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Extraction of local structure differences in silica
based on unsupervised learning†
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Silica exhibits a rich phase diagram with numerous stable structures existing at different temperature and

pressure conditions, including its glassy form. In large-scale atomistic simulations, due to the small

energy difference, several phases may coexist. While, in terms of long-range order, there are clear

differences between these phases, their short- or medium-range structural properties are similar for

many phases, thus making it difficult to detect the structural differences. In this study, a methodology

based on unsupervised learning is proposed to detect the differences in local structures between eight

phases of silica, using atomic models prepared by molecular dynamics (MD) simulations. A combination

of two-step locality preserving projections (TS-LPP) and locally averaged atomic fingerprints (LAAF)

descriptor was employed to find a low-dimensional space in which the differences among all the phases

can be detected. From the distance between each structure in the found low-dimensional space, the

similarity between the structures can be discussed and subtle local changes in the structures can be

detected. Using the obtained low-dimensional space, the b-a transition in quartz at a low temperature

was analyzed, as well as the structural evolution during the melt-quench process starting from a-quartz.

The proper differentiation and ease of visualization make the present methodology promising for

improving the analysis of the structure and properties of glasses, where subtle differences in structure

appear due to differences in the temperature and pressure conditions at which they were synthesized.

1 Introduction

Silica (SiO2) is one of the most abundant materials on earth as
the major constituent of sand and is an important ingredient
for a wide range of applications, such as concrete (with silica
fume1), photonics2 or as a gate dielectric in metal–oxide–
semiconductors field effect transistors.3 It is the simplest of
the silicates and yet it is one of the most technologically

relevant.4 Several crystalline forms exist at different pressure
and temperature conditions (quartz, coesite, stishovite, cristo-
balite, tridymite, etc.) as well as in glass form.5–11 For most
phases, Si atoms are four-coordinated and form tetrahedra with
the surrounding O atoms. However, high-pressure phases such
as stishovite and seifertite have six-coordinated Si atoms.
Therefore, the external conditions under which the process to
synthesize a silica sample is conducted, has an enormous
impact on its atomic structure and therefore are strongly
related to their properties. Understanding the structural
changes is thus a necessity in order to engineer new materials
with enhanced properties. Moreover, for disordered materials
such as silica glass, the structural differences are subtle and
may be localized in a relatively small region, yet exceeding the
first-neighbor shell.

In recent times, the progress in atomistic simulations has
enabled studies of the dynamics of a system with first-
principles accuracy.12,13 In order to properly analyze the struc-
tural properties, defining quantities of interest is of utmost
importance.14–17 Over the last decades, several descriptors have
been developed in order to describe local structures, such as
the smooth overlap of atomic positions (SOAP).18 Ring statistics
based on graph theory was also proposed to study the con-
nectivity of amorphous materials.19–21 The topological features
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and patterns in materials were also studied by persistent
homology.22,23 However, a method that can properly capture
the structural differences between phases of silica is still
lacking. Most methods rely on averaged quantities and statis-
tics, such as the structure factor or radial distribution
functions.24–26 Extracting local information therefore remains
a challenging task, exacerbated by the fact that subtle changes
may occur locally in a given region. Other methods based on
local structures, such as common-neighbor analysis (CNA)27,28

and various functions29,30 have been developed. However, only
relatively simple phases such as face-centered cubic (FCC),
body-centered cubic (BCC) or hexagonal closed-packed (HCP)
could be recognized. For silica and its numerous complex
phases, these methods would be unable to distinguish relevant
complex phases.

As an alternative method of structural analysis focusing on
local structures, an unsupervised learning method combining
the two-step locality preserving projections (TS-LPP) method
and locally-averaged atomic fingerprints (LAAF) has been
recently developed.31 Using this technique, it has been shown
that liquid, crystalline, and amorphous structures could be
clearly distinguished in Si and SiGe systems. To obtain these
results, higher dimensional descriptors focusing on local struc-
tures were projected to a two-dimensional space via dimension-
ality reduction using TS-LPP to facilitate understanding of the
local structures. In particular, it is generally difficult to distin-
guish liquid and amorphous structures only from their local
structures, and conventional dimensionality reduction techni-
ques are inadequate for addressing this problem.31 However,
when conducting structural analysis of the numerous complex
phases of silica, it would be impossible to find a two-
dimensional space in which all phases can be distinguished
even with TS-LPP.

In this study, we perform a structural analysis for eight
structures in silica using the potential of the unsupervised
learning method with TS-LPP and LAAF descriptor based on

atom-centered symmetry functions (ACSF). The targeted struc-
tures are a-quartz, b-quartz, coesite, b-tridymite, b-cristobalite,
stishovite, liquid, and glass. It was found that finding a model
that distinguishes all phases in a two-dimensional space was
unattainable. On the other hand, a four-dimensional space in
which all of these phases are separated could be created. From
the locations of each phase in the low-dimensional space, the
similarity or differences between different phases can be under-
stood. Using this low-dimensional space, the structural evolu-
tion from b-quartz to a-quartz at low temperature was followed,
and the melt-quench process was analyzed, showing that local
changes can be detected by our methodology.

The methodology developed for this study is has the
potential to unlock new prospects for elucidating the nature
of amorphous materials in future investigations of disordered
materials where impurities and interfaces are present, such as
in Si/SiO2 interfaces. For such systems, our methodology
should be able to detect the subtle variations in local structures
that may lead to previously unknown types of structures.

2 Methods
2.1 Structural analysis based on unsupervised learning

An overview of the methodology used for this study to perform
structural analysis is depicted in Fig. 1. Atomic configurations
of the different phases were generated by molecular dynamics
(MD) simulations. From these models, locally averaged atomic
fingerprints (LAAF) based on the G2 atom-centered symmetry
functions (ACSF) were calculated.32 As discussed by Tamura et al.,31

LAAF are expected to express two different types of locality in the
coordination environment around each atom by two cutoffs,
Rd and Ra. The first cutoff is used for the definition of ACSF
showing the chemical or coordination environments, while the
second one is related to the similarity of the chemical environ-
ment with the surrounding atoms. The definition of the LAAF

Fig. 1 Overview of the methodology used for the analysis of silica phases.
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descriptor can be found in Appendix A. These descriptors, after
feature selection by variance threshold and standardization,
were transformed onto a low-dimensional space using the two-
step locality preserving projections method (TS-LPP).31 The
TS-LPP method consists in using LPP twice, with a reduction
from the LAAF dimensionality M (after feature selection) to the
intermediate dimension dm and from dm to the target low-
dimension dt. The details of LPP method are explained in
Appendix B. In TS-LPP, two hyperparameters (dm and s) need
to be defined. To determine appropriate values for these hyper-
parameters, the Calinsky–Harabasz score (pseudo-F33) was used
for the k-means clustering results in the found low-dimensional
space by TS-LPP. A grid exploration was performed to determine
the most appropriate values for dm and s. The same value for
s was used for both LPP steps in the present implementation
of the TS-LPP method. Finally, clustering methods (such as
k-means clustering or DBSCAN) were used to identify different
groups of local structures in the reduced space.

2.2 First-principles molecular dynamics

To generate the target atomic configurations, first-principle
molecular dynamics (FPMD) simulations were performed
using the CONQUEST code.34–36 The Perdew–Burke–Ernzerhof
(PBE)37 exchange–correlation functional was used with pseudo-
potentials.38,39 G -only calculations were performed with the
double-zeta polarized (DZP) basis sets.40 The energy cutoff for
the charge density was set to 200 Ha. The temperature was
controlled using Nosé–Hoover chains41 and the pressure was
controlled by a Parrinello–Rahman barostat.42 The atomic
configurations typically contain around 200 to 400 atoms. The
time step is 1 fs and simulations of 5000 time steps (5 ps) were
performed for each configuration. For the crystalline phases,
it was observed that the average positions during constant-
volume (NVT) simulations were very close to their initial posi-
tions (within 0.2 Å). This suggests that the original crystalline
phases are preserved during NVT simulations even at 300 K and
600 K, despite the fact that some of them are stable only at
higher temperatures in experiments. Note that we observed
some phase transitions in constant-pressure (NPT) simulations,
for example the transition from b-quartz to a-quartz structures.
While this is of physical relevance, such changes are undesired
in this work where the aim is to generate trajectories represen-
tative of each phase. Therefore, only NVT trajectories for crystal
phases are included in the training set, as reported in Table 1.
The change of local structures in the b-to-a quartz transition is
analyzed in Subsection 3.4. On the other hand, the trajectories
for the liquid and glass phases were generated using the NPT
ensemble.

2.3 Classical molecular dynamics

To generate the initial atomic configurations of liquid and glass
phases for FPMD, classical molecular dynamics simulations
were performed using the Large-scale Atomic Molecular
Massively Parallel Simulator (LAMMPS) software package with
GPU acceleration43,44 to generate liquid and glassy structures of
SiO2. Munetoh potentials (Tersoff-type) were used to describe

the inter-atomic interactions.45 The temperature and pressure
were controlled using Nosé–Hoover style non-Hamiltonian
equations of motions.46,47 These structures were used as initial
configurations for FPMD simulations. The time step was set to
1 fs. From an initial a-quartz crystal, the system was first melted
at 5000 K, then cooled down to 300 K with a cooling rate
ranging from 1010 K s�1 to 1013 K s�1, resulting in simulation
times ranging from to 0.5 ns to 370 ns. Liquid structures were
relaxed for 50 ps. These structures were used as initial states for
FPMD simulations.

3 Structural analysis of silica systems
3.1 Target structures in silica

The detailed composition of the training set is provided in
Table 1. The target data set for the structural analysis for silica
systems includes eight different phases: a-quartz (stable at
room temperature) and b-quartz (high temperature), b-cristo-
balite (high temperature), b-tridymite (high temperature), coe-
site (high pressure), stishovite (high pressure), liquid and glass.
A phase diagram of silica based on ref. 10 is shown in Fig. 2
(left). For each phase, at least two independent trajectories were
included in the training set (see Table 1).

The two-body radial distribution functions, g(r), calculated
from the MD simulations for the eight phases are shown in
Fig. 2 (right). Here the first and second peak correspond to the
nearest Si–O and O–O distances, respectively. The position of
the first and second peaks in g(r) is almost the same in these
phases, except the one for stishovite. This is reasonable because
most Si atoms in the MD simulations of these phases are
tetrahedrally coordinated with O atoms and the local environ-
ments within this range should therefore be similar. The variety

Table 1 Details on the training data sets

Phase
Si
atoms/cell Conditions

Number of
data points

a-quartz 108 300 K (NVT) and 600 K (NVT) 1080
b-quartz 108 300 K (NVT) and 600 K (NVT) 1080
b-cristobalite 64 300 K (NVT) and 600 K (NVT) 640
b-tridymite 128 300 K (NVT) and 600 K (NVT) 1280
Coesite 64 300 K (NVT) and 600 K (NVT) 640
Stishovite 90 300 K (NVT) and 600 K (NVT) 900
Liquid 108 3000 K (NPT) and 4000 K (NPT) 1080
Glass 108 300 K (NPT) (cooling rate

of 1010–13 K s�1)
2160

Fig. 2 (Left) Schematic phase diagram of SiO2. (Right) Radial distribution
functions at 3000 K for liquid silica and 300 K for the seven other phases.
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of the silica structures comes from the different network
(arrangement) of these SiO4 tetrahedra, resulting in differences
in g(r) for r beyond 2.8 Å. However, it is still difficult to find the
differences among some different phases, for example between
b-cristobalite and b-tridymite structures. In addition, it should
be noted that the analysis from g(r) is based on the statistics of
the all atoms in the simulation cell. Even though g(r) is very
different between the glass and liquid phases, it is not obvious that
they can be distinguished according to the local environment
around atoms selected arbitrarily from the snapshot structures in
the MD simulations of the two phases. Therefore, it is unclear
whether it is possible or not to differentiate the atoms in the
snapshot structures of the MD simulations on various phases,
only from their local information such as atomic fingerprints.
Nevertheless, in this work we will show that this is possible, at
least for the eight phases of silica under consideration.

In this work, the LAAF descriptors around Si atoms were
calculated for each configuration and included in the training
set. Here, Rd = Ra = 6 Å unless stated otherwise. The results
obtained by using other sets of parameters are discussed in the
ESI,† Section II and Section IIIA.

In addition, feature selection based on variance threshold
(set to 10�4 in this work) was performed on the resulting LAAF
vector, resulting in a reduction of the number of features from
100 to 63. Standardization was then performed to obtain unit
variance in all features. While variance threshold was found to
improve the stability of machine-learning based molecular
dynamics simulations,48 we found that it is also effective to
properly differentiate all phases (see ESI†, Section IIIB).

3.2 Low dimensional space obtained by TS-LPP

As mentioned in Subsection 3.1, it may be very difficult, if not
impossible, to differentiate the atoms in the different phases
solely from their local information. But, as shown below, we
have found that the all of the atoms in the MD simulations of
the eight phases are perfectly distinguished in the seven-
dimensional space made by the TS-LPP method using the LAAF
descriptors. In forming the low dimensional space using the
TS-LPP method, k-means clustering for k = 8 has been per-
formed for each target dimension dt.

Fig. 3 shows the distribution of data points in the two-
dimensional subspace made from the first seven components,
which are obtained by the TS-LPP method using the target
dimension of seven (dt = 7). In the one-dimensional space made
from the first component, the data points from the stishovite
phase are clearly isolated from the other phases, being located
at the bottom-left (negative values). This corroborates with the
fact that stishovite is the only phase where Si atoms are
surrounded by six O atoms, as mentioned earlier. When the
second component is considered, three groups are additionally
distinguished; the disordered phases (liquid and glass) as the
first group, high-temperature b-cristobalite and b-tridymite as
the second group and then the final group (quartz, coesite)
corresponds to the phases stable at low temperatures. Stisho-
vite, which is also stable at low temperatures under pressure,
also belongs to the third group if one considers solely the

second component. Component 3 differentiates a-quartz from
b-quartz, as well as coesite. Components 4 and 5 apparently
bring no relevant contributions. On the other hand, component
6 differentiates liquid from glass. Interestingly, despite being
seen as being of lower importance, component 7 distinguishes
the data points from b-cristobalite completely from those from
b-tridymite. It can be seen that in order to distinguish such
many phases, it is necessary to increase the dimensionality of
the embedding space. In particular, the structures of b-
cristobalite and b-tridymite can hardly be differentiated by
studying the radial distribution function (RDF), although par-
tial RDFs show differences at distances beyond 5 Å. It should be
emphasized that the present method is not supervised and
does not rely on any information how the data points are
created. The present analysis clearly shows that local environ-
ment of the atoms, expressed by LAAF, in the MD simulations
of the two similar phases have some clear differences.

Fig. 4 shows the cluster indices obtained by the clustering
method for each target dimension dt. The present method is
unsupervised and the cluster index here does not represent a given
phase, while the data points in Fig. 3 are ordered depending on the
original phase. It should be noted that the space of the reduced
dimensions may be different for different dt even when the number
of dimensions is same, because the optimization of hyperpara-
meters is performed independently for each value of dt. The
optimized hyperparameters, dm and s, for different target dimen-
sion dt are listed in Table S2 in the ESI.† Even though there are
some differences in the optimized hyperparameters, the results of
the differentiation of atoms in the reduced dimensions are con-
sistent with those in Fig. 3 when the dimension is higher than 2.
In the space whose dimension is lower than 7D, it is difficult to
distinguish the atoms in the liquid and amorphous phases, or the
atoms in the b-tridymite and b-cristobalite structures. On the other
hand, all data points in the all eight phases are assigned to the
correct phases in the 7D space made with dt = 7. It was also
confirmed that the same differentiation can be obtained by other
clustering methods such as the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN49), when a proper low-
dimensional space is generated. The results obtained by the
DBSCAN method can be found in the ESI† (Fig. S12).

It is noteworthy that the component 6 and component 7 are
essential for achieving the differentiation of the eight phases,
while the component 4 and component 5 make less important
contributions, if any. This suggests that the seven-dimensional
space obtained by TS-LPP could be further reduced while keeping
the needed information for differentiation. While such a procedure
is system-dependent, it simplifies the visualization in the reduced
space. In this study, the four-dimensional space obtained by
keeping components 2, 3, 6, and 7 is enough to have a proper
differentiation of the eight phases, and these low-dimensional
spaces are indicated by the red dotted lines in Fig. 3.

3.3 Analysis of the transformation (mapping) matrices
for TS-LPP

As discussed in the last section, the components 6 and
7 are important for the differentiation of the eight
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phases. The relationship between these components and
the original LAAF dimension can be expressed by the

mapping or transformation matrix explained in the ESI,†
Section IIB.

Fig. 4 Cluster indices by k-means clustering on the projected data in low-dimensional spaces with different numbers of dimensions. The color reflects
the phase of the data point.

Fig. 3 Distributions in the 2D subspaces of the 7D space generated by TS-LPP. Here, dm = 20 and s = 1. The two distributions highlighted by dotted lines
are the four-dimensional space to have a proper differentiation of the eight phases.
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As the TS-LPP transformation consists of two linear trans-
formations, the transformation matrices corresponding to each
LPP step can be analyzed. Fig. 5 shows the mapping matrices
for the first, second and finally the whole transformation. The
components of the first LPP show that there is some degree of
redundancy, as can be seen from the occurrence of several near
identical columns. The second LPP mixes the components from
the first LPP. Except for the final 7th component, contributions
of the lower dimensional components (1st – 6th) in the inter-
mediate dimension are large. Thus, the two-step strategy is not
so relevant up to the 6th dimension. On the other hand, for
final 7th component, 12th and 13th components in the inter-
mediate dimension are important, and TS-LPP was essential for
the differentiation between b-cristobalite and b-tridymite. In
fact, this differentiation could not be achieved with other
methods such as PCA or LPP.

It should be noted that performing LPP to a much large
number of dimension works as the relevant functions needed
to capture the structural differences between b-cristobalite
from b-tridymite are taken into account (ESI,† Fig. S10).
However, the interpretation and visualization of such model
is difficult and makes this approach less promising for future
analysis of systems where the actual phase is unknown.

3.4 b-quartz to a-quartz transition

Once the linear transformation matrix is obtained by TS-LPP,
new local structures which are not included in the training set
can be projected onto the low-dimensional space. The model
developed for differentiating all eight phases was subsequently
used to analyze a trajectory starting from b-quartz and evolved
at 600 K under NPT conditions. It is well known that a-quartz is
the most stable phase at this temperature under atmospheric
pressure (see Fig. 2). During the 5 ps run, a transition from
b-quartz to a-quartz was observed. The progressive phase
transition could be tracked, as shown in Fig. 6, where only
components 2 and 3 of the seven-dimensional space are shown.
In the initial stage (first 100 fs), the projections of the test data
appear in the same region of the subspace as b-quartz (blue
region in Fig. 3). In the final stage (4.9 ps to 5 ps), these points
lie in the same region as a-quartz (black region in Fig. 3).
Considering the whole trajectory for a selection of five atoms,
a smooth transition from the b-quartz region to the a-quartz
one is observed, which is captured by component 3. From
Fig. 5(right), it can be seen that component 3 (third column)
is mainly made of contributions from features related to Si–O
distances (upper rows).

So far, we have analyzed an MD simulation where the b-to-a
quartz transition occurs using the low dimensional space
presented in Subsection 3.2, which is based on the training
data of eight phases. However, it is also possible to perform
another analysis using a different low dimensional space,
obtained solely from the data of a single trajectory for the
b-to-a quartz transition. Here, a two-dimensional space is
obtained, and the results are shown in Fig. 7. In the early stage
of the simulation, the structure evolves away from its initial
configuration. If the time range is large enough, the whole
transition is captured as shown in Fig. 7c and d. More details
can be found in the ESI.†

This demonstrates that the change of local structures can be
correctly extracted in the low-dimensional space from one
single MD trajectory, where the structures evolve over time.

3.5 Melt-quench process

In this case, a trajectory of a classical molecular dynamics
simulation of melt and quench of silica (2592 atoms per cell)
with a cooling rate of 109 K s�1 is analyzed. First, focusing on
the melting part of the simulation, the structure evolves follow-
ing from the a-quartz region to b-quartz, and finally liquid, as
shown in Fig. 8a. By visualizing components 2, 3, 6 and 7, the
evolution from one region to another can be visualized, from the
blue points (initial configuration) to the red ones (final configu-
ration). It should be noted that the transitions are quite abrupt and
the melting process results in several distinct regions corres-
ponding to different phases, quickly changing from a-quartz to
b-quartz, then transitioning towards the region corresponding to
the liquid phase. For the quenching process (Fig. 8b), it can be seen

Fig. 5 Transformation matrices for (left) the first LPP, (center) the second
LPP, (right) the whole transformation. Each column is normalized.

Fig. 6 Transition from b-quartz to a-quartz at 600 K followed by com-
ponents 2 and 3 of the TS-LPP space. All atoms at (a) first 100 fs and (b) last
100 fs are plotted. For (c), the whole process is shown for five selected
atoms. Data from the training set appear in light gray. Colors reflect the
time range shown, from blue for early snapshots to red for late snapshots.
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that the system evolves from the liquid-like region to the glass-like
one in a continuous transition. No crystalline region was detected
during the quench process, suggesting that the atomic structure
remains disordered.

4 Conclusions

We have proposed a new methodology to extract the differ-
ences in the local structures of silica system using a recently
developed dimensionality reduction technique. Our approach
consists of locally averaged atomic fingerprints (LAAF) based on

atom-centered symmetry functions (ACSF) and using two-step
locality preserving projections (TS-LPP) to generate a relatively
low-dimensional space that properly catches relevant structural
properties of the different phases. The targeted data set for
silica system was constructed by the data points obtained from
eight phases. Importantly, unlike previous works,29,31 feature
selection and at least seven dimensions were needed in order
to capture lower importance features that enables the proper
differentiation of all phases.

Our results show that proper differentiation of many phases
of a given compound is possible via the combination of LAAF
and an adequate dimensionality reduction. This method can
be applied to any kind of material or alloy and should be
independent of the simulation method (classical force fields,
first-principles molecular dynamics, etc.). In the future, this
knowledge should be useful for analyzing the structure of silica
glass and its evolution with respect to external conditions,
such as cooling rate or pressure during a quenching process.
In addition, for systems such as metallic alloys, this approach
could provide useful indications on the transitions that occur for
instance during the glass transition, and how different factors
(cooling rate, pressure, deformations, shear, etc.) can change the
structural properties. In general, the present methodology should
extract valuable information from inhomogeneous systems, for
instance to detect the onset of nucleation in a supercooled liquid or
the coexistence of several phases in different regions. By the
detection of local changes, the relation between the structure
and properties of atomic configurations that are typically difficult
to analyze (ex: in the presence of impurities, vacancies or inter-
faces) could be better understood. Our methodology should there-
fore be applicable to inhomogeneous systems where phases may
coexist or during nucleation in a supercooled liquid.

Our method is unsupervised, thus does not rely on any
biased information, and is promising for detecting particular
phases or local structures, which may appear in any kind of
material, as well as detecting new unknown phases dynamically
or density fluctuations.4 Used as a supervised learning method,
for classification, it may be a stepping stone towards better
machine learning potentials or force fields50,51 by allowing
classification of the atoms beforehand and choosing an appro-
priate force field for each atom over the course of a simulation.
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Fig. 7 Transition from b-quartz to a-quartz at 600 K followed by a TS-
LPP space trained on a single trajectory, using the first (a) 100 fs, (b)
2000 fs, (c) 4000 fs and (d) 5000 fs.

Fig. 8 Structural evolution during a melt-quench process, followed by
components 2, 3, 6 and 7 of the TS-LPP space for (a) the melt part (b) the
quench part. Data from the training set appear in light gray. Colors reflect
the time range shown, from blue for early snapshots to red for late
snapshots.
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Appendices
A Descriptors

In order to capture the structural differences in silica, descrip-
tors based on atom-centered symmetry functions were defined.

A.1 Atom-centered symmetry functions (ACSF). To charac-
terize the local environment of a given atom, G2 atom-centered
symmetry functions (ACSF32,52) were calculated. For a single-
component system, the atomic fingerprint vector Vi of atom i is
defined as:

ViðZm; rdÞ ¼ Gi
2ðZm; rdÞ ¼

X
j

e
�

rij
Zm

� �2

fcðrij ; rdÞ; (1)

where Zm(m = 1,. . .,M) is the decay rate with distance and fc(rij;
rd) is a cutoff function defined as:

fcðrij ; rdÞ ¼
0:5 cos

prij
rd

� �2

þ1
" #

ðrij � rdÞ

0 ðrij 4 rdÞ

8>><
>>: : (2)

One can write the M-dimensional atomic fingerprint vector for
the ith atom as:

Vi(rd) = (Vi(Z1;rd),Vi(Z2;rd),. . .,Vi(ZM;rd)). (3)

For binary systems, the atomic fingerprints are generalized as
follows:

Va
i2aðZm; rdÞ ¼

X
j2a; jai

e
�

rij
Zm

� �2

fcðrij ; rdÞ; (4)

Vb
i2aðZm; rdÞ ¼

X
j2b

e
�

rij
Zm

� �2

fcðrij ; rdÞ: (5)

And the fingerprint vector becomes 2M-dimensional:

ViAa(rd) = (Va
iAa(Z1;rd), . . ., Va

iAa(ZM;rd), Vb
iAa(Z1;rd), . . ., Vb

iAa(ZM;rd)).
(6)

In the present work, the distance cutoff rd is set to 6 Å, and
there are 50 Zm values arranged on an exponential grid between
0.45 Å and rd = 6 Å, thus each atomic fingerprint vector has
100 components.

A.2 Locally averaged atomic fingerprints (LAAF). While
providing valuable information on the atomic structures,
simple atomic fingerprints proved insufficient for properly
differentiating all the phases considered in this study. This is
why local averaging was performed.31 For the ith atom,
the locally averaged atomic fingerprint (LAAF) vector can be
written as:

Vav
i ðrd ; raÞ ¼

1

N2ra

X
j2ra

VjðrdÞ; (7)

where NAra
is the number of atoms within the average radius ra

from the ith atom. For two-element systems, the LAAF descrip-
tor is expressed as:

Vav
i2aðrd ; raÞ ¼

1

Na;2ra

X
j2ra

Vj2aðrdÞ: (8)

There are two important distance cutoff values:
1. rd: the distance cutoff for the descriptor.
2. ra: the distance cutoff for locally averaging the descriptor.
These values were carefully chosen so that the characteristics of

each phase are properly captured. In this work rd = ra = 6 Å.
Finally, feature selection based on variance threshold (10�4)

and standardization were performed on the resulting LAAF
vector to obtain unit variance. This lead to a reduction of the
number of features from 100 to 63.

B Dimensionality reduction

B.1 Locality preserving projections (LPP). In recent years,
machine learning methods have become popular in materials
science, and several methods for dimensionality reduction have
been developed. For instance, principal component analysis (PCA)
has become a popular unsupervised learning method, which
consists in computing the principal components and using them
to perform a change of basis on the data.53,54 By this process, the
first principal components should capture the most important
information from a given data set. Most of the time, only a few
first are kept and analyzed. However, in several cases, this method
failed to properly capture the difference between groups of data
points. In order to address this shortcoming, new methods have
been developed, such as the locality preserving projections (LPP)
method.55 By keeping local information, it is less sensitive to
outliers in data than PCA. In this method, an input data matrix X
is built from M-dimensional feature vectors {xi}i = 1,. . .,N, where N
is the number of data points. Therefore, the dimension of X is
(M � N). In this work, the feature vectors xi are the LAAF vectors.

First, a weighted adjacency matrix W is defined as:

Wij ¼
expð�jjxi � xj jjÞ

2s2
ðiajÞ

0 ði ¼ jÞ

8><
>: ; (9)

where s is a hyperparameter. This square matrix is of size (N � N).
Next, the knn-nearest neighbor graph is created. A typical

value is knn = 7. This similarity graph is based on W, where the
off-diagonal elements are forced to zero, except for those
related to the knn nearest neighbor data points. The weighted
adjacency matrix is made symmetric by the operation56

Wij = max(Wij,Wji). (10)

The square diagonal matrix D, called the degree matrix, is
defined as:

D ¼

d1 . . . 0

..

. . .
. ..

.

0 . . . dN

0
BBBB@

1
CCCCA; (11)
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where the diagonal components are defined as:

di ¼
XN
j¼1

Wij : (12)

The graph Laplacian is defined as:

L = D�W. (13)

In LPP, the following generalized eigenvalue problem needs to
be solved:

XTLXy = lXTDXy, (14)

where li and yi are the ith eigenvalue and eigenvector of this
problem, respectively. They are arranged in ascending order.

For a target dimension dr, the mapping matrix Y by LPP from
M to dr dimensions is obtained by

Y = (y1, y2,. . ., ydr). (15)

Using the mapping matrix Y, the feature vector x is mapped to
the low-dimensional vector x0 as

x0 = xY (16)

B.2 Two-step locality preserving projections (TS-LPP). In
the two-step locality-preserving projections (TS-LPP) method,31

the LPP transformation is applied first to obtain an intermedi-
ate space of dimension dm, then applied again on the resulting
space to obtain the final low-dimensional space, using the
same s value for both transformations. This method was shown
to improve the results of single LPP and PCA.

B.3 Optimization of the hyperparameters. The criterion
used to determine appropriate values for s and dm is the
Calinsky–Harabasz score (pseudo-F33), which characterizes
the ratio of the between-cluster variation to the within-cluster
variation after performing clustering with an unsupervised
learning method. The k-means clustering method was used to
partition the projected data points using the implementation of
scikit-learn.57 For this method, a target number of clusters k is
provided. Here, we use k = 8. In TS-LPP. the number of clusters
was shown to have little effect on the low-dimensional space.31

A grid exploration was performed to determine the most
appropriate values for dm and s. In the present implementation
of the TS-LPP method, the same value for s was used for both
LPP steps.
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