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The use of cellulose-based compounds in coating and aqueous phase corrosion prevention is becoming
more popular because they provide excellent protection and satisfy the requirements of green chemistry
and sustainable development. Cellulose derivatives, primarily carboxymethyl cellulose (CMC) and
hydroxyethyl cellulose (HEC), are widely employed in corrosion prevention. They function as efficient
inhibitors by adhering to the metal's surface and creating a corrosion-inhibitive barrier by binding using
their —OH groups. Their inhibition efficiency (%IE) depends upon various factors, including their concen-
tration, temperature, chemical composition, the nature of the metal/electrolyte and availability of syner-
gists (X, Zn®*, surfactants and polymers). Cellulose derivatives also possess potential applications in
anticorrosive coatings as they prevent corrosive species from penetrating and encourage adhesion and
cohesion, guaranteeing the metal substrate underneath long-term protection. The current review article
outlines the developments made in the past and present to prevent corrosion in both the coating phase
and solution by using cellulose derivatives. Together with examining the difficulties of the present and
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1. Introduction

1.1. Fundamentals of cellulose, alkoxycellulose,
nanocellulose and cellulose composites

Cellulose (chemical formula; (C¢H;00s),) is a polysaccharide, or
complex carbohydrate, comprising three thousand or more
glucose units. Cellulose is the fundamental structural element
of plant cell walls (Fig. 1). Cellulose makes up approximately
33% of all vegetable matter (50% of wood and 90% of cotton). It
is the most prevalent naturally occurring organic compound.'?
Nondigestible by humans, cellulose is fed to herbivorous
animals (like cows and horses) because it is retained in their
stomachs for a long enough period to be broken down by
microorganisms found in the digestive tract; termites’ guts also
contain protozoans that break down cellulose. Cellulose is a
material of significant economic value processed to create
fibers and papers.* Cellulose undergoes chemical modifica-
tion to produce materials used in making rayon, plastics, and
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and coating phases has also been investigated.

photographic films, among other products.”® Adhesives, explo-
sives, food thickeners, and moisture-resistant coatings are
other products derived from cellulose.” A significant structural
element of the primary cell wall of oomycetes, various algae,
and green plants is cellulose.? Specific bacterial species release
it to create biofilms. On Earth, cellulose is the most prevalent
organic polymer. The primary products made from cellulose are
paper and paperboard. A vast range of derivative products,
including rayon and cellophane, are produced in smaller
quantities. The two primary sources of cellulose used in indus-
try are cotton and wood pulp.' Although modified forms of
cellulose, or cellulose derivatives, are even more beneficial to
the industry, pure cellulose is still a valuable natural product
with various biological and industrial uses.

Functionalization of cellulose yields a variety of derivatives
(Fig. 2) with possible uses in industry, biology, and the
environment.” " Cellulose derivatives are necessary for explo-
sives, films, textiles, and packaging.’? Thus, it is possible to
produce derivatives of solubilized cellulose in both water and
alkali.”® Cellulose derivatives are used in various research
analyses as thickening agents for food, ointments, pastes,
and creams; they are also used as absorbable surgical agents,
sizing agents for paper and textiles, and other applications.™*
The primary raw material used in producing cellulose
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derivatives is wood cellulose, produced in millions of tons
annually. Among the various cellulose derivatives, alkoxy cellu-
loses have been most widely investigated and reported.'® The
word “nanocellulose” describes cellulose with a nanostructure.
This could be microbial nanocellulose, which is a term for
nano-structured cellulose made by bacteria, cellulose nanofi-
bers (CNFs), also known as nanofibrillated cellulose (NFC), or
cellulose nanocrystals (CNCs).'® Nanosized cellulose fibrils
with a high aspect ratio, i.e. length-to-width ratio, make CNF.
Fibril lengths range widely, usually several micrometers, and
their typical widths range from 5 to 20 nanometers. In addition,
cellulose nanofibrils (CNFs) produced through homogeniza-
tion, microfluidization, or crushing processes can be converted
into highly crystalline, rigid nanoparticles, or nanocellulose,
from native fibers by an acid hydrolysis process. These nano-
particles are shorter (100-1000 nanometers).’” The substance
that is produced is called cellulose nanocrystals (CNCs).
There are many uses for nanocellulose, from toys for kids to
cleaning up oil spills."® The pharmaceutical, nourishment, and
healthcare industries can all benefit from nanocellulose.'® This
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new material is likely less expensive than most other high-
performance nanoscale materials, and it can also replace some
products based on petrochemicals.?® Though one of the most
rapidly expanding subfields in technological polymers is self-
reinforced polymer composites, most of the materials used
to develop these materials up to this point have been
moderately effective thermoplastic fibers. Because of its high
tensile strength and elastic modulus, natural cellulose may
eventually replace glass fibers in specific applications.
Compared to conventional fiber-reinforced plastics, cellulose
composites create composites with greater fiber contents.”'
Furthermore, cellulose composites enable effective stress trans-
fer and adhesion at their interface because these biocompo-
sites’” matrix and reinforcement phases are fully compatible.
These cellulose composites can maintain the mechanical and
thermal characteristics of the cellulose fibers under ideal
processing conditions, and their superior interface can con-
tribute to their optical transparency.**>* Various applications
of cellulose and its organic and inorganic composites are
illustrated in Fig. 3.
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1.2. Corrosion and corrosion control: a brief account on the
contribution of carbohydrate polymers

Carbohydrate polymers are extended chains of monosacchar-
ides connected by glycosidic bonds. Most living things serve as
a significant food source and energy source. The type of
monosaccharides determines whether they are homopolysac-
charides or heteropolysaccharides. Linear polysaccharides are
chains of monosaccharides; they can also be branched, referred
to as a branched polysaccharide. They allow organisms to store
energy. The molecules are hydrophobic because of their numer-
ous hydrogen bonds, which prevent water from penetrating
them.?® They permit modifications to the concentration gradi-
ent, which affects how well the cells absorb water and nutrients.
Glycolipids and glycoproteins are created when many polysac-
charides form covalent bonds with lipids and proteins. The
purpose of these glycolipids and glycoproteins is to transmit
signals or messages both inside and between cells. Polysacchar-
ide cellulose, which makes up the cell wall of plants, supports
the cell wall. Chitin is essential for supporting the extracellular
matrix surrounding cells in fungi and insects.>® Carbohydrate
polymers have potential applications in different fields, espe-
cially food applications.>” Chemical functionalization can sui-
tably tailor their properties, such as hydrophilicity,
hydrophobicity, and applications (Fig. 4).® The hydrophili-
city/hydrophobicity is an essential aspect of corrosion inhibi-
tors as too high and too low hydrophilicity/hydrophobicity
adversely affect the inhibition potential.
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Carbohydrate polymers have been widely used for their
many benefits in developing green corrosion inhibitors, which
can replace toxic chromates, nitrates, molybdates, tungstate,
etc.based alternatives.>*** Over the past ten years, there has
been a significant increase in enthusiasm for this class of
compounds due to their biologically generated properties and
the ability of some synthetic biopolymers, along with their
products, to comply with environmental standards for safe
product use, good corrosion inhibition potential, and negligi-
bly small, reduced, or zero pollution risk.>*~** They are a group
of environmentally friendly, biodegradable, and chemically
stable macromolecules with distinct inhibitory strength and
mechanistic approaches to bulk and metal surface protection
in corrosion inhibition.?*** Carbohydrate polymers isolated
from natural sources (flowers, for example) can be upgraded to
less expensive, renewable, and easily accessible substitutes that
contain vital components that inhibit corrosion.>** A variety
of carbohydrate polymer series, comprising both homo- and
heteropolysaccharides like chitosan, starch, cellulose, chitin,
gum Arabic, and others, are extensively employed in long-term
corrosion prevention.>** Carbohydrate polymers are highly
soluble in aqueous electrolytes, unlike conventional polymers.
Nevertheless, issues with their solubility, stability, and addi-
tional refinement of their inhibitive qualities may still need to
be improved using carbohydrate polymers as corrosion
inhibitors.’> More investigation and advancement are required
to enhance the efficacy and suitability of carbohydrate poly-
mers as corrosion inhibitors in various industrial settings.

Certain carbohydrate biopolymers typically possess distinct
colloidal properties and a relatively high molecular mass.>® The
nature (structural and chemical properties) of the adsorption
layers formed by certain carbohydrate biopolymers can play a
significant role in determining their ability to inhibit asso-
ciated cathodic reactions by blocking their active sites or limit-
ing the rate of anodic dissolution by providing layers on the
metal surface. In their interactions with metallic surfaces, the
majority of carbohydrates can act as adsorption centers due to
the presence of polar functional groups such as -NH,, -OH,
-CH,OH, -SO;H, -COO~, -NHCHCH;, -O- and -COCH;.>°"**
Owing to their polymeric nature and abundance of adsorption
sites, carbohydrate polymers should bind to the metallic sur-
face to form a highly potent, chelating and persistent
complex.”** Furthermore, the polar functional groups of
electrolytes may undergo deprotonation or protonation based
on their specific type. Consequently, chemisorption and physi-
sorption of carbohydrate polymers are possible on the surface
of metals, with the physiochemisorption mechanism being the
primary attachment mechanism.>*3* The general require-
ments of a compound to be used as a corrosion inhibitor are
schematically presented in Fig. 5. Carbohydrate polymer deri-
vatization increases the number of adsorption centers and
solubility of the polymers, increasing their inhibition potential.
The polar functional groups, such as -NH,, -CH,OH, -OH,
-NHCOCHj3;, etc., can serve as centers for derivatization. These
functional groups aid in the distribution of active gradients in
the polymer matrixes of composite coatings. Polar substituents
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Fig. 1 Schematic illustration of the distribution of cellulose in plant tissue. (Self-illustration, Copyright permission is not required).

found in carbohydrate polymers and their derivatives can
operate as adsorption sites when they come into contact with
or connect with metal surfaces. These substituents further
improve their solubility in the polar aqueous electrolytes.

1.3. What makes cellulose and its derivatives effective
corrosion inhibitors?

Several benefits that improve the performance of cellulose and
its suitability in a range of commercial and scientific uses come
from functionalization, which is the process of adding func-
tional groups to cellulose’s chemical structure.*® Regarding
anticorrosive applications, cellulose composites and surface-
functionalized materials are widely used. Functionalized cellu-
lose is created by adding particular functional groups, such as
-OH, -NH,, -OR, etc., to the cellulose backbone to change its
chemical structure.’” The distinct structural and chemical
characteristics of cellulose make it a notably better inhibitor
than other polysaccharides. The cellulose structure is inflexible
and highly crystalline, consisting of linear chains of glucose
molecules connected by B-1,4-glycosidic linkages. The corrosive
and aggressive electrolyte species are unable to permeate and
reach the metal surface due to the wide connection. This robust
molecular arrangement creates a physical barrier to prevent
enzymes and other molecules from accessing the cellulose
substrate. Furthermore, the B-linkages in cellulose withstand
hydrolysis better than the o-linkages in many other

1220 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

polysaccharides.?® Because of its structural resilience, cellulose
is less likely to be broken down by electrolytes and other
corrosive species, making it a potent inhibitor of various
corrosive environments. Cellulose and its derivatives exhibit
remarkable inhibition potential due to its polymeric nature and
multiple adsorption centers. The inhibition potential of func-
tionalized cellulose is enhanced by the numerous beneficial
aspects that come with chemical functionalization. The relative
number of adsorption or coordination sites may rise in the
presence of additional polar functional groups. The inhibition
efficiency is increased due to the enhanced adsorption, which
forms a more robust and protective layer for corrosive ele-
ments. Although cellulose itself can form chelating complexes,
newly added functional groups can further improve the chelat-
ing capability of cellulose derivatives.***° Because of their
chelating qualities, certain functional groups, such as -OH,
-NH,, and -OR, can combine with metal ions to form com-
plexes that prevent them from interacting with the metal
surface.

Several isotherm models can be used to explain the nature
and adsorption behavior of cellulose and its derivatives on
metallic surfaces.*”*> The adsorption isotherm study is essen-
tial to studying corrosion inhibition because it offers vital
information on the interaction between corrosion inhibitors
and metal surfaces.*>** A corrosion inhibitor’s concentration
and adsorption onto the metal surface are examined in

This journal is © the Owner Societies 2024
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Fig. 2 Various derivatives of cellulose. (Self-illustration, Copyright permission is not required).

adsorption isotherm investigations, a subset of corrosion inhi-
bition research. Finding significant variables like adsorption
capacity, surface coverage, and the kind of adsorption model
used is made possible by thoroughly understanding the adsorp-
tion isotherm.*®** These isotherm analyses offer vital new
information about the effectiveness and mechanism of corro-
sion inhibition. The adsorption isotherm provides insight into
the nature of the inhibitor-metal interaction by identifying the
kind of adsorption, whether it adheres to the Freundlich,
Langmuir, or other models.***® To reflect the development of
a protective layer on the metal surface, the Langmuir isotherm,
for example, assumes monolayer adsorption with a defined
capacity.**® The Langmuir isotherm is one of the most studied
and recorded isotherm models in adsorption. This model is
useful in understanding the adsorption of a solution onto a
surface since it has a finite number of identical, non-
interacting adsorption sites. The Langmuir isotherm presumes
monolayer adsorption, as there is only a chance that one layer
of adsorbate molecules will form on the surface.*** The
maximal adsorption capacity and affinity of the adsorbent-
adsorbate system, among other crucial parameters, can be
ascertained using the Langmuir isotherm to comprehend the
behavior of adsorption processes. Despite its widespread use,
the Langmuir isotherm may not always accurately reflect the
adsorption process; in these situations, alternative isotherm
models, such as the Freundlich or BET models, may be more

This journal is © the Owner Societies 2024

suitable.””*® The actual adsorption behavior may also differ
from the assumptions made by the Langmuir model.

In addition, the extra functional groups in modified cellu-
lose can be specially designed to give cellulose particular
qualities like increased solubility, film-forming capability,
and interaction with other additives.*® Functionalized cellulose
can adhere to metal surfaces more effectively and offer durable
corrosion protection because of these specific properties. Cel-
lulose has an extended chain of glucose units with many polar
hydroxyl (-OH) functional groups. Under the influence of
additives (synergists and antagonists) and electrolytes, these
functional groups are readily subjected to physiochemical
changes. Synergists and antagonists can be more noticeable
in cellulose and its derivatives than in conventional corrosion
inhibitors due to their comparatively higher number of func-
tional groups.> Their biocompatibility, non-accumulative nat-
ure, biodegradability, and sustainability further contribute to
the growing interest in cellulose and its derivatives for corro-
sion protection.’® Cellulose also makes a significant contribu-
tion to anticorrosive coatings. Cellulose has been extensively
used as a polymer matrix in such coatings, whereas cellulose
nanocrystals (CNCs) and nanofibers (CNFs) are used as coating-
reinforced materials.

The properties of cellulose, such as film-forming, adhesion,
high mechanical strength, and high susceptibility to functio-
nalization and chemical modification, have drawn interest in it
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Fig. 3 Schematic illustration of the applications of (a) pristine nanocellulose®* [Reproduced from ref. 24 with permission; Copyright@Wiley; 2023], (b)
nanocellulose-based organic polymer composites?® [Reproduced from ref. 20 with permission; Copyright@ACS; 2018] and (c) nanocellulose-based
inorganic polymer composites?® [Reproduced from ref. 20 with permission; Copyright@ACS; 2018].

as a possible polymer matrix for anticorrosive coatings.’>>> The
type of cellulose used, the composition of the coating, and the
particular environmental conditions to which the coatings are
exposed are some factors that affect cellulose’s corrosion
protection performance. Further developments in cellulose-
based anticorrosive coatings are anticipated as this field’s
research and development continue, which could result in
wider industrial adoption of these coatings across various
industries. Reinforced anticorrosive coatings based on cellu-
lose have several benefits over conventional coatings, making
them a viable option for preventing corrosion in multiple
sectors.”® Improved mechanical strength, compatibility, adhe-
sion and adsorption, tailored properties, lightweight and ver-
satile nature, and eco-friendliness are undoubtedly linked to
the addition of CNCs and CNFs.

Despite coming from natural resources and having valuable
uses in various industries, including food, textiles, and phar-
maceuticals, cellulose can be hazardous to human health and

1222 | Phys. Chem. Chem. Phys., 2024, 26, 1121711242

the environment.'" The chemical procedures used to change
cellulose frequently involve using solvents and chemicals that
could be hazardous to the environment and human health.>*"°
If improperly handled, producing byproducts while synthesiz-
ing cellulose derivatives might contribute to environmental
pollution. To tackle these issues, efforts are being made to
create more environmentally friendly and sustainable synthesis
techniques, implement green chemistry concepts, and investi-
gate substitute sources of cellulose.’*>® One of the most critical
aspects of adequately developing these materials is balancing
the functional advantages of cellulose derivatives and the
requirement to reduce their potential toxicity.>”*® Furthermore,
the potential toxicity of some extraction techniques may come
to light during the crucial phase of isolating cellulose from
plant components to produce cellulose derivatives.>**° In con-
ventional procedures, non-cellulosic components are broken
down, and pure cellulose is extracted using strong chemicals
such as acids and alkalis.®”®> If not handled appropriately,
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these compounds can contribute to environmental pollution
and endanger the health of those employed in the extraction
process. Investigating new environmentally safe and sustain-
able isolation techniques, including enzymatic treatments and
eco-friendly solvents, which try to reduce the usage of danger-
ous compounds, is one way to address these toxicity
6162 Mitigating the possible negative impacts of gen-
erating cellulose-based materials on human health and the
environment requires developing and implementing greener
procedures in cellulose isolation.®***

Chemically functionalized cellulose derivatives also mani-
fest better anticorrosive activity in the coating phase.®® Cellu-
lose can be altered chemically to include functional groups
that improve the polymer’s compatibility with corrosion
inhibitors.®*®” Enhancing the adherence of corrosion inhibi-
tors to the substrate surface by incorporating particular func-
tional moieties on the cellulose backbone can result in higher
inhibition efficiency. Furthermore, functionalized cellulose can
offer greater film-forming and barrier qualities during the
coating process, creating a more effective corrosion-protective
film.®®°® Optimizing the corrosion prevention effectiveness of
coatings largely depends on the specific chemical alterations of
cellulose, which also help make the coatings more durable and
resilient in harsh environments. During the coating process,
cellulose’s chemical functionalization can improve the filler
distribution’s homogeneity. The naturally occurring polymer
cellulose has hydroxyl groups on its surface that can be
chemically altered to add particular functional groups.”®”"
The cellulose affinity for different coating materials and fillers

concerns.

This journal is © the Owner Societies 2024

can be enhanced by functionalizing the material’s surface.
Better cellulose-coating component adherence is facilitated by
this change, which results in a more even dispersion of fillers
throughout the coating matrix.”>”* Functionalized cellulose
can also be a compatibilizing agent, improving the interaction
and dispersion of coating materials and fillers. The perfor-
mance and characteristics of the coated material are ultimately
enhanced by the chemical functionalization of cellulose, which
also helps to increase homogeneity in filler distribution.”*”?
Cellulose derivatives such as methylcellulose and cellulose
acetate are commonly utilized as film-forming agents during
the coating phase due to their greater adherence and durability.
These substances provide a stable, long-lasting coating
immune to moisture and temperature fluctuations. The stabi-
lity of cellulose and its derivatives in solution is influenced by
solvent compatibility and molecular weight. Using the proper
solvents and processing conditions is essential to maintaining
the stability of cellulose derivatives in solution and preventing
undesirable reactions or degradation. In general, an under-
standing of and emphasis on the stability of cellulose and its
derivatives considerably enhances the efficacy and longevity of
coatings in several applications, such as medications, food
packaging, and cosmetics.

1.4. Effect of functionalization of cellulose and its derivatives:
change in physiochemical properties and aqueous phase
application

Functionalization of cellulose refers to introducing various
functional groups or chemical moieties onto the cellulose

Phys. Chem. Chem. Phys., 2024, 26, 11217-11242 | 11223
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structure. This modification of cellulose can significantly alter
its physiochemical properties, leading to enhanced or entirely
new characteristics that can expand its potential applications,
including corrosion protection.”*”> One of the significant
influences of chemical functionalization is enhanced solubility
in polar electrolytes. Solubility is the most crucial requirement
for aqueous phase application. The -OH at the C-3 position
should be partially replaced to break the strong inter- and
intramolecular hydrogen interactions and make the cellulose
soluble in water or aqueous solutions.”®”” This type of
chemical modification alters the hydrophilic or hydrophobic
derivatized cellulose. It is important to mention that a suitable
combination of hydrophilicity and hydrophobicity is essential
for a compound to be used as a corrosion inhibitor.”®”® Being a
biological macromolecule, cellulose is a temperature-sensitive
polymer and undergoes degradation at high temperatures,
limiting its industrial application.®® Where corrosion is a sig-
nificant challenge, most industries utilize highly aggressive
electrolytes at high temperatures. Literature studies show
that chemically modified cellulose manifests better (than pris-
tine cellulose) thermal stability and could be used as a
high-temperature corrosion inhibitor.®>®" Furthermore, this
chemical modification improves cellulose’s mechanical
strength, which is essential for practical anticorrosive coating
applications.

1224 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

Many computational studies, including DFT (density func-
tional theory), MDS (molecular dynamics simulations), MCS
(Monte Carlo simulations) and QSAR (quantitative structure-
activity relationship), are widely used in describing the relative
inhibition potential of different organic compounds, including
polymers.®*®* The criteria behind the computational studies
are based on their relative chemical reactivity, i.e., a more
reactive compound is generally a more effective corrosion
inhibitor. In cellulose-based anticorrosive coatings, the chemi-
cally modified CNCs and CNFs manifest better dispersibility in
polymer matrixes.** Functionalization also improves the eco-
friendliness of modified cellulose by increasing its biodegrad-
ability and compatibility.*> In anticorrosive coatings where
cellulose is used as a polymer matrix, some specific functional
groups control the release of active substances, making func-
tionalized cellulose suitable for corrosion inhibition and other
controlled release applications such as drug delivery.®®®”
Furthermore, chemically modified cellulose manifests changed
electrical conductivity. Electrical conductivity is another crucial
aspect of anticorrosive coatings®® for corrosion inhibition. To
sum up, chemical functionalization is essential for improving
the adsorption behavior, expanding the number of adsorption
sites, promoting solubility, and raising the material’s inhibitory
efficacy in corrosion prevention applications. Functional
groups or modifiers are added to its surface to improve the
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material’s ability to attract and interact with corrosive species.
This alteration results in a more thorough covering of the
material surface by increasing the number of adsorption sites
accessible to inhibitor molecules and improving their binding
affinity. Furthermore, the inhibitor’s solubility is frequently
enhanced due to the changed surface chemistry, which aids in
its dispersion and efficient interaction with the corrosive
medium. Together, these advancements improve inhibition
efficiency and provide superior corrosion protection in various
industrial-based electrolytes.

2. Cellulose and its derivatives in
sustainable corrosion control: a
literature survey

2.1. Chemically modified cellulose in sustainable corrosion
control

Since cellulose is not well soluble in most commercially avail-
able electrolytes, little information is known about its use in
aqueous phase corrosion inhibition. However, much research
has been done on chemically modified cellulose in the aqueous
phase for sustainable corrosion protection, particularly hydro-
xyethyl cellulose (HEC), carboxymethyl cellulose (CMC), and
their modified derivatives.®"**°® Arukalam conducted a
groundbreaking study using the weight loss method to examine
the inhibitory effect of HEC for mild steel in 1 M HCI and 1.5
HCL% The author observed that the %IE of HEC for MS
corrosion increases with increasing concentration. HEC
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exhibits 69.61% and 58.14% efficiencies (at 2.5 x 10™% M) in
1 M HCI and 58.14%, respectively. Mainly, HEC-based com-
pounds act as mixed-type inhibitors, i.e. they possess compat-
ibilities to retard both anodic and cathodic reactions.'’*'?
They create a corrosion-inhibiting film by adsorbing using their
e-rich sites. Although the Langmuir isotherm model was gen-
erally followed by their adsorption, some studies also reported
the Frumkin isotherm.'®®'®' Sangeetha et al. found that, as
shown by scanning electron microscopy (SEM) and atomic force
microscopy (AFM) analyses, aminated hydroxyethyl cellulose
(AHEC) improves the surface morphology of corroded speci-
mens through its adsorption (Fig. 6)."°* The aggressive attacks
of corrosive ions and electrolytes severely corrode and damage
the mild steel (MS) surface without AHEC.

A comparison of glucose, gellan gum, and hydroxypropyl
cellulose in 1 M HCI to inhibit cast iron corrosion shows that
modified cellulose is a more effective corrosion inhibitor than
both substances.'®® Their %IE followed the sequence: C
(89.6%) > B (80.9%) > A (69.5%). Furthermore, investigation
and development show that the %IE of HEC depends upon the
nature of the electrolyte and metal/alloys under investigation.
Arukalam et al.’®® demonstrated that HEC manifests relatively
more %IE (93.61%) at lower concentration (1500 ppm) for MS
in 0.5 M H,SO, than for Al. For Al, HEC shows 64.18% efficiency
at concentrations as high as 2000 ppm. Another report
indicates that HEC demonstrates 95% in 1 M HCI at 2000
ppm and 96% in 0.5 M H,SO, at only 1000 ppm.'®* A similar
observation was reported for mild steel corrosion in 1 M HCl
and 0.5 M H,S0,."% Regarding the potential of cellulose
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Fig. 6 (i) SEM and (i) AFM pictures of mild steel specimens that are (a, c) uninhibited and (b, d) inhibited by AHEC!°? [Reproduced from ref. 101 with

permission; Copyright@Elsevier; 2016].
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Fig. 7 2D and 3D AFM images of CS submerged in 1 M HCl for 6 hours at 30 °C with and without inhibitors. The specimens are presented as follows: (a)
polished; (b) uninhibited in 1 M HCL; (c) inhibited in 1 M HCl with 500 ppm HEC. (d) The specimen was incubated in 1 M HCl containing 500 ppm HEC and
5 ppm TX'°° [Reproduced from ref. 109 with permission; Copyright@Elsevier; 2016].

derivatives to prevent corrosion, the phenomenon of syner-
gism, or synergistic effect, has also been thoroughly investi-
gated and documented.'’® "' The term “synergistic effect of
corrosion inhibitor” describes combining two or more ingre-
dients to produce an inhibitory effect on corrosion higher than
the total components applied individually.>® The outcomes of a
study indicate that ethyl hydroxyethyl cellulose (EHEC) man-
ifests only 55.64% efficiency for the MS/0.5 M H,SO, system for
two days of immersion time. However, potassium iodide (KI)
improves the %IE up to 63.28%.'°® A similar observation was
also derived for mild steel corrosion inhibition in 0.5 M H,SO,
using hydroxypropyl methylcellulose (HPMC) and KI.'®” For
zinc—carbon electrodes in 26% NH,CI solution that is utilized
in battery applications, HEC is also employed as a corrosion
inhibitor.'®® At 300 ppm, it exhibits an efficiency of 92.07%.
The polarization study suggests HEC’s mixed-type behavior.
The adsorption of HEC on the electrode in such electrolyte
followed the Langmuir isotherm model. Mobin and Rizvi
studied the inhibition effect of HEC with and without surfac-
tants for A1020 CS corrosion in 1 M HCI using chemical,
electrochemical, surface and computational techniques.'®
The comparative impact of three surfactants, sodium dodecyl
sulfate (SDS), Triton X 100 (TX), and cetyl pyridinium chloride
(CPC), was shown at various HEC concentrations. According to
weight loss and electrochemical research results, the inhibitory
performance of HEC is significantly enhanced by the presence
of SDS, TX, and CPC. TX exhibits the greatest synergistic effect
on HEC inhibition efficiency, followed by CPC and SDS, in that

11226 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

order. HEC inhibits corrosion by adsorbing at the surface of the
metal as the surfaces become smoother in the presence of HEC,
especially in the presence of TX, as seen by AFM images in
Fig. 7. The average surface roughness (R,) of polished, cor-
roded, inhibited by 500 ppm HEC and inhibited by 500 ppm
HEC + 5 ppm TX were 71.4, 627, 489 and 290 nm, respectively.
Scanning electron microscope (SEM), energy dispersive X-ray
(EDX), and UV-visible (UV-vis) spectroscopic measurements
also support the adsorption mode of corrosion protection.
Other studies also document the corrosion inhibition potential
of cellulose derivatives."''*?

Farhadian et al. synthesized a polyurethane modified HEC
(CHEC) to improve the %IE of HEC and studied its inhibition
performance for MS in a pickling solution (15% HCI).*> The
CHEC was synthesized by the previously reported method as
per Scheme 1. First, PEG 1500 (0.046 mol) was added to a
500 mL flask after being dissolved in 100 mL DMF. After being
stirred for 30 minutes, the reaction temperature was increased
to 60 °C. The polyurethane prepolymer was then prepared by
adding 0.055 mol of methylene diphenyl diisocyanate (MDI)
dissolved in DMF to the solution and stirring the mixture
for three hours. Subsequently, 200 mL of DMF-dissolved
HEC (7.5 g) was added to the mixture, and the reaction
continued for 12 hours. The corrosion inhibition studies used
the following techniques: weight loss (WL), open circuit
potential (OCP), electrochemical impedance spectroscope
(EIS), potentiodynamic polarization (PDP), scanning electron
microscope (SEM), atomic force microscope (AFM), X-ray
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Scheme 1 Schematic illustration of the CHEC synthesis®® [Reproduced from ref. 65 with permission: Copyright@Elsevier; 2021].

photoelectron spectroscopy (XPS), density functional theory
(DFT), and molecular dynamics (MD) simulations. In line with
WL studies, a rise in CHEC concentration increased the surface
coverage and inhibition efficiency while decreasing the corro-
sion rate. The 50 and 6 mM concentrations produced the
highest (94%) and lowest (82%) inhibition efficiencies of
CHEC, respectively. In the system with 50 mM CHEC, the
corrosion rate decreased from 128.5 mm year ' in the blank
solution to 7.9 mm year .

Compared to the blank solution at 20-60 °C, including
CHEC in the 15% HCI solution resulted in a possible shift
toward more positive values. This suggests that CHEC
improved the metal surface’s luster by stabilizing the corrosion
product at the interface. In contrast to an uninhibited solution,
regardless of temperature, adding CHEC to the acid solution
decreased the current densities of the polarization reactions.
The metal dissolution and hydrogen evolution reaction rates
appear to have been suppressed by CHEC. The Nyquist plots
demonstrate depressed capacitive circular shapes with just one
time constant, which suggests charge transfer influence on the
corrosion process (Fig. 8). Furthermore, as the CHEC concen-
tration rose, the Nyquist plots in the CHEC solution showed a
larger diameter than the blank. This may be connected to
CHEC’s anticorrosion action, which strengthens the MS surfa-
ce’s resistance to corrosion. In the Bode phase angle diagrams,
the single peaks are observed as a one-time constant for both
the acid corrodent with and without CHEC. More significant
and broader spikes in the presence of CHEC indicate a relaxa-
tion effect brought on by the MS surface’s creation of a barrier
layer. DFT and MDS-based computational studies provide good
support for experimental studies.

Carboxymethyl cellulose (CMC) is one of the cellulose deri-
vatives that contributes significantly to long-term, sustainable
corrosion protection in the aqueous phase. Its high efficiency
typically results from comparatively high concentrations or the
presence of an appropriate synergist. Using weight loss and

This journal is © the Owner Societies 2024

hydrogen evolution methods at different temperatures (30-
60 °C), Umoren and colleagues examined the corrosion and
corrosion inhibition effect of CMC for mild steel in a sulfuric
acid medium (2 M H,S0,).""° The %IE rises as the immersion
time increases but falls as the temperature rises. CI~ and I
ions produce antagonistic and synergistic effects on the inhibi-
tion effect of CMC, respectively. The Langmuir adsorption
isotherm model was discovered to describe the adsorption of
CMC molecules onto the mild steel surface in both the
presence and absence of halide ions. The WL and HE studies
were used in another study to describe the %IE of CMC for mild
steel in 2 M HCI solution."*? The results of another survey of
CMC’s groundwater-based carbon steel corrosion inhibition
effect show that the presence of Zn>" cations enhances CMC'’s
inhibition capacity."'* The highest %IE of 48% is shown by
CMC at 250 ppm concentration; however, at the same concen-
tration, its %IE increases to 98% in the presence of 50 ppm of
Zn>" ions.

Umoren et al. found that CMC is a better corrosion inhibitor
than chitosan (Ch), but less effective than commercial inhibi-
tors when examining the inhibition effect of CMC for API 5L
X60 pipeline steel corrosion in CO,-saturated 3.5% NaCl.''?
The EIS research shows that once the amounts of all three
inhibitors rise, so does the diameter of the Nyquist curves
(Fig. 9). The three tested inhibitors’ Nyquist plots have similar
shapes, which suggests that their protective mechanism
remained constant as the concentrations rose. In this study,
greater concentrations of these inhibitors have wider Nyquist
curve widths, indicating concentration dependence on the
corrosion process. Larger diameters of the Nyquist semi-
circles are characteristics of higher corrosion resistance sys-
tems of inhibitors compared to the blank solution. In the
presence and absence of the optimal (100 ppm) CMC, Ch,
and commercial inhibitor’s concentrations, these authors
observed similar findings and trends of %IE when conducting
corrosion tests at 25, 40, and 60 °C. The increase in the
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Fig. 8 Nyquist graphs for MS in the 15% HCl medium, with and without different CHEC concentrations at 20 °C, 40 °C, 60 °C, and 80 °C®® [Reproduced

from ref. 65 with permission; Copyright@Elsevier; 2021].

diameter of the Nyquist curves follows the same trend (Fig. 10).
A different study shows that adding PVAc (polyvinyl acetate),
PVP (polyvinylpyrrolidone), and PAA (polyacrylic acid) enhances
CMC’s ability to inhibit carbon steel corrosion at 1 M HCI and
1 M KOH.'" In acidic solutions, CMC is also used to prevent
the corrosion of copper, aluminum, and mild steel,>™"*” "'
The CMC typically becomes effective by adhering to the metallic
surface as described by the Langmuir isotherm model. CMC is
a mixed-type corrosion inhibitor because its presence alters the
anodic and cathodic Tafel curves. A summary of studies on the
inhibition potential of HEC and CMC-based corrosion inhibi-
tors is illustrated in Table 1.

2.2. Nanocellulose and cellulose composites in sustainable
corrosion control

2.2.1. Nanocellulose and cellulose composites as corrosion
inhibitors in the aqueous phase. There has been a notable
surge in research interest regarding the synthesis, characteriza-
tion and applications of cellulose composites (CCs).'**2¢
Composites are made of a polymer matrix and are meant to
be used as reinforcement. Because traditional fibers are becom-
ing more affordable, there is a growing need for environmen-
tally friendly materials. These kinds of composites are used
with hindered natural fibers, which makes moisture absorption
inherent. Recently, cellulose composites have been utilized to
improve the assimilation of inorganic materials in various
fields with multi-functional properties, such as fibers, aerogels,
hydrogels and packaging."”” Their biodegradable, renewable,

1228 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

non-corrosive, and high strength-to-weight ratio qualities also
increase their applications in household, automotive, and aero-
space products.'*®'*® There is a paucity of research regarding
their ability to prevent corrosion in the aqueous phase. A few
studies demonstrate that, when applied in an aqueous phase,
CCs effectively inhibit corrosion.

Solomon et al. synthesized CMC and silver nanoparticle-
based composites (CMC/AgNPs) and used them as effective
corrosion inhibitors for St37 steel in 15% H,S0,."*° The
synthesized CMC/AgNPs were characterized by transmission
electron microscopy (TEM), SEM, EDX, Fourier transform infra-
red (FTIR) and UV-vis methods and their inhibition effect was
measured by various techniques. A concentration of 1000 ppm
of CMC/AgNPs provides an optimal inhibition efficiency of
93.94% at 25 °C. At 60 °C, a weight loss method has demon-
strated an inhibition efficiency of 96.37%. The Langmuir
adsorption isotherm explains the adsorption, and it is discov-
ered that CMC/AgNPs slow down both the anodic and cathodic
reactions. The surface of the St37 sample in the acid solution
with the inhibitor is smoother than in the solution without the
inhibiting agent, according to AFM and SEM graphics. The
metal surface has adsorbed CMC/AgNPs molecules, according
to FTIR and EDS data. Hasanin and Kiey developed a micro-
crystalline cellulose-niacin composite (NMCC) and carboxy-
methyl cellulose-niacin composite (NCMC) as aqueous phase
corrosion inhibitors for copper in 3.5% NaCl."*" With the aid of
FTIR, thermogravimetric analysis (TGA), dynamic light scatter-
ing (DLS), SEM and EDX, NMCC and NCMC were described. At
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Fig. 9 API 5L X60 steel impedance plots in a CO,-saturated 3.5% NaCl solution with and without different commercial inhibitors, chitosan, and CMC
concentrations in (a—c) Nyquist, (d—f) Bode frequency, and (g—i) Bode phase angle representations at 25 °C''® [Reproduced from ref. 115 with permission;

Copyright@Elsevier; 2018].

100 ppm concentration, NMCC and NCMC exhibit the best
%IEs of 33.2% and 83.4%, respectively.

Lateef et al. synthesized carboxymethyl cellulose/metal (Cu,
Fe and Ni) composites, designated as CMC/Cu NP, CMC/Fe NP
and CMC/Ni NP, and evaluated their %IE for carbon steel in
2 M HCL"** The best %IE of 98.4%, 96.2%, 94.9% and 76.6%
was derived for CMC/Ni NP, CMC/Cu NP, CMC/Fe NP and CMC,
respectively, at their optimum concentration (400 ppm). Sur-
face analyses verified that the manufactured nanocomposites
could effectively thwart a forceful attack. This group of authors
also synthesized, characterized and evaluated the inhibition
potential of CUO@MEL®@CNCs (copper oxide/melamine/cellu-
lose nanocrystals) and NIO@MEL®@CNCs (nickel oxide/mela-
mine/cellulose nanocrystals) for AISI360-steel corrosion in
1.0 M H,S0,."** The inhibition effect of CuUO@MEL@CNCs
and NiO@MEL@CNCs was compared with the efficiency of
CNCs (cellulose nanocrystals). Electrochemical analyses sug-
gest a significant improvement in the %IE of CNCs derived

This journal is © the Owner Societies 2024

after the composite formation. OCP study indicates that CNCs,
CuO@MEL@CNCs and NiO@MEL®@CNCs successfully
replaced the oxide layers from the surface and built a corrosion
protective film.

PDP study was conducted in the absence and presence of 10,
40 and 75 ppm concentrations of CNCs, CUO@MEL@CNCs and
NiO@MEL@CNCs. It was derived that the presence of the
CNCs and their composites causes a significant change in the
anodic and cathodic Tafel curves (Fig. 11). The presence of
CNCs, CUO@MEL®@CNCs, and NIO@MEL@CNCs significantly
reduced the corrosion current density values, suggesting that
they prevent aggressive electrolyte attacks and block corrosion-
related active sites. The same concentrations of CNCs, CuO@
MEL®@CNCs, and NiO@MEL®@CNCs were used in the EIS study
to explore corrosion prevention’s adsorption mode better.
Fig. 12 shows the Nyquist plots for ISI360-steel corrosion in
1.0 M H,SO, solution in the absence (blank) and presence
of different concentrations of CNCs, CuUO@MEL@CNCs, and
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Fig. 10 API 5L X60 steel impedance plots in a CO,-saturated 3.5% NaCl solution with and without 100 ppm of commercial inhibitor, chitosan, and CMC
at different temperatures represented by (a—c) Nyquist, (d—f) Bode frequency, and (g—i) Bode phase angle representations''® [Reproduced from ref. 115

with permission; Copyright@Elsevier; 2018].

NiO@MEL@CNCs. The Nyquist diagrams for the inhibitor-
containing and blank systems revealed depressed semicircles,
indicating a high degree of similarity in the AISI360-steel
corrosion mechanism across all systems. The addition of
inhibitors significantly increased the semicircle size and polar-
ization resistance, according to a careful analysis of the Nyquist
profiles. This indicated that the inhibitors adsorbed on the
AISI360-steel surface, forming a protective film at the electrode/
solution interface of the material.

These authors also described the relative performance of
nanocrystalline cellulose (NCC) for SS316 Alloy corrosion inhi-
bition in 2 M HC], having developed NCC by acid hydrolyzing
macrocrystalline cellulose (CEL)."** The results obtained from
the different empirical approaches were compared and showed
that these polymers’ protective effectiveness increased with an
increase in concentration in the following order: CEL (93.1%)

1230 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

< NCC (96.3%). By impeding the active centers on the metal
interface, the studied polymers exhibit mixed-corrosion
features, and their adsorption follows the Langmuir isotherm
model. The presence of inhibitors (CEL and NCC) decreases the
corrosion current density in the Tafel curves and increases the
diameter of the Nyquist curves and charge transfer resistance
(Fig. 13). SEM surface morphological investigations supported
the polymer binding on the metal substrate. The DFT para-
meters displayed the anti-corrosive properties of the CEL and
NCC polymers, which were as anticipated. According to a
Monte Carlo (MC) simulation study, the CEL and NCC polymers
are firmly adsorbed on the surface of the SS316 alloy, creating a
potent protective layer. Recently, Lu et al. studied the inhibition
potential of carboxymethyl cellulose and polyaniline compo-
sites (PANI/CMC composites) for Q235 steel corrosion in 1 M
HCL" The findings demonstrate the good inhibitory features
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Fig. 11 PDP curves for AISI360-steel measured in 1.0 M H,SO,4 solution with and without (blank) varying concentrations of (A) CNC, (B) CuO@-
MEL@CNCs and (C) NIO@MEL@CNCs, and (D) with 300 ppm of different nanocomposites present™* [Reproduced from ref. 133 with permission;

Copyright@Elsevier; 2021].

of the PANI/CMC composites, and a significant rise in inhibi-
tion efficiency (94.24% at 1000 ppm). The composites in
corrosive solutions inhibit the anodic metal disintegration of
the substrates and the cathodic H, reactions.

2.2.2. Nanocellulose and cellulose composites as anticor-
rosive coatings. For components working in highly corrosive
environments, anti-corrosion coatings provide excellent protec-
tion against corrosion."**"*” Three primary anti-corrosive coat-
ing alternatives can be distinguished: sacrificial, inhibitive, and
barrier."*® Barrier coatings cover a substrate to create a non-
porous, protective layer that protects the base metal from
environmental damage. It is considered unprotected if a barrier
coating is applied to the base metal without any additional
layer or film and the substrate is attacked by impact or
chemicals. The film’s solid content and thickness significantly
impact the protection’s longevity. A passive layer formed by
inhibitory porous coatings on a substrate reacts with metal and
humidity as it passes through the film. Inhibitory coatings are
frequently used in overcoated primers because, over time, their
ability to prevent corrosion diminishes dramatically. To protect
the material underneath, sacrificial layers function as an addi-
tive over a substrate that corrodes sacrificially. In contrast to
barrier coatings, sacrificial coatings keep working even if the

This journal is © the Owner Societies 2024

film is damaged. However, the type of paint binder used and
the amount of additive content affect the level of protection.
Recently, cellulose-based coatings have emerged as one of
the most economical, efficient, and environmentally responsi-
ble methods.”*"*°**3 The anticorrosive coatings made of cel-
lulose have several benefits for a range of industrial uses.
Cellulose-based coatings are more environmentally friendly
because they are biodegradable and do not contribute to
long-term environmental pollution. Unlike specific synthetic
polymers dependent on petrochemicals, cellulose is primarily
derived from renewable resources. Cellulose-based coatings are
generally safer and non-toxic for application personnel and end
users. Cellulose-based coatings decrease the risk of metal
degradation because they have good adhesion and stop oxygen,
humidity, and corrosive substances from penetrating. Because
cellulose coatings can be adjusted and customized for particu-
lar uses, they are appropriate for various settings and busi-
nesses. Applying cellulose-based coatings with traditional
coating methods like brushing, dipping, or spraying is fre-
quently simple. Long-term corrosion protection requires a
consistent and long-lasting protective layer, which cellulose-
based coatings can help to create. It is simple to combine
cellulose coatings with additional additives to improve

Phys. Chem. Chem. Phys., 2024, 26, 11217-11242 | 11233
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Fig. 12 Nyquist curves for AISI360-steel measured in 1.0 M H,SO4 solution with and without (blank) varying concentrations of (A) CNC, (B)
CuO@MEL@CNCs and (C) NIO@MEL@CNCs, and (D) with 300 ppm of different nanocomposites present’*> [Reproduced from ref. 133 with permission;

Copyright@Elsevier; 2021].

particular qualities like UV resistance, flexibility, or hardness.
Often, cellulose is less expensive than some synthetic polymers.

A summary of some reports on cellulose-composites as
anticorrosive coatings is presented in Table 2. Yabuki et al
showed that cellulose nanofibers improve the anticorrosion
performance of the polymer coatings for the carbon steel/
0.5%NaCl system.'** Following a knife-edge scratch on the
samples, polarization resistance was measured in NaCl
solution and compared to a polymer coating that merely
included a corrosion inhibitor; the scratched specimens com-
bining nanofibers and the corrosion inhibitor had a higher
polarization resistance. Following the corrosion test, voids on
the coating of the polymer cross-section were verified, indicat-
ing that the nanofibers acted as channels for releasing the
corrosion inhibitor. The coating comprised the right quantity
of corrosion inhibitor (2%) and cellulose nanofibers (0.5%) for
self-healing. Zhu and coworkers noticed that a cellulose-based
coating (hydroxyapatite/aminated hydroxyethyl cellulose; (HA/
AHEC)) improves the corrosion resistance and computability
for AZ31 Mg alloy in simulated body fluid (SBF).'*> Polarization
and EIS studies were conducted on bare AZ31 alloy coated with
HA, AHEC, and HA/AHEC. The maximum decrease in current
density and increase in charge transfer resistance or diameter

1234 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

of the Nyquist curve was observed in the presence of the HA/
AHEC coating (Fig. 14). The anticorrosive applications of cellu-
lose composites have also been explored in other
studies.”>'*®"'*® Kreydie and. Al-Abdaly observed that metal
oxides (ZnO:CuO and NiO:CuO) improve the anticorrosive
activity of bacterial cellulose (BC)."*® The results demonstrated
increased corrosion resistance by increasing coating concentra-
tions of metallic nano-oxide.

Wu et al. studied mechanical and electrochemical capabil-
ities based on modified cellulose nanofiber photoinitiators
(MCNFI) and urushiol epoxy acrylate (UEA) and described their
synthesis.”®® The synthesis of MCNFI/UEA is illustrated in
Scheme 2. The outcomes demonstrated that the MCNFI/UEA
coating features were better than those of the original UEA and
the unaltered CNF (cellulose nanofiber) reinforced UEA (CFR/
UEA) coating. The 8 wt% loading level produced the best
mechanical properties; additional MCNFI loading decreased
the mechanical properties. The structural features of the UEA
matrix, which include suitable soft and hard segments and the
fillers’ good dispersibility and interfacial interaction, are
responsible for the improved mechanical properties. The coat-
ing with MCNFI (8 wt%)/UEA showed the strongest anti-
corrosive properties. This study presented a novel technique
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for producing an anti-corrosive coating based on renewable
urushiol that simultaneously uses modified nanocellulose as a
filler and a macrophotoinitiator. The authors suggested that
urushiol, UEA, had good low water absorption performance due
to its long-side aliphatic chain. The composite coating’s ability
to decrease water absorption was guaranteed by the modified
nanocellulose’s hydrophobic properties when compared to the
unmodified one.

The uniform distribution of CNFs in a polymer framework
could be formed with grafting modification. The larger surface
area and smaller size of CNFs make them an excellent nano-
filler that increases the density of UEA coatings by allowing the
coating to absorb more of the coating. Furthermore, the
modified nanocellulose photoinitiator increased the coating’s
cross-link density by serving as an interface to connect the UEA
molecule. It decreased its micropores, extending the corrosive
medium’s dissemination path through the coating and post-
poning the electrochemical corrosion process. Furthermore,
since the coating included many oxygen atoms, the oxygen
atom lone pair electrons could donate their charge to the Fe
surface’s d orbital. As a result, the coating may stick to the
substrate and form a strong coordinate bond through chemi-
sorption. The coating’s hydroxyl groups may establish

This journal is © the Owner Societies 2024

hydrogen bonds with the metal substrate to further improve
adhesion. Corrosion was successfully postponed by the coat-
ing’s strong adsorption force on the metal substrate. Finally,
when O, increases close to the metal surface, an oxidation
reaction occurs on the metal surface due to O, diffusion. Fe
would be reduced to Fe** by oxidation, and Fe** would then
react with the OH™ produced by the reduction reaction to form
Fe(OH); precipitation, covering the metal surface and creating
a thick protective layer. To prevent corrosion from occurring
again, the metal surface was passivated. The corrosion inhibi-
tion mechanism of the MCNFI/UEA composites is presented
in Fig. 15.

Gouda and colleagues reported the formation of novel
CeO,-nanoparticle-loaded carboxymethyl cellulose (CeO,-
CMC), which was successfully made using an easy method
and assessed using thermal, TEM, FT-IR, and FE-SEM/EDX
analyses."” OCP, EIS, and PDP techniques examined the
corrosion protection effectiveness of coated and unprotected
mild steel with the CeO,-CMC system in 1.0 M HCI solutions.
MC simulation and DFT calculations also verified the connec-
tion between the coating film structure and corrosion protec-
tion. The produced CeO,-CMC-coated coatings exhibited
outstanding resistance to corrosion. The OCP assessment
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Fig. 14 The polarization (left side) and Nyquist (right side) plots for AZ31 corrosion in simulated body fluid with and without HA, AHEC and HA/AHEC
coatings**® [Reproduced from ref. 145; open access publication, copyright permission not required].

/,0\ 0 0 MCNFI

uv
4,

Lacquer tree Urushiol UEA 55\, MCNFVUEA coating

Scheme 2 Schematic presentation of the synthesis of MCNFI/UEA*® [Reproduced from ref. 150 with permission; Copyright@Elsevier; 2022].
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Fig. 15 Diagrammatic illustration of the MCNFI/UEA composite coatings’ corrosion resistance mechanism on tinplate substrates'® [Reproduced from
ref. 150 with permission; Copyright@Elsevier; 2022].
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Fig. 16 Nyquist (A), Bode (B), and Bode phase (C) plots in 1.0 M HCl solution
(D) EEC for systems that are uncoated (D(1)) and coated (D(I1)*** [Reproduced

indicates that all the coated specimens exhibited additional
positive potential during the initial immersion period com-
pared to the blank MS. This suggests that the coated MS
samples are in a passive state and are thus adequately shielded
from acidic solutions. In a process that might be similar to
anodic protection, the coated CeO,-CMC films assisted in the
formation of a persistent passive film. The EIS study was
conducted for uncoated and coated MS surfaces to study the
kinetic and interfacial properties of the coatings. The Nyquist
and Bode phase angle and frequency plots are presented in
Fig. 16.

In pure MS bare, the Nyquist diagram displays an individual
capacitive loop, or solitary semicircle, attributed to the charge-
transfer corrosion process. On the other hand, two capacitive
loops are identified when coated MS surfaces with varying
percentages of CeO,-CMC nanocomposites are present. Based
on information from research, the coating film capacitance
(Qcoats CPE¢oa¢) and the coating film resistance (R.) can be used
to explain the inductive loop at relatively high-frequency (HF)
areas. The polarization resistance (R,) in conjunction with the
double layer’s capacitance (Qq;, CPE4) may be responsible for

1238 | Phys. Chem. Chem. Phys., 2024, 26, 11217-11242

for MS and coated with different percentages of CeO,-CMC at 50 °C, and
from ref. 151; open access publication, copyright permission not required].

the capacitive-loop regions at low frequencies (LF). The capaci-
tive circles are slightly depressed and not quite perfect semi-
circles. This is connected to the frequency dispersion effect
because of the imperfections and heterogeneity of the metal
surface. The Bode impedance modulus exhibits linear regions
at intermediate frequencies. The coated films exhibit even
more linearity, suggesting steeper slopes than the uncoated
metal. Recently, Grumo et al. demonstrated that the amount of
nanocellulose (NC), used as a reinforced material in epoxy
resin-based anticorrosive coatings, determines the overall cor-
rosion inhibition effect."®> The coating having the highest
amount (2.0%) of NC showed the best efficiency of 96.21%.

3. Conclusion, research gaps,
challenges and outlooks

The current discourse indicates that cellulose and its deriva-
tives have exhibited encouraging potential as corrosion inhibi-

tors in both the solution and coating phases. Because of its
unique qualities, cellulose is a desirable option for corrosion
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protection applications due to its renewable nature, biodegrad-
ability, and accessibility. Its solubility restricts the use of the
aqueous phase in corrosion protection. However, cellulose
derivatives, primarily carboxymethyl cellulose (CMC) and
hydroxyethyl cellulose (HEC), are widely employed in corrosion
prevention. They function as efficient inhibitors by adhering to
the metal’s surface and creating a barrier that shields it from
corrosive attacks. By providing metal ions with binding sites,
the hydroxyl groups in the cellulose molecules create a barrier
that prevents corrosion on the metal surface. The concen-
tration, temperature, and chemical composition of the solution
are some variables that can affect the inhibition efficiency. The
nature of the metal and electrolyte has a significant impact on
the inhibition efficiency of cellulose. The results of the litera-
ture imply that appropriate synergists, such as halide ions (I,
Br , etc.), metal cations (Zn**), surfactants (SDS, TX, CPC), and
polymers (PVA, PAA, etc.), can be used to customize the %IE of
cellulose derivatives. Nonetheless, the %IE of HEC is negatively
impacted by chloride ions.

The %IE of cellulose derivatives in the solution phase can be
shown using a variety of chemical, electrochemical, surface,
and computational techniques, including WL, HE, OCP, EIS,
PDP, FTIR, XRD, SEM, EDX, XPS, AFM, DFT, and MDS. To add
another line of defence against corrosion during the coating
phase, materials based on cellulose can be added to protective
coatings. The cellulose-rich coating that forms prevents corro-
sive species from penetrating and encourages adhesion and
cohesion, guaranteeing the metal substrate underneath long-
term protection. They also become effective by offering an
alternate path in the coating structures, which delays the
penetration of the electrolytes. Although cellulose and its
derivatives are promising as aqueous-phase corrosion inhibi-
tors, several issues must be resolved before they can be used
effectively. The solubility of cellulose and its derivatives in
water may be restricted, which affects their capacity to form
homogenous solutions. It can be challenging to achieve the
ideal dispersion, so techniques to improve solubility must be
investigated to guarantee even coverage on the metal surfaces.
Since cellulose’s protective films are typically weak and
impacted by outside variables like pH, temperature, and expo-
sure to harsh chemicals, their inhibitive qualities gradually
deteriorate.

The processes used in synthesizing and modifying cellulose
derivatives might not be environmentally friendly and could
entail chemical treatments. Further research should investigate
economical synthesis techniques and refine dosage specifica-
tions to render cellulose-derived inhibitors commercially fea-
sible. Cellulose derivatives may only work well on some metal
substrates. Thus, for cellulose-based inhibitors to be success-
fully applied in various industrial settings, research and devel-
opment to understand the specificity of these inhibitors for
different metals and alloys is essential. Fewer studies have been
conducted on applying cellulose derivatives in the coating
phase, which warrants further investigation. It is also necessary
to investigate the corrosion inhibition mechanism during the
coating phase, as it has yet to receive much attention in the

This journal is © the Owner Societies 2024
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literature. Research on the application of cellulose derivatives
for the inhibition of corrosion in other metals and alloys,
including aluminum, copper, zinc, and steel, is warranted as
they are primarily utilized for protecting steel alloys (CS and
MS) from corrosion.
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