con-
cerned with TS in the ground vibrational state.

Multidimensional instanton theory for calculating TS has
been derived in continuous form50 and, later, in discrete
form.51 They were generalized to treat multi-well systems with
asymmetric paths (with no mirror symmetry of the potential
along the path) in ref. 21 and, later, by us52 in the continuous
version. Both versions are mutually equivalent and are also
equivalent to a modified version of WKB theory50,53,54 for the
ground-state (GS) TS. In the modified WKB method, the wave-
function is constructed along the minimum action path con-
necting two minima, which allows one to determine the TM
elements using the Herring formula.55,56 The WKB approach
provides a route to calculating TM elements in vibrationally
excited states,57 which we generalized to multi-well systems.58

Our approach works for asymmetric paths, encountered in the
water trimer, and treats longitudinal and transverse excitations
on an equal footing.58 The application on malonaldehyde59

showed that the method gives a quantitative agreement with
the exact quantum results for TSs in the low-lying vibrational
states.

The objective of this paper is to employ the TM model22

using six previously determined rearrangement paths,21,45

shown to be of comparable importance in ref. 21, and perform
a full-dimensional calculation and characterization of TS pat-
terns in the low-lying vibrationally excited states of the water
trimer. The focus of the paper is on the fine splittings of
pseudorotational states induced by the dynamics of bifurca-
tions, which is, to our knowledge, difficult to obtain in the
vibrationally excited states using any other method. A dramatic
increase of bifurcation splittings in water clusters has recently
been observed in experiments.9,29,30 The TM model, as formu-
lated using instanton theory,21 is described in Section 2. We
also derive the energy shifts symbolically in terms of TM
elements for the six mechanisms. The TM elements are calcu-
lated using the recent version of the modified WKB method52,58

and MB-pol potential.34–36 The method, computational details

and results are described in Sections 3, 4 and 5, respectively,
with conclusions in Section 6.

2 Tunneling dynamics of the water
trimer

In its equilibrium geometry, the water molecules in a water
trimer form a ring, bound by hydrogen bonds.22 Each water
molecule has one of its OH bonds inside the ring to uphold the
hydrogen bonds. The remaining OH bonds point with their
hydrogens either up or down relative to the plane of the ring, as
shown in Fig. 1. The oxygen atoms are labeled A, B and C in the
direction in which the hydrogens in the in-ring OH bonds
point, starting with the first (of the two) up-pointing moiety.
Hydrogens inside the ring are labeled using odd number labels
and those outside the ring plane using even numbers.

There are 48 wells on the potential energy surface (PES) of
the water trimer with the minima that are equivalent to the one
shown in Fig. 1 and are accessible via dynamics that does not
break the covalent bonds or change the orientation of hydrogen
bonds inside the ring (in the so-called clockwise–counterclock-
wise rearrengement5). The low-lying vibrational states of the
trimer in different wells interact with each other in the narrow
passages inside the barriers via tunneling. These interactions
are responsible for the energy splittings that appear in its
vibrational spectra. A TM is constructed in which the rows
and columns represent different minima. Each TM element
quantifies the interactions between the states that are localized
in the two minima it connects. The rearrangement processes
between the minima have thoroughly been studied in the
past.20,45 It has been determined that there are six rearrange-
ments that give rise to the appearance of the ground-state
splitting pattern in water trimer.21 TM elements corresponding
to the rearrangements can be calculated using accurate meth-
ods, such as PIMD,43 or approximate WKB46,47 and instanton
methods,21,24 as in the approach we follow below. The eigen-
values of TM are then the energy shifts of vibrational tunneling
states.

Fig. 1 The minimum-energy geometry of (H2O)3 labelled in its reference
version.
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The 48 minima of the water trimer can each be labeled by a
symmetry element of the molecular symmetry group G48. The
symmetry elements include the cyclic permutations of oxygen
atom labels, pairwise transpositions of hydrogen labels on each
water monomer and inversion. The character table and irredu-
cible representations of the group have been determined in
ref. 22. The six distinct tunneling pathways that form the TS
pattern can also be labeled by the symmetry operations of G48

by assigning them the label of the minimum to which the
pathway leads starting from the reference structure labeled as
in Fig. 1. Different identifications used for the 6 paths are
collected in Table 1 and the snapshots of geometries along the
paths are shown in Fig. 2.

Rearrangement with the lowest barrier is a flip of a majority
monomer, whereby one of the monomers pointing above the
ring plane in Fig. 1 rotates around the in-ring OH bond to point
below the plane in the final state. Sequential snapshots along
the path are shown in Fig. 2 and the potential along the path in
Fig. 3, labeled ‘F’. Subsequent flips of the leading majority
monomers lead to the initial structure after 6 such flips and
are hence termed pseudorotation. The pseudorotations in
water trimers form a group that is a direct product of 3 cyclic
oxygen permutations, G3, and inversion, and is isomorphic
to C3h and forms a subgroup of G48. The dynamics of flips
has thoroughly been studied using reduced-dimensionality
models,60–64 PIMD,43,44 Monte Carlo methods9,41,42 and instan-
ton theory.21,24

TM for the flips is a 6 � 6 matrix. Indices of its rows and
columns are labelled by the two minima that the tunneling
path connects and the corresponding matrix element is the
transition amplitude associated with the rearrangement. TM is
thus a Hamiltonian matrix in the basis of 6 degenerate eigen-
states of the 6 symmetric wells in the absence of tunneling. We
take one local vibrational eigenstate in each well in our basis
and neglect its interaction with other vibrational manifolds in
our calculations below.

The flip of the out-of-plane OH bond of the leading majority
monomer A, labeled by its oxygen atom, starting from the
reference version shown in Fig. 1, leads to the version with
the leading majority monomer B in the inverted trimer. The
flips of A and B monomer are thus the inverse symmetry
operations in the group, as shown in Table 1, and the asso-
ciated TM elements hF are equal in size. We take into account
only ‘nearest neighbor’ interactions. Each row of the TM thus
has two non-zero entries associated with the A and B monomer
flips. The TM can be diagonalized analytically and leads to
energies 2hF, hF, �hF and �2hF for states of A+, E�, E+ and A�

symmetries, respectively. The inner energy levels E� are doubly
degenerate. The eigenvectors of the TM are the expansion
coefficients of the vibrational wavefunction in our basis of
localized well states. The TM model thus gives a quartet
splitting with spacings 1 : 2 : 1. In a recent study,44 a model
which takes into account direct interactions between all 6 wells
was developed in which the spacings in the quartet no longer
follow the same pattern.

The other five tunneling pathways determined in ref. 21 and
shown in Fig. 2 involve bifurcations of water monomers.
Bifurcation is the motion in which the in-plane OH bond
rotates out of the hydrogen bond and away from the out-of-
plane OH, which rotates in the plane of the ring to reform the
hydrogen bond. It was found21 that in the dominant rearrange-
ments of water trimer, the bifurcations are always accompanied
by one or more flips. The same is true for the water pentamer,25

which also forms an odd-membered ring structure in its
ground-state configuration. Bifurcation mechanisms are listed
in Table 1 and shown in Fig. 2. We label paths as in ref. 45 in
the first column of Table 1 and describe the mechanics of the
rearrangement in the second column using symbols. Labels A–
C refer to the monomer involved in the flip motion while the
letter with ‘B’ on top refers to a bifuraction of the corres-
ponding monomer. The associated symmetry operation is
listed in the third column. Paths labeled A1–A3 are asymmetric,
hence the forward and reverse motions are labeled differently
because the monomers involved in the motion take on different
roles in the two minima they connect. The potential along
asymmetric paths does not possess a mirror symmetry. Paths
B1 and B3 are symmetric and are associated with the symmetry
operation which is its own inverse in Table 1. Bifurcations
proceed over significantly higher barriers than the flip, see
Fig. 3, because they break hydrogen bonds. They thus produce
the fine splittings in each branch of the flip quartet.

The inclusion of a bifurcation mechanism generates paths
to all 48 minima on the PES, each of which can be reached
in the maximum of 3 such ‘elementary’ steps from any
other minimum. The 48 � 48 TM has 10 non-zero elements
in each row (or column) with 6 of them different in size.
Pathways F (for flips) and A1–A3 produce 8 non-zero TM
elements as they are asymmetric so the inverse operation leads
to a distinct minimum. B1 and B3 are symmetric and produce
the remaining two.

We now proceed to derive the energies of the 48 vibrational
tunneling states in terms of TM elements symbolically. For this

Table 1 Instanton tunneling pathways in water trimer. The first column
labels the pathways as in ref. 45. The second column describes the motion
of monomers (as explained in the text). The third column lists the
symmetry operation of the minimum to which the pathway leads starting
from the reference version

Pathway Dynamics Symmetry

F A (ACB)(1 5 3)(2 6 4)*
B (ABC)(1 3 5)(2 4 6)*

A1 C̃ + A (ABC)(1 3 6 2 4 5)
B̃ + C (ACB)(1 5 4 2 6 3)

A2 C̃ + B (ACB)(1 6 4 2 5 3)
Ã + C (ABC)(1 3 5 2 4 6)

A3 Ã (ACB)(1 5 3 2 6 4)*
B̃ (ABC)(1 4 6 2 3 5)*

B1 C̃ + AB (56)*

B3 Ã + BC (12)*

PCCP Paper

Pu
bl

is
he

d 
on

 0
1 

A
pr

il 
20

24
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 9

:1
8:

28
 P

M
. 

View Article Online

https://doi.org/10.1039/d4cp00013g


12968 |  Phys. Chem. Chem. Phys., 2024, 26, 12965–12981 This journal is © the Owner Societies 2024

purpose, we recall the results of ref. 28 in which we studied the
ground-state TS pattern of the partially deuterated (PD) water
trimer, where either one or two of its monomers are substituted
by D2O. The molecular symmetry group of the PD trimer
consists of the transpositions of hydrogens on each monomer
and the inversion. They together form a subgroup G16 of G48

(bifurcations + inversion without the flips). The group is
Abelian, thus all its irreducible representations (irreps) are
one-dimensional. Its character table is given in Table 5 of
ref. 28. In the PD trimer, the double degeneracy of the inner
E� states of the flip quartet is removed (flip is not a symmetry
operation) and the flip states form a sextet instead. Bifurcations
further split each of the six sextet states into octets, whereby

each member state of the octet is of different symmetry species

in G16, i.e.,
P4
i¼1

A�i þ B�i . The energies of these 8 states have been

determined in terms of TM elements symbolically in ref. 28 as
follows. First, an eigenvector of the desired symmetry (irrep) is
constructed using the corresponding projection operator and,
then, the associated expectation value of the TM is calculated in
symbolic form. The symmetry-adapted vectors are unique since
only one state of a particular symmetry lies in each branch of
the flip sextet.

The PD trimer states converge to the states of homoisotopic
trimer in the thought process in which the masses of D atoms
are artificially reduced towards the mass of an H atom. Sym-
metries of G48 irreps in the G16 group are given by the correla-
tion table, Table 6, in ref. 28. For the states of the homoisotopic
trimer that appear only once inside a particular branch of the
flip quartet, the energy can be determined from the energy
expressions in G16, listed in Table S3 of ref. 28 (using the
eigenvectors of flip states). In the E� flip branch of the homo-
isotopic trimer, which splits as E� = 2T�1 + 2T�2 + E�1 + E�2 in G48,
the states T�1 and T�2 appear twice. Using descent in symmetry,
these states in G48 correlate as T�1 = A�2 + A�3 + B�1 , T�2 = A�4 + B�2 +
B�3 , E�1 = B�4 + B�4 and E�2 = A�1 + A�1 to the states in G16 (left side
in G48; right side in G16). The components of two T+

1 states that
have the same symmetry in G16 belong to different branches of
the flip sextet in PD trimer. We need to find two particular
linear combinations of flips in the doubly degenerate E+ mani-
fold which, when degeneracy is removed by increasing
the hydrogen masses on one monomer, give rise to the pairs
of A+

2, A+
3 and B+

1 states, each in a different flip branch of the PD
trimer, that originates from E+. Using perturbation theory for
degenerate states, we take one pair of states of the same
symmetry as a basis, e.g., of A+

2 symmetry, and construct a
2 � 2 block of TM in symbolic form. The block is then

Fig. 2 Minimum action paths for 6 rearrangements that are responsible for the formation of the tunneling splitting patterns in the water trimer (H2O)3.
Sequential snapshots of the trimer along the path connecting two symmetry-related minima are shown. The pathways are labeled as defined in Table 1.

Fig. 3 Potential energy curves along minimum action paths of rearrange-
ments listed in Table 1 and shown in Fig. 2. Stationary geometries F, A and B
near barrier maxima on paths F, A1–A3, and B1–B3, respectively, are also
shown.
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diagonalized to obtain the energies as E1;2 ¼ E1 þ E2ð Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 � E2ð Þ=2½ �2þh2

q
; where E1 and E2 are diagonal matrix

elements of the block and h is the off-diagonal element.
Alternatively, taking A+

3 or B+
1 states as a basis results in a

different 2 � 2 matrix but the same final result. The procedure
for determining the energies of T�1 and T�2 states is analogous.
Symbolic expressions for the energy levels in terms of TM
elements that correspond to rearrangements in Fig. 2 are
collected in Table 2. The quadratic form under the square root
in D� has two non-zero eigenvalues and is expressed in the
diagonal representation in Table 2.

We are now in the position to analyse the energy-level
diagram given by the formulae in Table 2. In the ground
vibrational state, all matrix elements hi are negative. Pseudor-
otational states form a quartet A+ + E� + E+ + A�, as discussed
above. Bifurcations split member states of the quartet into finer
splittings. State A+ is split into a quartet of equidistant energy
levels A+ = A+

1 + T+
1 + T+

2 + A+
2. State A� splits similarly into a

quartet, equally spaced and of opposite parity. The order of the
states in A� is the same as in Table 2, if 2(hA1 + hA2) 4 �(2hA3 +
hB1 + hB3) and reverse otherwise. The widths of the outer flip
states A� are |4(hA1 + hA2 � hA3) � 2(hB1 � hB3)|. With only A1
and A2 mechanisms present, A+ and A� flip manifolds would
have equal widths. Generally, for the states that change sign
under inversion, with the superscript ‘�’, the matrix elements
hA3, hB1 and hB3 change sign relative to the corresponding ‘+’
states in the energy expressions in Table 2. This happens
because the symmetry operations, see Table 2, associated with
A3, B1 and B3 rearrangements involve inversion.

Bifurcations split the doubly degenerate pseudorotational
state E� into a sextet, E�1 + 2T�2 + 2T�1 + E�2 . The energy of E�1 , the
average energy of the two (H/L) T�2 states, that of two T�1 states,
and of E�2 are also equidistant. However, the pairs (H/L) of T�2
and T�1 states are set apart by 2D�, see Table 2. The E�1,2 states
split symmetrically with respect to the origin of the flip state, as
do the lower (L) T�2 and upper (H) T�1 states, and the lower T�1

and upper T�2 states. If D� 4 1/3|E(E�2 ) � E(E�1 )|, T�2 and T�1
states change order with E�1 and E�2 states. The order of the
states, therefore, cannot be established in advance although it
is not arbitrary. The order of the states in the E� flip manifold is
the same as in Table 2, when hA1 + hA2 o �(�hA3 + hB1 + hB3)
and reverse otherwise. If only one bifurcation mechanism was
present, E� states would split into a quartet. With B1 or B3
present, the quartet is equally spaced (as in ref. 9 and 20); with
A1, A2 or A3 present, the spacings are 1 : 3 : 1. An analogous
analysis applies to the bifurcation splittings of the pseudorota-
tional state E+.

We note that the energy level diagram in Table 2 uniquely
determines the 6 matrix elements h. There are 7 constraints in
them: hF is determined from the width of the flip quartet, while
the remaining six are the widths of the four branches of the flip
quartet and the sizes of D� shifts.

3 Tunneling matrix element via
modified WKB

The TM element for the interaction between the localized states
of two symmetry-related minima i and j, connected by a feasible
rearrangement, can be evaluated using the Herring
formula,55,56

hij ¼
1

2

ð
fð jÞðnrÞfðiÞ � fðiÞðnrÞfð jÞ
� �

dS: (1)

Eqn (1) uses mass-scaled Cartesian coordinates and h� = 1. The
localized wavefunctions f(i/j) of the wells i and j are degenerate
and assumed to have a negligible amplitude in the wells j/i on
the opposite ends of the rearrangement path due to the high
potential barrier that separates them. The benefit of using
eqn (1) is that the wavefunctions only need to be evaluated at
the dividing plane S, with a unit normal n, that is placed in the
high-potential region of the barrier and separates the two wells.
In the approach of ref. 50, 52, 57 and 58, the wavefunctions are
approximated using the modified WKB theory. For the ground
vibrational state, the method is equivalent to the instanton
theory in discrete (ring-polymer)51 or continuous (Jacobi-fields)
form.52 The underlying assumption is that in the narrow
passageway through the barrier, the exponentially decaying
wavefunction crosses the dividing hypersurface in a limited
region of space, where it is insensitive to its exact form in the
well. The wavefunction then admits a representation using
simple Gaussian functions and the integration over the divid-
ing surface in eqn (1) can be performed analytically.

The local wavefunctions fi/j are approximated using the
standard WKB ansatz (with indices i/j suppressed) as

f ¼ N0e
�1�h W0þW1�hð Þ; (2)

where N0 is the normalization constant. Characteristic func-
tions W0 and W1 satisfy Hamilton–Jacobi (HJ) and transport

Table 2 Analytic expressions for the tunneling energy levels of the
homoisotopic water trimer. The energy levels are labelled by the irredu-
cible representations of the G48 group

E(A�1 ) = �2hF þ 2(hA1 + hA2 � hA3) � (hB1 + hB3)
E(T�1 ) = �2hF

þ 2

3
hA1 þ hA2 � hA3
� �

� 1

3
hB1 þ hB3
� �

E(T�2 ) = �2hF

� 2

3
hA1 þ hA2 � hA3
� �

8
1

3
hB1 þ hB3
� �

E(A�2 ) = �2hF � 2(hA1 + hA2 � hA3) 8 (hB1 + hB3)
E(E�1 ) = 8hF þ (hA1 + hA2 � hA3) 8 (hB1 + hB3)
EH

L
T�2
� �

= 8hF

þ 1

3
hA1 þ hA2 � hA3
� �

8
1

3
hB1 þ hB3
� � þ

�
D�

EH
L

T�1
� �

= 8hF

� 1

3
hA1 þ hA2 � hA3
� �

� 1

3
hB1 þ hB3
� � þ

�
D�

E(E�2 ) = 8hF � (hA1 + hA2 � hA3) � (hB1 + hB3)

D� ¼ 1

3
2hA1 � 2hA3 � hB1 � hB3
� �2�

þ1
9
2hA1 � 4hA2 � 2hA3 � hB1 � hB3
� �2�1=2
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equations (TE), respectively, as

@W0

@xi

@W0

@xi
¼ 2VðxÞ;

@W0

@xi

@W1

@xi
� 1

2

@2W0

@xi@xi
þ E

�h
¼ 0:

(3)

In the modified WKB method, the energy E is placed in the
TE as an h�1 term in order to avoid the difficulties associated
with the integration over the classical turning points and to
enable matching onto the harmonic oscillator states at
minima.

The HJ equation is solved for W0 using the method of
characteristics. Momentum is identified with pi = qW0/qxi and
the equations of characteristics,

dxi

dt
¼ pi;

dpi

dt
¼ @V=@xi;

(4)

dW0

dt
¼ pipi; (5)

become the classical trajectories xi(t) on the inverted PES,
�V(x), at zero total energy (with minima defined at V(xmin) =
0) parametrized by t. Two particular characteristics, each
originating from one of the two minima, can smoothly be
joined into one classical trajectory that connects the two
minima and crosses the dividing surface at the barrier. Since
the trajectory is classical, the action integral along the trajectory
is minimal.

We define a local coordinate system (S, Dx), where S is the
arc-length distance from one minimum along the trajectory
and Dxi are displacements along the coordinate axes that lie
perpendicular to the trajectory. The perpendicular coordinate
axes coincide with the normal mode directions of the molecule
at minimum and are propagated along the trajectory using

parallel transport. Since momentum is tangent to the path, p ¼
dS=dt ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2VðSÞ

p
; and the trajectory can be reparametrized

using S. Characteristic function W0 and the potential V are
both expanded to second order in displacements at each point
on the characteristic. We then have

W0ðS;DxÞ ¼
ðS
0

pdS þ 1

2
DxTAðSÞDx: (6)

The first term on the r.h.s. is just W0 on the characteristic
obtained by integrating the HJ equation, eqn (3). The first order
term in Dx is missing because qW0/qDxi = 0 due to the least
action principle. The second term on the r.h.s. involving Aij =
q2W0/qxiqxj is determined from the HJ equation as

p
d

dS
AðSÞ ¼ HðSÞ � A2ðSÞ; (7)

where H in eqn (7) is the Hessian of the potential at S.

From TE, we immediately obtain W1 on the characteristic in
the form

W1ðSÞ ¼
1

2

ðS
0

Tr AðSÞ � A0ð Þ
p

dS: (8)

In eqn (8), the energy of the ground state is E = 1/2Tr A0, where
the matrix of frequencies A0 �

ffiffiffiffiffiffiffi
H0

p
and H0 is the Hessian at

minimum. By setting A(0) = A0, the WKB wavefunction in
eqn (2) at the minimum coincides with that of the harmonic
oscillator if we set the normalization constant N0 = (det A0/p f )1/4,
where f is the dimensionality of the system.

The excited-state wavefunction with one quantum of excita-
tion in the vibrational mode Ue of frequency oe is constructed
by adding w(S) to W1 in eqn (2), f = N1 exp[1/h�(�W0 �W1 � w)],
which then satisfies

@W0

@xi

@w

@xi
þ oe ¼ 0: (9)

Function exp(�w) needs to reproduce the linear pre-
exponential factor responsible for the node of the
wavefunction as

e�w = F(S) + UT(S)Dx, (10)

where F = exp(�w(S)) and Ui = q exp(�w)/qDxi. Factor F appears
in the expression because the MAP in general deviates from the
normal mode direction at the distance S = e from the mini-
mum. From eqn (9), it follows that

p
d

dS
UðSÞ ¼ oeUðSÞ � AðSÞUðSÞ; (11)

p
d

dS
FðSÞ ¼ oeFðSÞ: (12)

Function F can also be obtained from U as

FðSÞ ¼
ðS
0

UTðSÞtðSÞdS; (13)

where t(S) is a tangent vector to the MAP at S. Again, the
matching of the wavefunction to the harmonic oscillator state
at minimum determines the initial condition for eqn (11) as
U(0) = Ue and the normalization constant as N1 ¼ N0

ffiffiffiffiffiffiffiffi
2oe

p
.

The dividing plane S is chosen to intersect the MAP at S = SS,
where the potential V(SS) has a maximum along the MAP, at the
right angle, so that the surface normal n coincides with the
tangent t(SS) to the MAP at SS. The WKB wavefunctions con-
structed above are inserted into the Herring formula and the
normal derivative in eqn (1) brings p(SS) in front as the leading
order contribution, which is then assumed not to vary appre-
ciably over the width of f in the S plane. The integral of the
product of wavefunction fi and f j over the S-plane is of
Gaussian type and is evaluated analytically. The final expres-
sion for the tunneling matrix element between minima i and j

Paper PCCP

Pu
bl

is
he

d 
on

 0
1 

A
pr

il 
20

24
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 9

:1
8:

28
 P

M
. 

View Article Online

https://doi.org/10.1039/d4cp00013g


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 12965–12981 |  12971

with n excitations (n is either 0 or 1) reads

h
ðnÞ
ij ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det0A0

pdet0A

s
2oeð ÞnpðSSÞ exp �

ðSmax

0

pðSÞdS
� �

� F ðiÞF ð jÞ
� �n

þ1
2
U ðiÞA�1U ð jÞd1;n

� �

� exp �1
2

ðSS
0

Tr AðiÞ � A0

� �
pðSÞ dS � 1

2

ðSmax

SS

Tr Að jÞ � A0

� �
pðSÞ dS

" #
;

(14)

where the minima are at S = 0 and at S = Smax and the quantities in
the second line of eqn (14) are evaluated at the dividing plane at S =
SS, Ā = [A(i)(S) + A( j)(S)]/2 and det0 denotes the product of all non-
zero eigenvalues. Zero eigenvalues are associated with the overall
translations and rotations and, for Ā, an additional zero eigenvalue
is associated with t(SS). The pseudoinverse of Ā in eqn (14) is
evaluated by inverting all its non-zero eigenvalues.

The theory ignores rotations. It is assumed they are
decoupled and do not modify the splitting appreciably in the
rotational ground state. This is expected to be a good approxi-
mation for water trimer.49 The system is treated in full dimen-
sionality but in a harmonic approximation in the directions
perpendicular to the MAP. The zero-point motion of perpendi-
cular modes enters the TM element through integrals in the
last line of eqn (14). Exact energies of local degenerate well
states do not enter the equation, but the normalization to
harmonic oscillator states at minima introduces an error
through the first factor on the r.h.s. in eqn (14).65 The method
performs best for high barriers and small splittings. As
described in the next section, the entire theory can be applied
in Cartesian coordinates and at a modest computational cost,
which allows one to apply it to systems that are out of reach to
exact quantum treatments. Using on-the-fly ab initio evaluation
of the electronic potential and gradients, the application is
limited to systems that allow the evaluation of several thousand
gradients with sufficient accuracy.

4 Computational details

The computation of TM elements proceeds as follows. In the
first step, one determines the minimum energy geometry,
shown in Fig. 1, in Cartesian coordinates. In the next step, we
determine the minimum action paths (MAPs) for all rearrange-
ments in Table 1, that are responsible for the formation of the
splitting pattern21 through relationships shown in Table 2. The
MAP for a particular rearrangement is obtained by applying the
corresponding permutation of labels in Table 1 to the mini-
mum geometry and, for the paths F, B1 and B3, the multi-
plication of all Cartesian coordinates by �1 for the inversion.
The two geometries are then aligned with respect to each other
to minimize the Euclidean distance in mass-scaled Cartesian
coordinates using quaternions66 (or the Kabsch algorithm67).
The straight line path that connects the minima in Cartesian
coordinates is discretized using N images or beads, in ring-

polymer formalism, at equal mass-scaled distances using linear
interpolation in each coordinate. The initial path is then
optimized using the string method to minimize the Jacobi
action along the path as described in ref. 68 and 69. For this
purpose, the gradients of the potential are evaluated at all
intermediate beads between the two minima at every iteration
in order to calculate the discretized gradients of Jacobi action.
Geometry update of the intermediate beads is then performed
using the LBFG(S) (limited memory Broyden–Fletcher–Gold-
farb–Shanno) method70 with the gradients of action projected
at directions perpendicular to the path. The end beads are
reoriented using a quaternion algorithm to minimize the dis-
tance to the closest bead. To ensure that all beads remain
equally spaced along the path, reinterpolation of beads along
the path is also performed at each iteration. Water trimer MAPs
typically give converged matrix elements using N = 30 beads in
E300 steps with the convergence threshold set at 10�6 a.u. for
the largest length of the projected action gradient at a bead.
The calculations below use N = 101 to ensure a tight
convergence.

All subsequent calculations proceed using properties eval-
uated at the MAP. The potential and Hessians of the potential
are evaluated at every bead and the interpolants V(S) and H(S)
are constructed in terms of the arc length distance S along the
MAP using cubic splines. This allows us to integrate eqn (7)
from each minimum up to the dividing plane, at S = SS, at both
sides of S. Matrix A is recorded at predetermined positions,
e.g., beads, along the MAP in order to construct the spline
interpolants A(S) on each side of the dividing plane S. One is
then able to solve eqn (11) for U(SS) and obtain F(SS) from
eqn (13) at both sides of the dividing plane and for each
vibrational excitation of interest. TM elements are then evalu-
ated using eqn (14).

Fig. 4 Tunneling splitting pattern for the excited vibrational mode 3
(harmonic frequency 185 cm�1) of the water trimer (H2O)3 on MB-pol
PES.34–36 The set of levels on the left is the pseudorotational quartet; insets
on the right show the bifurcation splittings of each branch of the quartet.
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Integration of eqn (7) and (11) is performed using the
adaptive-step Runge Kutta method. There is a singularity in
the equations as p = 0 at the minima. The solution is therefore
first constructed at S = e by expansion of A and U in powers of S
at S = 0, as described in ref. 52 and 57, and it serves as the
initial condition for integration of eqn (7) and (11). The con-
verged TM element has to be independent of the size of e and it
turns out that its dependence on e is the main indicator of the
divergence of WKB. For higher vibrational states, the solution
becomes extremely sensitive to the exact form of potential
near the minimum, where the classical trajectory spends
an infinite amount of time. The results below are obtained
using e = 1me

1/2a0.
The normal modes Ui and U j at the minima i and j must be

appropriately aligned in order to avoid errors due to sign
ambiguity. The minima at the two ends of the MAP are
connected by a permutation–inversion operation and a rota-
tion, which is determined using quaternions. Normal modes
are calculated for the reference version at one minimum and
the symmetry operation and rotation are then applied to bring
them in coincidence with the normal modes of the minimum at
the other end of the MAP, which fixes their orientation there.

Finally, a separate 48 � 48 tunneling matrix is constructed
for the ground state and each vibrationally excited state of
interest. We therefore assume that the states with different
number of vibrational quanta do not interact. In general,
different branches of pseudorotational quartets in vibrationally
excited states interact with each other when they lie close in
energy, as observed in ref. 9. Our model, however, cannot
predict the occurrence of the situations in which they do. We
only have harmonic energies at our disposal to estimate the
energy differences between different vibrational manifolds,
while the flip matrix elements obtained using WKB, which
are of comparable size, are also known to be of poor accuracy
for almost barrierless motion.21 Since bifurcation splittings are

tiny compared to the energy differences associated with the flip
states, it is a safe bet to assume that their sizes are predomi-
nantly unaffected by the states belonging to different vibra-
tional manifolds. Robustness of the size of the bifurcation TM
elements to the exact form of pseudorotational states was
observed in ref. 28.

TM can be diagonalized for each vibrational excitation of
interest to obtain the spectrum relative to the degenerate
energy of the localized single-well vibrational state. The sym-
metry of the eigenvector determines the symmetry of the
vibrational state (in G48), which allows one to work out the
nuclear spin degeneracies and thus the allowed transitions and
their intensity pattern, as in ref. 22. However, we have deter-
mined the eigen-energies symbolically in Table 2. The addi-
tional assumption was to neglect the interaction between the
subsets of states belonging to different branches of the flip
quartet. The error associated with that is truly negligible
resulting in differences in the 5th significant digit. We there-
fore use Table 2 to determine the energies of 20 substates (48
including vibrational degeneracies) of each vibrational excita-
tion studied below.

5 Results

We now apply the method to (H2O)3 using the MB-pol34–36 PES.
Potential energy curves along MAPs for the six pathways in
Fig. 2 are shown in Fig. 3 as functions of arc-length distance in
mass-scaled coordinates from the reference minimum. Tunnel-
ing paths for F (flip) and A1–A3 have a slight asymmetry, with
barrier maxima at 51.9%, 51.5%, 56.6% and 49.6% of the full
path length, respectively. Paths B1 and B3 are symmetric. Paths
vary in length between 115.4me

1/2a0 for F path and 284.7me
1/2a0

for A2 and 303.7me
1/2a0 for B3. The closest stationary points

(SP) on the PES to the barrier maxima along the MAPs are
shown in the inset pictures in Fig. 3.

Fig. 5 Normal modes of vibration of water trimers for the 6 lowest frequencies.
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SP near the F path is of Cs symmetry and at 83.16 cm�1. The
barrier maximum along MAP is very close at 83.77 cm�1

suggesting low corner-cutting effects and a minimum-energy
path (MEP) close to MAP. Paths A1–A3 pass close to a SP at
757.7 cm�1, with barrier maxima on MAP at 774.3 cm�1,
828.7 cm�1 and 819.2 cm�1, respectively. Paths B1 and B3 pass
near a stationary point at 822.6 cm�1 with two negative fre-
quencies. The barrier heights along the path are 837.7 cm�1

and 836.3 cm�1, respectively. As we shall see below, the paths
B1, B3 and A2, which are the longest and have the highest
barriers along the MAP, unintuitively, give rise to the largest TM
elements.

Normal modes of vibration of water trimers are listed in the
ESI of ref. 9 and the six lowest-frequency modes are shown in
Fig. 5. A visual inspection shows that mode 1, of lowest
frequency, is mainly the flip motion of monomer A. Mode 2
and 4 are linear combinations of the bend of angle ABC at
oxygen B and in-phase flips of monomers B and C. Mode 3 is
mainly the bend of angle BCA at C. Mode 5 is the breathing
mode of triangle ABC, while mode 6 is mainly an anti-phase flip
of monomers B and C. Modes 7–12 represent librations
composed of in-plane and out-of-plane bends of the in-plane
OH bonds (the in-ring OH bonds), relative to the plane formed
by the three oxygen atoms. Modes 13–21 are high-frequency
intramonomer vibrations of water. The convergence of TM
elements with e (see the remarks in the previous section) was
achieved for modes 1–6 for all paths. They are listed in Table 3
and shown graphically in Fig. 6 and 7.

We first turn our attention to the flip motion. For asym-
metric paths, at the ‘left’ side of the dividing surface, the
dynamics follows the motion described by the upper row (in
the 2nd column) in Table 1; the ‘right’ side is described by the
lower row. On the flip (F) path, the longitudinal mode at the left
minimum is mode 1. At the right minimum, where what was
the flip of monomer A becomes the flip of monomer B, the
tangent to the path has large components along both mode 1
and mode 2.

Correspondence between normal modes at minimum and at
the transition state is relatively well preserved (only modes 7
and 8 switch order diabatically). The frequencies of modes 2–5
change by between �1 cm�1 and �3.5 cm�1 from minimum to
SP, while for modes 7–12, the change is between �11 cm�1 and
�45 cm�1 (apart from modes 7 and 8 which together produce a
change of �11 cm�1). The stiffness of modes falls towards the

SP which contributes to the wavefunction amplitude inside the
barrier and the magnitude of the splitting. When the barrier is
corrected for the zero-point energy at the minimum and at the
saddle, it is equal to �33.32 cm�1, which indicates that the flip
motion is above the barrier and free. Transverse vibrational
modes (that are perpendicular to MAP) thus significantly affect
the splitting. The first factor on the r.h.s. in eqn (14) is affected
through the normalization constant and the surface integral
over S in eqn (1) and contributes a factor 1.12 to the flip TM
element compared to the one-dimensional (1D) calculation.
The exponential factors in the last line, which account for the
change of the zero-point frequencies along the MAP contribute
a factor of 1.86. The full-dimensional result is thus a factor of
2.08 larger than the 1D result.

The eigenvalues of matrix A change adiabatically along the
MAP; they closely follow the square root of the Hessian eigen-
values for all modes apart from the lowest, longitudinal, mode
that correlates with the imaginary frequency mode at the
transition state. The eigenvectors of A practically match the
eigenvectors of Hessian at TS. The excitation vectors U at both
sides of the dividing plane have the largest component along

Table 3 Tunneling matrix (TM) elements of the water trimer (H2O)3 on the MB-pol PES34–36 for rearrangement paths F, A1–A3, B1 and B3 in the
vibrational ground state and the 6 lowest-frequency excited vibrational modes in cm�1. The numbers in the brackets are TM elements for the flip scaled
by 0.53 to match the PIMD result43

Path GS 1 2 3 4 5 6

F �49.4 169 23.5 70.5 �19.5 �48.7 �165
[�26] [90] [12] [37] [�10] [�26] [�87]

A1 �3.46(�3) �1.32(�2) 1.73(�2) �2.37(�4) 2.42(�2) 2.29(�3) �1.65(�3)
A2 �9.65(�3) �2.31(�2) �4.93(�2) 7.60(�3) �2.58(�2) 2.81(�2) 3.13(�1)
A3 �4.37(�3) 1.15(�2) 6.04(�3) 3.56(�3) 1.89(�3) �3.22(�3) �1.16(�2)
B1 �1.18(�2) 1.07(�1) �5.32(�3) 5.76(�2) �7.00(�2) �8.40(�4) 2.29(�1)
B3 �8.07(�3) �1.07(�1) 1.29(�1) 3.87(�3) 1.82(�1) 4.36(�2) 4.83(�1)

Fig. 6 Tunneling matrix elements of the water trimer (H2O)3 on the MB-
pol PES34–36 for rearrangement paths A1–A3, B1 and B3 in the vibrational
ground state (GS) and the 6 lowest-frequency vibrational modes in cm�1.
Exact numbers are given in Table 3.
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the corresponding eigenvector of A (apart from the (longitudi-
nal) mode 2 on the right side of S, which has the largest
component along the tangent, the same as (the other long-
itudinal) mode 1).

The GS TS has been determined using instanton theory in
ref. 21 on the WHBB PES4,32,33 and in ref. 24 on the MB-pol
PES.34–36 The GS TM element for the flip is 49 cm�1; the
formally exact result43 is 26 cm�1 on the same PES, a disagree-
ment by a factor of 0.53. The experimental spacings in the
GS pseudorotational quartet are 22.7 cm�1, 42.9 cm�1 and
21.5 cm�1.71 Instanton theory is known to overestimate the
splittings51,58 near the barrier top by a factor of E2. The flip (F)
TM elements for vibrationally excited modes 1–6 are listed in
the first row of Table 3. Relative values of observables calcu-
lated using instanton theory have often been found to be of
better accuracy than the absolute values.28,51 We therefore list
the TM elements for the flip scaled by a factor of 0.53, to match
the GS TM element of ref. 43, in the second row of Table 3 in
brackets.

TSs in vibrationally excited states can be decomposed into
the ‘longitudinal’ contribution, given by the ‘F’ term in the 2nd

line of eqn (14) in the brackets, and the ‘transverse’ ‘U’ term
contribution, given by the second term in brackets, UĀ�1U. The
theory of ref. 57 strictly separates the longitudinal and trans-
verse contributions and only one term of the two is present,
depending on the nature of the excitation. For the longitudinal
excitation in mode 1, TS is expected to come with an even
greater error than in the GS, because the wavefunction
stretches into the highly anharmonic regions of the PES
towards the barrier. Our results are thus interpreted as upper

estimates to the splittings.58 TS is predominantly, 93%, deter-
mined by the F term in eqn (14), as is expected for a
longitudinal mode.

We next note that the TM elements for flip in the excited
modes 1–3, in Table 3, come with the opposite sign to that in
the GS. For modes 4–6, the sign of hF is again negative as in the
GS. From eqn (13), we have that F(e) = Uet(e)e. (e = 1me

1/2a0 in
our calculations.) For the excited mode 1, the angle between Ue

and t is 167.31 at S = e, and it is 161.81 at S = SS. On the other
side of the dividing plane, the angles are 52.81 and 47.01 at S =
Smax � e and SS, respectively. F(e) and F(Smax � e) therefore have
opposite signs at the start. From eqn (12), it follows that
F(S(t)) = F(e)exp(oet) (and on the other side of the dividing
plane accordingly), so that F does not change sign. Hence, the F
term in eqn (14) for the excited mode 1 is negative and the TM
element is of opposite sign to that in the GS. As a consequence,
the quartet states appear in reverse order (to the order given in
Table 2) as A�, E+, E� and A+, in the order of increasing energy.
Reduced-dimensionality calculations of ref. 62 also predict the
reverse order of states for the excitation of mode 1. The
excitation of higher vibrational modes involves a change of
shape of the ABC triangle formed by the oxygens and cannot be
adequately described by the reduced-dimensionality models
where its shape is fixed.

For transverse modes, however, we also need to evaluate the
U term (UĀ�1U) in eqn (14) to determine the order of the quartet
states. Since the evolution of U vectors along the path is largely
adiabatic and follows normal modes, as discussed above, the
U(i)T
> U( j)

> projection at the dividing plane, where U> is the
component of U in the direction perpendicular to the path,
coincides with the sign of the U term for the flip. In fact, the
sign of the U term also coincides with the overlap between left-
and right-minimum modes. It is negative for excited modes 1–4
and positive for modes 5 and 6.

The U term in eqn (14) is expected to be larger than the F
term contribution for transverse modes. Indeed, in ref. 57, only
the U term is considered and the mixing of transverse and
longitudinal modes that arises from the curvature of the path58

is neglected. In water trimers, the U term contributes 95.2%,
26.5%, 38.2%, 86.8% and 16.7% to TS for modes 2–6, respec-
tively. This clearly shows that the F term cannot be neglected
for the transverse excitations. The F term signs, deduced from
UT

et projections at e, differ from the U term sign only for mode 4
and, unexpectedly, the F term gives a larger contribution
resulting in the same order of quartet states as in the GS. The
widths of flip quartets in vibrationally excited states (4hF)
relative to the GS width are shown in the histogram in the
upper panel of Fig. 7. The darker shades of bar color indicate a
reverse order of quartet states for modes 1–3. The reverse order
of states for mode 3 can also be seen in the TS pattern diagram
in Fig. 4. In the recent experiment of ref. 9, the widths of the flip
quartets in the excited modes 2 and 3 were found to be of
comparable size to the GS (20 cm�1 and 19 cm�1, respectively,
with the GS TM element of 22 cm�1).

The evolution of the excitation vector U along the path
follows eqn (11). It can be decomposed into the evolution of

Fig. 7 Widths of the flip quartets of the water trimer (H2O)3 for the 6
lowest-frequency excited vibrational modes relative to the ground-state
(GS) quartet width are shown in the upper panel. Widths of the flip quartet
branches due to bifurcations for the GS and the 6 lowest-frequency
excited vibrational modes are shown in the lower panel. Darker shade
bars indicate the reverse order of states in energy, as defined in the text.
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its norm g and its direction, the unit vector Ũ, as in ref. 57. The
time-derivative of g = (UTU)1/2 is

d

dt
g ¼ ðoe � yÞg; (15)

where y = (UTAU)/(UTU) is the effective frequency. We note here
that y can equally well be defined with Ũ instead of U.
Substitution of U = gŨ in eqn (11) gives

d

dt
~U ¼ y ~U � A ~U : (16)

From eqn (15), we note that the components of U along the
lower frequency modes will result in a reduction of y and an
exponential growth of the norm g of U (as exp(oe � y)t).
Similarly, the components of U along the higher-frequency
modes result in the attenuation of the norm g. The excitation
U thus starts along the excited vibrational mode at minimum
and mixes in other low-frequency modes along the MAP. At the
distance e from the minimum along the flip path, small, but
not insignificant, projections of transverse modes on the path
tangent t(e) produce significant F term contributions to the TM
elements due to the large imaginary times involved.

Rearrangements along the A and B paths are tunneling
motions. The respective barrier heights corrected for the zero-
point energies at the minimum and at the saddle are signifi-
cantly lowered, at 620.0 cm�1 and 483.8 cm�1, and change
their order in energy. The frequencies of modes 2–12
from the minimum to saddle point A are all lowered by between
�23 cm�1 and �118 cm�1, apart from mode 8 which changes
by +5.7 cm�1. For stationary point B, frequencies of modes 3–12
change by between �24 cm�1 and �135 cm�1, while mode 2
changes by �330 cm�1 and is negative at SP. The adiabaticity of
eigenvalues of matrix A is no longer preserved for low frequency
modes. Nevertheless, the eigenvectors of Ā and transition-state
modes (eigenvectors of H(SS)) align relatively well, with direc-
tion cosine coefficients of the corresponding transition-state
modes equal to 0.7 or larger (with modes 4 and 5 on B1, and
modes 3 and 4 on B3 path swapped).

TM elements for A and B paths are listed in Table 3 and
shown graphically in Fig. 6. They exhibit large variations in size
for different modal excitations; they change sign, and increase
and decrease in size compared to the GS TM element. The
largest TM elements, in general, appear for paths A2, B3 and
B1. The TM element for the B3 path for the excited mode 6 is 60
times larger than in the GS, while for the excited mode 3, it is
2.1 times smaller.

Mode 1 is the longitudinal mode for B1 and B3 paths on
both sides of S as the paths are symmetric. Mode 1 is also
predominantly longitudinal at one end of the A1–A3 paths (left
for A1 and A3, right for A2), while mode 2 is longitudinal at the
other end. The theory of ref. 57, that strictly separates modes
into longitudinal and transverse, predicts zero TM elements for
the longitudinal–transverse excitations in the excited modes 1
and 2 on A1–A3 paths.

For the A1 path and all excitations (in modes 1–6), the F term
is larger than the U term and determines the sign of the TM

element. For mode 4, it gives 99% contribution to the splitting.
For mode 3, it gives 53% and comes with the opposite sign to
the U term which results in an almost complete cancellation, as
shown in Fig. 6. Significant projections of modes 1–3 on the
path tangent near the left minimum and of modes 2, 1 and 4
near the right minimum (with coefficients 40.1) are amplified
in eqn (12) by a factor that increases with the modal frequency
as exp(oet). The net result is large TM elements for the excited
modes 1, 2 and 4 on the A1 path. For modes 3, 5 and 6, F and U
terms come with opposite signs and the TM elements are
smaller, as shown in Fig. 6.

The sign of the U term on the A1 path cannot be predicted
using overlaps of left-minimum and right-minimum modes
(wrong for mode 6 on A1 path) or U(i)T

> U(j)
> (wrong for mode 4

on the A1 path). Excitation vector U has significant components
over several transition-state modes at S. The U-term contribu-
tion to the TM element can be decomposed over eigenvectors of
Ā (where mode 1 of Ā is the tangent t and does not contribute).
The decomposition reveals that for the excited modes 1–6 on
the A1 path, transition-state modes 3, 2, (2, 4), (2, 5), 6 and (6,
7), respectively, make the largest contribution to the TM
element (UĀ�1Uoe 4 0.2 contributions listed). Clearly, the sign
and size of U term contributions is difficult to predict without
fully solving eqn (7) and (11).

On the A2 path, the F term determines the sign of the TM
element only for mode 1. Large projections of t on modes 1–4
and 6 (40.1) at e near the left minimum and a large path
segment with a negative Hessian eigenvalue serve to bring
down the value of y in eqn (15) and to rotate U towards low-
frequency modes. Similar behavior is observed on paths B1 and
B3. The decomposition of U term contributions over eigenvec-
tors of Ā shows that mode 2 at the transition state dominates
for almost all excitations on paths A2, B1 and B3 (exceptions are
for the excited mode 1 on the A2 path and mode 2 on B3). The
frequency of mode 2 of Ā is 48.8 cm�1, 16.0 cm�1 and 35.6 cm�1

on A2, B1 and B3 paths, respectively (while it is 156.7 cm�1 and
139.2 cm�1 on A1 and A3 paths), which is low in comparison
with oe (see Fig. 5). This behavior signals a large spread of the
wavefunction over that mode at the transition state and results
in a large U term contribution.

The sole F term gives the TM elements with 25% accuracy for
the mode 1 excitations on all paths, and also for modes 2 and 4
on the A1 path. The sole U term gives results with 25% accuracy
for modes 2, 5 and 6 on A2, modes 3 and 6 on A3, mode 6 on B1
and modes 2, 4 and 6 on B3. Small TM elements for modes 2
and 5 on B1, for mode 3 on B3, and modes 4 and 5 on A3, are a
consequence of the cancellation of F and U terms. On B1 and
B3 paths, all U terms are negative and are of opposite sign from
F terms and also from the overlap of left- and right-
minimum modes.

TM elements in Table 3 combine using relationships shown
in Table 2 to produce TS patterns in Table 4. Vibrational-
tunneling energies in Table 4 refer to bifurcation splittings
and are given relative to the energies of the corresponding
branches of the flip quartet. The widths of the vibrational
splitting patterns are shown in Fig. 7. The upper panel shows
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the flip quartet widths for excited modes 1–6 relative to the GS,
as already discussed. The lower panel shows the widths of the
branches of the flip quartet due to bifurcations. The darker
shades of bar colors refer to the ‘reverse’ order of states to that
in Table 2.

TM elements of mechanisms B1 and B3, as well as A1 and A2
always add up in energy expressions in Table 2, except in the D�

splitting of T�1,2 levels. A large decrease of widths of the quartet
branches with energy, from A+ to A�, is observed in the GS.21

The excited mode 5 and 6 exhibit a similar pattern. For mode 5,
bifurcation widths are largely determined by the TM elements
for paths A2 and B3, see Table 3, since 2hA2 and hB3 are the
largest and similar in size. Likewise, for mode 6, 2hA2 and hB1 +
hB3 figure prominently in determining the shape of the TS
pattern. For modes 3 and 4, hB1 and hB3, respectively, control
the qualitative look of the TS pattern so that A+ and A�

branches have comparable widths. For the excited mode 1,
TM elements A1–A3 determine the TS pattern, as hB1 and hB3

almost completely cancel out. Bifurcation widths of the E�

quartets are governed by the T�1,2 energies in Table 2 for all
excited modes, apart from mode 6 where the outer states are of
E�1,2 symmetry, as shown in Table 4.

The TS pattern for the excited mode 3 is singled out in Fig. 4
as a representative example of the water trimer TS patterns in
excited states. It features a reverse order of pseudorotational
states relative to the GS, as hF is positive, and also the reverse
order of states in A+ and E�. All bifurcation widths of quartet
branches are E0.1 cm�1, similar to the width of A+ in the GS.

The width of A+ increases up to 2� in the excited modes 1–5,
apart from mode 2, where it decreases by E11%. The largest

width we obtained is for the A+ state in the excited mode 6
(2.6 cm�1), a 24-fold increase compared to the GS (0.11 cm�1).
In other excited modes 1–5, the widths of all quartet branches
are below 0.5 cm�1.

TSs due to bifurcations have also been measured in
experiment.20 The GS splitting of the A+ state was found to be
an equally-spaced quartet12 with a width of 2.89 � 10�2 cm�1,
3.8� smaller than the instanton results of ref. 21 and 24, which
we reproduce here. A decrease of widths of the GS quartet
branches with energy is a feature of the TM model. All TM
elements are negative in the GS and they add up in the lowest
branch, while they come with different signs in the higher
branches, see Table 2, resulting in a marked decrease shown in
Fig. 7 and first observed in ref. 21. An analysis in ref. 20
concludes that the widths of higher branches are similar in
size. Further research is needed in order to resolve the dis-
crepancies. Recent experiments9,29 measured a dramatic
increase in bifurcation splittings of the A+ state in the excited
mode 11, with a width of E15 cm�1 and unequal spacings. Our
method diverges beyond mode 6, which suggests that the TSs
are larger. Unequal spacings cannot be accommodated by our
model and suggests that the interactions beyond that of the
nearest neighbors contribute significantly.44 Bifurcation split-
tings were also measured9 for the excited modes 8 and 10 with
spacings of 4 cm�1 and 7 cm�1, respectively. The experimental
resolution in the helium nanodroplet isolation experiments
using free-electron lasers was E0.5–2 cm�1, which means that
the calculated TSs above fall below the detection limit.

We now briefly analyse the TS calculations in the deuterated
water trimer. MAPs for the six tunneling processes in Table 1

Table 4 Tunneling-splitting pattern of the water trimer (H2O)3 on the MB-pol PES34–36 for the vibrational ground state and the 6 lowest-frequency
excited normal modes (1–6). The energies of vibrational states are labelled by their symmetry in the group G48 and given in 10�2 cm�1 relative to the
closest pseudorotational state

GS 1 2 3 4 5 6

20 A�1 0.239 A+
2 4.888 A+

1 7.140 A+
1 8.333 A�2 11.866 A�1 2.446 A�2 6.550

19 T�1 0.080 T+
2 1.629 T+

1 2.380 T+
1 2.778 T�2 3.955 T�1 0.815 T�2 2.183

18 T�2 �0.080 T+
1 �1.629 T+

2 �2.380 T+
2 �2.778 T�1 �3.955 T�2 �0.815 T�1 �2.183

17 A�2 �0.239 A+
1 �4.888 A+

2 �7.140 A+
2 �8.333 A�1 �11.866 A�2 �2.446 A�1 �6.550

16 T+
2 0.416 T�1 13.809 T�2 8.829 T�2 6.988 T+

1 23.013 T+
1 4.508 E+

2 41.219
15 T+

1 0.257 T�2 10.662 E�1 8.534 E�1 6.527 T+
2 15.583 T+

2 3.470 T+
1 38.392

14 E+
1 0.239 E�2 4.720 T�1 3.139 T�1 2.636 E+

2 11.144 E+
2 1.557 T+

2 10.913
13 E+

2 �0.239 E�1 �4.720 T�2 �3.139 T�2 �2.636 E+
1 �11.144 E+

1 �1.557 T+
1 �10.913

12 T+
2 �0.257 T�1 �10.662 E�2 �8.534 E�2 �6.527 T+

1 �15.583 T+
1 �3.470 T+

2 �38.392
11 T+

1 �0.416 T�2 �13.809 T�1 �8.829 T�1 �6.988 T+
2 �23.013 T+

2 �4.508 E+
1 �41.219

10 T�1 3.254 T+
1 16.340 T+

1 20.201 T+
1 5.443 T�2 15.193 T�2 8.037 E�1 103.587

9 E�2 2.861 T+
2 14.644 E+

2 14.947 E+
2 5.055 E�1 10.835 E�1 7.631 T�2 101.396

8 T�2 1.347 E+
2 2.544 T+

2 10.237 T+
2 2.073 T�1 7.970 T�1 2.949 T�1 32.337

7 T�1 �1.347 E+
1 �2.544 T+

1 �10.237 T+
1 �2.073 T�2 �7.970 T�2 �2.949 T�2 �32.337

6 E�1 �2.861 T+
1 �14.644 E+

1 �14.947 E+
1 �5.055 E�2 �10.835 E�2 �7.631 T�1 �101.396

5 T�2 �3.254 T+
2 �16.340 T+

2 �20.201 T+
2 �5.443 T�1 �15.193 T�1 �8.037 E�2 �103.587

4 A+
2 5.483 A�2 9.640 A�2 19.965 A�2 5.388 A+

1 11.247 A+
1 9.701 A+

1 131.287
3 T+

2 1.828 T�2 3.213 T�2 6.655 T�2 1.796 T+
1 3.749 T+

1 3.234 T+
1 43.762

2 T+
1 �1.828 T�1 �3.213 T�1 �6.655 T�1 �1.796 T+

2 �3.749 T+
2 �3.234 T+

2 �43.762
1 A+

1 �5.483 A�1 �9.640 A�1 �19.965 A�1 �5.388 A+
2 �11.247 A+

2 �9.701 A+
2 �131.287
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exhibit similar asymmetries as in the H-trimer. The barriers on
MAPs are slightly lower, within 6 cm�1 of H-trimer barriers,
while the paths are longer due to mass-scaling with the heavier
D mass. The shortest is the F path, 155.1me

1/2a0; the longest is
B3, 411.3me

1/2a0. The longest paths with highest barriers are
again A2, B1 and B3, even though they exhibit some of the
largest TM elements.

Normal modes of vibration have frequencies 119 cm�1,
133 cm�1, 164 cm�1, 173 cm�1, 178 cm�1 and 205 cm�1. Mode
1 is a flip of monomer A, mode 2 is an in-phase flip of B and C,
mode 3 is an out-of-phase flip of B and C, mode 4 and 5 are bends
of angle at C and B, respectively, and mode 6 is the breathing mode
of the ABC triangle. There is thus a loose correspondence between
H- and D-trimer modes 1 2 1, 3 2 4, 5 2 6 and 6 2 3, but
qualitative differences and differences in energy ordering point to
disparate TS patterns in the H- and D-trimer.

Stationary points F, A and B, corrected for the zero-point
motion at the minimum and at the saddle, are all lowered, at
�3.62 cm�1, 593.0 cm�1 (lower than in the H-trimer) and
502.1 cm�1 (higher than in the H-trimer), respectively. Frequencies

of vibrations in modes 2–6 between the minimum and saddle
point F change between �7.0 cm�1 and +4.1 cm�1. Librations,
in modes 7–12, change more, between �8.1 cm�1 and
�32 cm�1, apart from mode 8 which changes by +13 cm�1.
For stationary points A and B, all positive normal mode
frequencies change with respect to the minimum between
�0.6 cm�1 and �82 cm�1, and �14 cm�1 and �100 cm�1,
respectively. The stationary point B has 2 negative frequencies.

TM elements for the D-trimer in the GS and the excited
modes 1–6 are listed in Table 5 and shown graphically in Fig. 8.
The TM element for the flip (relative to the GS) is shown in the
upper panel of Fig. 9 (pseudorotational widths are 4hF). The TM
element for the flip of monomer A/B in the GS is�20.8 cm�1, in
agreement with ref. 21 and 24; scaled by 0.53 as above, it is
�11 cm�1 (scaled TM elements for F are shown in brackets in
Table 5). The experimental value12 is �10.27 cm�1 (the full
quartet width is 41.1 cm�1). Since the flipping of hydrogens is
essentially free motion in the D-trimer as well, the TM elements

Table 5 Tunneling matrix (TM) elements in the deuterated water trimer on the MB-pol PES34–36 for different rearrangement paths listed in Table 1 in the
vibrational ground state and the 6 lowest-frequency excited vibrational modes in cm�1. Numbers in the brackets are TM elements for the flip scaled by
0.53, as explained in the text

Path GS 1 2 3 4 5 6

F �20.8 106 �4.63 �78.0 14.9 3.92 �23.5
[�11] [56] [�2.5] [�37] [7.9] [2.1] [�12]

A1 �1.60(�5) �1.01(�4) 2.49(�4) 9.93(�6) �1.13(�5) 9.28(�5) �2.27(�5)
A2 �2.93(�5) �1.52(�5) �1.55(�4) 8.69(�4) 4.10(�5) 1.39(�4) �3.67(�4)
A3 �2.51(�5) 9.07(�5) 4.60(�5) 1.74(�5) 2.11(�5) �9.92(�6) �4.54(�5)
B1 �3.33(�5) 1.22(�4) �4.29(�4) 4.66(�4) 5.21(�5) 1.05(�4) �1.57(�4)
B3 �1.55(�5) �3.40(�4) 3.71(�4) 5.65(�4) 4.60(�5) 4.37(�5) �2.77(�4)

Fig. 8 Tunneling matrix elements of the deuterated water trimer (D2O)3
on the MB-pol PES34–36 for rearrangement paths listed in Table 1 in the
vibrational ground state (GS) and the 6 lowest-frequency excited vibra-
tional modes. Exact numbers are given in Table 5.

Fig. 9 Widths of the flip quartets of the deuterated water trimer (D2O)3 for
the 6 lowest-frequency excited vibrational modes relative to the width of
the ground-state (GS) quartet are shown in the upper panel. Widths of the
flip quartet branches due to bifurcations for the GS and the 6 lowest-
frequency excited vibrational modes are shown in the lower panel. Darker
shade bars indicate a reverse order of states in energy, as defined in the
text.
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obtained using modified WKB are upper estimates. The largest
error is expected for the longitudinal excitation, which pro-
motes the barrier penetration. For the flip motion in the D-
trimer, the longitudinal mode on the left is mode 1, while a mix
of modes 1 and 2 gives the path tangent on the right, the same
as in the H-trimer.

For the H-trimer, we analysed the TM elements in terms of F
and U contributions in eqn (14) and tried to predict their sign using
geometrical arguments. The evolution of A on the F path in the D-
trimer is approximately adiabatic and the normal modes at transi-
tion state align well with the eigenvectors of Ā(SS). The evolution of
U follows the normal modes along the MAP to a lower degree than
in the H-trimer. The U term sign on the F path still corresponds to
the sign of overlap between left- and right-minimum normal modes
and to the sign of U(i)T

> U( j)
> at S, as in the H-trimer.

In the D-trimer, large F term contributions are present in the
excited modes 1 and 3 and they give rise to large TM elements
in Fig. 9. Mode 1 is the longitudinal mode with 96% contribu-
tion of the F term. Large TM elements for mode 3 in the D-
trimer and mode 6 in the H-trimer, shown in the upper panels
of Fig. 7 and 9, are related. They both correspond to the out-of-
phase flip of B and C monomers. This is not a longitudinal
mode, but the F path alignment with this mode near minima is
nevertheless large enough to produce a substantial TM element
in both cases.

Reverse order of pseudorotational states in the D-trimer
(compared to the order given in Table 2) is found in the excited
modes 1, 4 and 5. For the excited mode 1, this result is in
agreement with the reduced-dimensionality models of ref. 62
and 64. Modes 1 and 4 in the D-trimer visually correspond to

the motions in modes 1 and 3 in the H-trimer, which also
exhibit a reverse order of states. A negative U term is respon-
sible for the reverse order of states in mode 5 (which does not
have a clear analogue among the H-trimer modes). The sign of
U term in eqn (14) is negative for modes 1, 2, 4 and 5. These
modes visually correspond to modes 1–4 in the H-trimer, where
negative U terms are observed as well. This suggests that the
sign is largely determined by geometry. The small flip TM
elements for the excited modes 2 and 5 in Fig. 9 arise due to
the cancellation of F and U terms in the D-trimer.

On A and B paths, the sign and behavior of TM elements is
difficult to predict without fully solving eqn (11). The signs of U
terms do not adhere to the signs of overlaps between left- and
right-minimum modes. Longitudinal modes are either mode 1
or mode 2 on all paths, the same as in the H-trimer. The only
difference is observed on the A2 path, where mode 1 is long-
itudinal at both ends (it is mode 2 at the left minimum in the
H-trimer). On the B1 path, even for the excited longitudinal
mode 1, the U term is larger and has the opposite sign of the F
term (tangent at e = 1me

1/2a0 has mode-1 and mode-2 compo-
nents of 0.83 and 0.55, respectively).

Qualitative similarities between normal modes of the H- and
D-trimer often correlate with the sizes of the corresponding TM
elements. On the A1 path, large TM elements due to the F term
in modes 1, 2 and 5 in the D-trimer relate to the large TM
elements in modes 1, 2 and 4 in the H-trimer. On the A3 path,
similarly, large TM elements in mode 1 have the same cause.
On the A2 path, mode 3 in the D-trimer and mode 6 in the H-
trimer both correspond to a large U term for the out-of-phase
flip of B and C monomers.

Table 6 Tunneling-splitting pattern of the deuterated water trimer (D2O)3 on the MB-pol PES34–36 for the vibrational ground state and the excited 6
lowest-frequency normal modes (1–6). The energies of vibrational states are labelled by their symmetry in the group G48 and given in 10�4 cm�1 relative
to the closest pseudorotational state

GS 1 2 3 4 5 6

20 A�1 0.084 A+
2 2.691 A�1 1.541 A�1 6.919 A+

1 1.994 A+
1 5.917 A�2 2.556

19 T�1 0.028 T+
2 0.897 T�1 0.514 T�1 2.306 T+

1 0.665 T+
1 1.972 T�2 0.852

18 T�2 �0.028 T+
1 �0.897 T�2 �0.514 T�2 �2.306 T+

2 �0.665 T+
2 �1.972 T�1 �0.852

17 A�2 �0.084 A+
1 �2.691 A�2 �1.541 A�2 �6.919 A+

2 �1.994 A+
2 �5.917 A�1 �2.556

16 T+
1 0.285 E�2 4.253 T+

2 8.608 T+
1 8.429 T�2 1.454 E�1 3.898 T+

1 3.035
15 E+

2 0.216 T�1 3.993 T+
1 7.287 T+

2 7.532 E�1 1.067 T�2 3.414 T+
2 3.022

14 T+
2 0.141 T�2 1.158 E+

1 1.981 E+
2 1.346 T�1 0.743 T�1 0.815 E+

2 0.020
13 T+

1 �0.141 T�1 �1.158 E+
2 �1.981 E+

1 �1.346 T�2 �0.743 T�2 �0.815 E+
1 �0.020

12 E+
1 �0.216 T�2 �3.993 T+

2 �7.287 T+
1 �7.532 E�2 �1.067 T�1 �3.414 T+

1 �3.022
11 T+

2 �0.285 E�1 �4.253 T+
1 �8.608 T+

2 �8.429 T�1 �1.454 E�2 �3.898 T+
2 �3.035

10 T�1 1.073 T+
2 5.559 T�1 3.842 T�2 21.378 T+

1 0.595 T+
2 1.405 T�1 9.086

9 E�2 0.690 T+
1 4.268 T�2 3.774 E�1 18.920 E+

2 0.474 T+
1 0.915 E�2 7.778

8 T�2 0.613 E+
1 1.937 E�2 0.102 T�1 8.765 T+

2 0.279 E+
1 0.735 T�2 3.900

7 T�1 �0.613 E+
2 �1.937 E�1 �0.102 T�2 �8.765 T+

1 �0.279 E+
2 �0.735 T�1 �3.900

6 E�1 �0.690 T+
2 �4.268 T�1 �3.774 E�2 �18.920 E+

1 �0.474 T+
2 �0.915 E�1 �7.778

5 T�2 �1.073 T+
1 �5.559 T�2 �3.842 T�1 �21.378 T+

2 �0.595 T+
1 �1.405 T�2 �9.086

4 A+
2 1.896 A�2 1.942 A+

1 2.217 A+
1 28.230 A�2 0.809 A�1 3.349 A+

2 13.040
3 T+

2 0.632 T�2 0.647 T+
1 0.739 T+

1 9.410 T�2 0.270 T�1 1.116 T+
2 4.347

2 T+
1 �0.632 T�1 �0.647 T+

2 �0.739 T+
2 �9.410 T�1 �0.270 T�2 �1.116 T+

1 �4.347
1 A+

1 �1.896 A�1 �1.942 A+
2 �2.217 A+

2 �28.230 A�1 �0.809 A�2 �3.349 A+
1 �13.040

Paper PCCP

Pu
bl

is
he

d 
on

 0
1 

A
pr

il 
20

24
. D

ow
nl

oa
de

d 
on

 1
/2

2/
20

26
 9

:1
8:

28
 P

M
. 

View Article Online

https://doi.org/10.1039/d4cp00013g


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 12965–12981 |  12979

Large TM elements on paths A2, B1 and B3 are again driven
by the large segment of negative-frequency normal modes
along the MAPs, which brings down the value of y in
eqn (15). A major contributor is also a large spread of the
wavefunction at the transition state along the lowest non-zero
mode of Ā, as discussed above for the H-trimer. The frequency
of mode 2 of Ā is 37.4 cm�1, 12.1 cm�1 and 28.6 cm�1 on A2, B1
and B3 paths, respectively. For F, A1 and A3, it is 132 cm�1,
123 cm�1 and 109 cm�1.

The size of TM elements on the F path is a factor of E2
smaller than in the H-trimer. On A paths, the ratio is E100,
while on B paths, it can be as high as E1000 for some TM
elements. TS patterns of D-trimer, labelled by irreps of G48, are
given in Table 6 relative to the closest branch of the flip quartet.
The widths of quartet branches due to bifurcations are shown
in the lower panel of Fig. 9. Darker color bars are associated
with the reverse order of states, as discussed above. The GS
width of A+ is 3.8 � 10�4 cm�1, 24% smaller that the experi-
mental value12 of 5.0 � 10�4 cm�1. A decrease of widths with
energy, from A+ to A�, is observed for the excitations in modes 1, 3
and 6, which relates to the decrease in the H-trimer for modes 1, 5
and 6. The width of A+ is significantly increased for the excited
modes 3, 5 and 6. The largest width is 5.6 � 10�3 cm�1 in the
excited mode 3; the widths of pseudorotational states in all other
excited modes are lower than 3 � 10�3 cm�1.

The results in Tables 3 and 5 come with large uncertainties.
The approach we used to calculate the TS patterns here gives a
quantitative agreement with the exact quantum results for
malonaldhyde.59 There are, however, several reasons why the
accuracy of the present results is substantially lower. A shallow
well for the flip motion is one source of error already discussed
above. Another source is the anharmonic potential in direc-
tions perpendicular to the path. An indication of the large
anharmonicity comes from large changes in the normal mode
frequencies along the paths. Moreover, low eigenfrequencies of
Ā indicate a large spread of the wavefunction at the transition
state, into the regions where the harmonic approximation of
the potential is likely to be invalid. The error in eqn (14) also
comes from the normalization of the significantly modified
wavefunctions to the harmonic oscillator. The analysis that
comes from the geometrical considerations, however, is
expected to be of significance in the more accurate calculations
as well, and the qualitative TS patterns and the widths of
pseudorotational states represent the best estimates for the
water trimer. The estimate of anharmonic effects using, e.g.,
perturbation theory as in ref. 72, are needed to quantify the
reliability of the present results and are going to be the subject
of future work.

6 Conclusions

We calculated the TS patterns of the water trimer, (H2O)3 and
(D2O)3, in vibrationally excited states including the fine split-
tings of pseudorotational states due to bifurcations. The split-
tings are obtained using a TM model that takes into account

nearest-neighbor processes that represent rearrangements
between equivalent minima. Six such rearrangements with
sufficiently low action integral were determined in ref. 21 and
taken into account in the TM model here. They represent a flip
of free OH bonds and five different bifurcation mechanisms,
which break and reform hydrogen bonds that form the trimer
ring. We derived the energy shifts due to tunneling symbolically
in terms of the six TM elements using group theory. TM
elements were calculated using the recently-developed modi-
fied WKB method58 in full dimensionality. Our approach is
equivalent to the instanton theory for calculating tunneling
splittings in the ground vibrational state.

In the modified WKB method,58 TM elements are obtained
from the wavefunction that is constructed along the minimum
action path that connects two symmetry-related minima. The
potential away from the path is treated in a harmonic approxi-
mation. Vibrationally excited states are calculated along the same
paths as for the ground-state TS and come at little additional
computational cost. We have shown that the convergence can be
achieved for the six lowest-frequency normal modes of the water
trimer, which include the excitations into torsional and shape
modes of the trimer ring. The excitations into the higher-
frequency modes, that correspond to librations of hydrogen bonds
that form the ring, result in the divergence of WKB, and possibly
larger splittings in accord with experiment.

The calculated widths of quartet branches in modes 1–6 are
similar in size to the GS or increased in some particular modes
of vibration. Largest widths are obtained in the excited mode 6
and mode 3 in (H2O)3 and (D2O)3, respectively, which corre-
sponds to the excitation of the out-of-phase flip of monomers B
and C in Fig. 1. The widths are of the order of a few cm�1 for
(H2O)3 and two orders of magnitude smaller for (D2O)3. Spa-
cings in the bifurcation TS patterns have recently been mea-
sured in the excited modes 8, 10 and 11 at 3–8 cm�1 with a
detection limit of 0.5–2 cm�1. The sizes of TM elements and the
order of states in the TS patterns were analysed in terms of
projections of the normal modes of vibration on the tunneling
paths near minima.

The obtained results are semi-quantitative; they are expected
to give the right order of magnitude, show trends and identify
important modes that are responsible for the appearance of the
TS patterns. Pseudorotational quartets in vibrationally excited
states have energies close to the barrier top and our results only
give upper estimates to its widths. The widths of the quartet
branches due to bifurcations are tunneling processes but they
proceed over some highly anharmonic regions of the potential.
The presence of anharmonicity degrades the accuracy, by 2�
even in the GS.43 Future studies will concentrate on improving
the accuracy of the present approach using, e.g., perturbation
theory72 or higher-order WKB approaches,73 which will also
allow us to estimate the accuracy of the results.
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31 U. Góra, W. Cencek, R. Podeszwa, A. van der Avoird and
K. Szalewicz, J. Chem. Phys., 2014, 140, 194101.

32 Y. Wang and J. M. Bowman, Chem. Phys. Lett., 2010, 491,
1–10.

33 Y. Wang, B. C. Shepler, B. J. Braams and J. M. Bowman,
J. Chem. Phys., 2009, 131, 054511.

34 V. Babin, C. Leforestier and F. Paesani, J. Chem. Theory
Comput., 2013, 9, 5395–5403.

35 V. Babin, G. R. Medders and F. Paesani, J. Chem. Theory
Comput., 2014, 10, 1599–1607.

36 S. K. Reddy, S. C. Straight, P. Bajaj, C. Huy Pham, M. Riera,
D. R. Moberg, M. A. Morales, C. Knight, A. W. Götz and
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49 C. Vaillant and M. T. Cvitaš, Phys. Chem. Chem. Phys., 2018,
20, 26809–26813.

50 G. V. Mil’nikov and H. Nakamura, J. Chem. Phys., 2001, 115,
6881–6897.

51 J. O. Richardson and S. C. Althorpe, J. Chem. Phys., 2011,
134, 054109.
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60 M. Schütz, T. Bürgi, S. Leutwyler and H. B. Bürgi, J. Chem.

Phys., 1993, 99, 5228–5238.

61 A. van der Avoird, E. H. T. Olthof and P. E. S. Wormer,
J. Chem. Phys., 1996, 105, 8034–8050.
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