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AKR1B1 and AKR1B10 inhibition
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Understanding selectivity mechanisms of inhibitors towards highly homologous proteins is of paramount

importance in the design of selective candidates. Human aldo-keto reductases (AKRs) pertain to a

superfamily of monomeric oxidoreductases, which serve as NADPH-dependent cytosolic enzymes to

catalyze the reduction of carbonyl groups to primary and secondary alcohols using electrons from

NADPH. Among AKRs, AKR1B1 is emerging as a promising target for cancer treatment and diabetes,

despite its high structural similarity with AKR1B10, which leads to severe adverse events. Therefore, it is

crucial to understand the selectivity mechanisms of AKR1B1 and AKR1B10 to discover safe anticancer

candidates with optimal therapeutic efficacy. In this study, multiple computational strategies, including

sequence alignment, structural comparison, Protein Contacts Atlas analysis, molecular docking, molecular

dynamics simulation, MM-GBSA calculation, alanine scanning mutagenesis and pharmacophore modeling

analysis were employed to comprehensively understand the selectivity mechanisms of AKR1B1/10

inhibition based on selective inhibitor lidorestat and HAHE. This study would provide substantial evidence

in the design of potent and highly selective AKR1B1/10 inhibitors in future.

1. Introduction

Aldo-keto reductases (AKRs) constitute a NADP(H)-dependent
and monomeric oxidoreductase superfamily with ubiquitous
distribution in human tissues, which mainly located in cyto-
plasm and catalyze the reduction of carbonyl groups to alcohols
for conjugation. To date, 15 human AKRs with over 190 family
members have been discovered, which are further divided
into six subfamilies (AKR1A, AKR1B, AKR1C, AKR1E, AKR6A,
and AKR7A) according to sequence homology and functional
similarity.1–3 They possess a core motif known as the (a/b)8
barrel, which is alternatively referred to as the TIM barrel due to
its association with triose phosphate isomerase, a conserved
metabolic enzyme. The (a/b)8 barrel represents the prevailing
fold observed in protein catalysts, accounting for approximately
10% of all documented enzyme structures.4 Relevant studies
have confirmed that AKRs are closely related to various dis-
eases, including diabetic complications, asthma and even
cancers.1,5,6

Given the potential role in the progression of diabetes
complications and cancers, AKR1B is currently the most exten-
sively studied subfamily, including AKR1B1, AKR1B10 and

AKR1B15.7,8 AKR1B1, a key rate-limiting enzyme that regulates
the polyol pathway of glucose metabolism, facilitates the con-
version of glucose to sorbitol using NADPH as a cofactor.
Sorbitol is then metabolized to fructose by sorbitol dehydro-
genase, thus involving in the occurrence and development of
diabetic complications.1,9 As a well-characterized enzyme,
AKR1B10 has a high retinal reductase activity for all-trans-
retinaldehyde, which indirectly regulates cell differentiation.10

It is widely acknowledged that AKR1B1 and AKR1B10 play a
pivotal role in the pathology of diabetic complications and are
highly expressed in certain cancers, such as breast, ovarian and
lung cancer.11–13 The application of AKR1B1 or AKR1B10 inhi-
bitors has been considered as a predominant therapeutic
strategy to treat diabetic complications, cancers and other
diseases. Structurally, AKR1B1 and AKR1B10 not only share a
70.6% amino acid sequence identity but also overlap in sub-
strate specificities for aliphatic and aromatic aldehydes.10 This
is the reason why AKR1B1 inhibitors can effectively bind to
AKR1B10 proteins.

Despite rigorous screening and optimization of most AKRs
inhibitor candidates entering the preclinical stage, approxi-
mately 60% of drug candidates do not progress beyond phase
I, II, and III clinical trials and are even withdrawn due to poor
selectivity, resulting in elevated toxicity, side effects and poten-
tially unmanageable outcomes.14 One example is tolrestat, a
typical AKR1B1 inhibitor developed by Ryerst Inc. and first
marketed in Ireland for the treatment of adult diabetic
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retinopathy in 1989, which has been withdrawn because of
severe hepatotoxicity, which is mainly attributed to its
lower inhibitory selectivity against AKR1B1 over AKR1B10.15

Up to now, epalrestat serves as the only AKR1B1/10 inhibitor
commercially available for the treatment of diabetic
complications.16,17 Therefore, it is crucial to understand the
reasons for the poor selectivity of AKR1B1 and AKR1B10 to
develop AKRs selective inhibitors.

Here, our study focused on the structural properties of
selective AKR1B1 and AKR1B10 inhibitors within the coenzyme
binding region, catalytic region and C-terminal free ring struc-
ture of AKR1B1/10 proteins. We selected two representative
inhibitors: lidorestat,18 a known selective inhibitor of AKR1B1,
for treatment of chronic diabetic complications and HAHE,19 a
selective inhibitor of AKR1B10 that is 790-fold more potent
than AKR1B1, significantly suppressed farnesal metabolism
and cell proliferation in AKR1B10-overexpressing cells (Fig. 1).
To thoroughly examine the correlation between the active sites
of AKR1B1 and AKR1B10 and their selective inhibitors, a series
of silico-based approaches were employed in a sequential
manner.20 These approaches encompassed sequence align-
ment, molecular docking, molecular dynamics simulation,
MM-GBSA calculation,21 alanine scanning mutagenesis22 and
pharmacophore modeling analysis. Our research sheds light
on the selectivity mechanism of AKR1B1/10 inhibitors and
instills great assurance for future advancements in the design
and optimization of selective inhibitors targeting AKR1B1 or
AKR1B10.

2. Methods
2.1. Sequence alignment and structure superposition

To determine the structural similarities and differences, the
Discovery Studio 3.0 software package was used to align the
genomic full-length sequence of human AKR1B1 (Uniprot code
P15121) and AKR1B10 (Uniprot code O60218) downloaded in
FASTA format from Uniprot (https://www.uniprot.org/).23

Meanwhile, the human AKR1B1-NADP+-lidorestat complex
(PDB code:1Z3N)18 and AKR1B10-NADP+-tolrestat complex
(PDB code:1ZUA)10 were obtained from RSCB Protein Data
Bank (https://www.rcsb.org)24 and were used for the structural
superposition. Each co-crystallized ligand was anchored in the
binding pocket of the receptors (AKR1B1 and AKR1B10) to

automatically align using the ‘‘Superimpose Proteins’’ module
in the Discovery Studio 3.0 software (Accelrys, San Diego,
CA, USA).

2.2. Protein Contacts Atlas analysis

The online server at https://www.mrc-lmb.cam.ac.uk/pca/ was
used to import the crystal structure of AKR1B1 and AKR1B10
for Protein Contacts Atlas analysis.25 This analysis aimed to
examine binding characteristics and understand protein–
ligand interactions of AKR1B1 and AKR1B10 through residue-
residue interaction networks.

2.3. Protein and ligand preparation

The crystal structures of human AKR1B1/NADP+/lidorestat
complex (PDB code: 1Z3N) and AKR1B10/NADP+/tolrestat
complex (PDB code:1ZUA) were imported into Maestro version
13.5 from the Schrödinger package (Schrödinger, LLC, New
York, NY, 2023)26 and then prepared by the Protein Preparation
Workflow27 module, which removed the original hydrogen
atoms, added hydrogen atoms, filled in the missing side chains
and loops using the Prime module.28 Subsequently, the options
for ‘‘optimal H-bonds assignment, removal of water and pro-
tein minimization under the OPLS-4 force field’’ were selected
to relieve any clashes. Additionally, lidorestat and HAHE were
drawn in ‘‘sdf’’ format using ChemDraw19.0 Ultra and opti-
mized using the OPLS-4 force field29 to generate low-energy
conformers automatically using the Ligprep module30 of the
Schrödinger suite (Schrödinger, LLC, New York, NY, 2023) for
subsequent molecular docking.

2.4. Molecular docking

Molecular docking was performed using Glide 9.731,32

embedded in Maestro version 13.5 from the Schrödinger pack-
age. A grid box was constructed to define the active site using
the Receptor Grid Generation module, with the center of the co-
crystal ligand serving as the reference point. In order to ensure
the docking results accurately and effectively, the co-crystal
ligands were re-docked to the binding pockets of AKR1B1 (PDB
code:1Z3N) and AKR1B10 (PDB code: 1ZUA) in the ‘‘Extra
Precision’’ (XP) mode to further compute Root Mean Square
Deviation (RMSD) values. Then, all compounds were docked
flexibly in the same manner to predict all possible binding
conformations, which were sorted by the docking score, glide
score and glide emodel using the Ligand Docking module.33

Finally, PYMOL 2.5 was used to draw the optimal binding
conformations, which were then selected for the subsequent
molecular dynamics simulation.

2.5. Molecular dynamics (MD) simulation

To further optimize the binding mode of AKR1B1/10-NADP+-
lidorestat/HAHE complexes, we performed conventional mole-
cular dynamics simulations using the Desmond program.34 To
parameterize the AKR1B1/10 protein and small molecules
(lidorestat and HAHE), the OPLS_2005 force field was utilized,
with the water solvent being modeled using the TIP3P model.
The protein–small molecule complex was placed in a cubic

Fig. 1 Structures and inhibitory activity of the highly selective AKR1B1 and
AKR1B10 inhibitors.
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water box and solvated. To neutralize the charge of the system,
chloride and sodium ions were added at a concentration of
0.150 M. Initially, the system’s energy was minimized by
employing the steepest descent minimization technique for a
total of 50 000 steps. Subsequently, the positions of large atoms
were limited during NVT and NPT equilibration for an extra
50 000 steps. The temperature of the system was kept at 300
Kelvin, while the pressure of the system was maintained at 1
bar. Following the completion of the two equilibration phases,
a simulation without any restrictions was conducted for a
duration of 100 nanoseconds. During the 100 ns MD simula-
tion, RMSD and Root Mean Square Fluctuation (RMSF) were
monitored. Finally, the protein–ligand interactions were ana-
lyzed and dynamic trajectory animations were generated using
Maestro version 13.5.

2.6. Molecular mechanics/generalized Born surface area (MM/
GBSA) calculation and energy decomposition calculation

According to the aforementioned AKR1B1/10 and their selective
inhibitor complexes, the binding free energy of the protein–
ligand complex was calculated using the MM-GBSA method
from Schrödinger Maestro version 13.5 and AMBER version
18.35 First, the equilibrated coordinates of complexes were
obtained through MD simulations performed using AMBER
version 18 with the ff14SB force field. Force field parameters of
the ligand were generated using the general AMBER force field
GAFF2 through the Antechamber program. The hydrogen
atoms were positioned using the LEaP module, and each
complex was placed within a cubic box containing TIP3P water
molecules with a solute-wall distance of 10 Å. Counter ions were
introduced to maintain system neutrality. The system under-
went energy minimization through 2500 steps using the steep
descent algorithm followed by 2500 steps using the conjugate
gradient algorithm, with a nonbonded cutoff of 10 Å. Then, MD
simulation was conducted involving gradual heating, density
equilibration, equilibration and 100 ns production procedures.
Each complex was subjected to three repetitions of the simula-
tion using the equilibrated part of the MD trajectories. Totally,
100 snapshots were extracted from the equilibrium trajectory
for MM-GBSA free energy calculation according to the following
equations:36

DGbind = Gcomplex � (Gprotein + Gligand) (1)

DGbind = DEMM + DGsol � TDS (2)

DEMM = DEele + DEvdW + DEint (3)

DGsol = DGGB + DGSA (4)

where DGblind represents the total binding free energy of
protein–ligand complexes, while DEMM represents the gas-
phase interaction energy, which is decomposed into electro-
static interaction energy (DEele), van der Waals interaction
energy (DEvdW) and internal energy of the system (DEint). �TDS
represents the change in ligand-binding conformational
entropy where T and S denote the absolute temperature and
entropy, respectively. Typically, �TDS is calculated through

normal mode analysis, but it is ignored in this study due to
the significant time consumption, uncertainty of the contribu-
tions to the total free energy and the large margin of error. In
addition, DGGB and DGSA denote the polar and non-polar
contributions of solvation-free energy (DGsol), respectively.
Besides, DGGB is often calculated based on the Generalized
Born model (GB), while DGSA is calculated based on surface
tension and solvent-accessible surface area. Additionally, a per-
residue energy decomposition analysis was performed to deter-
mine the energy contribution of each residue to the overall
binding energy based on the above same snapshots.

2.7. Alanine scanning mutagenesis analysis

In order to identify the effect of specific amino acid residues on
the AKR1B1/10-lidorestat/HAHE complexes surface, alanine
scanning mutagenesis analysis22,37 was carried out to calculate
the variation in binding free energy (DDGbind) between the
mutant and the wild-type system. Typically, the contribution
of alanine–mutant’s binding free energy is negligible. There-
fore, the gap in the binding free energy between the mutant and
wild-type system corresponds to the involvement of mutant
residues in the overall binding free energy. Please refer to the
formula below for details.

DDGwild-mutant
bind = DDGmutant

bind � DDGwild
bind (5)

where DDGmutant
bind and DDGwild

bind represent the binding free energy
of the wild-type system and mutant system after residue muta-
tion to alanine, respectively.

2.8. Structure-based 3D pharmacophore models

Based on the optimal binding mode of AKR1B1/10-lidorestat/
HAHE complexes, the three-dimensional (3D) pharmacophore
models were automatically generated by defining the active
site of lidorestat and HAHE using the LigandScout 4.4.8
software.38 Some chemical features, including hydrogen bond
donor/acceptor, aromatic ring center and hydrophobic group,
were observed in the 3D pharmacophore models. Leave all
other parameters as the default values throughout the entire
process.

3. Results and discussion
3.1. Comparison of AKR1B1/10 structures and sequences

To gain preliminary insights into the selective mechanism of
AKR1B1/10 inhibition, the comparison of the structural simila-
rities and differences between AKR1B1 and AKR1B10 was
performed through sequence alignment and structure super-
position. The crystal structures of AKR1B1 (PDB code: 1Z3N)
and AKR1B10 (PDB code: 1ZUA) were subsequently chosen for
further analysis. As shown in Fig. 2(A) and (B) AKR1B1 and
AKR1B10 possessed a high degree of sequence homology with
the sequence identity of 70.6% and similarity up to 85.8%.
Meanwhile, some key residues involving in catalytic residues
TYR48, HIS110 (AKR1B1 numbering) and TRP111 in the active
site of the AKR1B1 holoenzyme structure overlapped tightly
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with these in the AKR1B10–tolrestat complex structure, which
were composed of TYR49, HIS111 (AKR1B10 numbering) and
TRP112. Of note, these key residues define a geometrically rigid
‘‘anion binding pocket (ABP)’’ with the nicotinamide moiety of
NADP+, which was occupied by the negatively charged groups of
AKR1B1/10 inhibitors. Furthermore, the Protein Contacts Atlas
analysis was performed to examine the important non-covalent
interactions between AKR1B1 and AKR1B10 proteins and their
co-ligands. The results further confirmed the significance of
these proposed crucial residues (Fig. 2(C)). Overall, the signifi-
cant resemblance between the structures of AKR1B1 and
AKR1B10 poses a challenge in the development of highly
selective small molecule inhibitors.

3.2. Comparison of binding modes against AKR1B1/10
inhibitors through molecular docking

Molecular docking is a commonly employed method for eval-
uating the interaction patterns and binding affinities between
receptors and ligands. To elucidate the underlying structural
reasons for the selectivity mechanism of AKR1B1/10 inhibition,
the native ligands from AKR1B1 and AKR1B10 were initially re-
docked into AKR1B1-NADP+ and AKR1B10-NADP+ complexes
with the optimized docking parameters to ensure the reliability
of molecular docking results. The results showed that the
optimal conformation of the co-crystalline ligands was success-
fully attached to the crystal structure of AKR1B1 and AKR1B10,
with RMSD values of 0.285 Å and 0.220 Å, respectively, suggest-
ing that the docking protocol is reliable and accurate (Fig. 3).

Then, lidorestat and HAHE were docked into the catalytic
region of AKR1B1 and AKR1B10 using the same parameters as
mentioned above. As indicated in Table 1, the docking score of
lidorestat and HAHE against AKR1B/10 proteins was compati-
ble with their biological activity tendency. For example, the
selective AKR1B1 inhibitor lidorestat displayed a better docking
score of �12.402 kcal mol�1 towards 1Z3N than the selective
AKR1B10 inhibitor HAHE (�8.292 kcal mol�1), indicating that
lidorestat binding to AKR1B1 was superior to HAHE. In con-
trast, lidorestat exerted an opposite effect with a docking
score of �3.940 kcal mol�1 toward 1ZUA compared to HAHE
(�9.311 kcal mol�1). In addition, the Glide emodel was devoted
to picking the ‘‘best’’ pose of a ligand (pose selection) with a
more significant weighting of the force field components
(electrostatic and van der Waals energies), and then ranks
these best poses against one another with GlideScore, which
is considered as the empirical scoring function that estimates

Fig. 3 Comparison of the predicted and experimental poses for (A)
AKR1B1, RMSD = 0.285 Å (PDB code: 1Z3N) and (B) AKR1B10, RMSD =
0.220 Å (PDB code: 1ZUA). The green sticks represent the experimental
pose extracted from the X-ray structure, whereas the blue and yellow
sticks represent the docked poses.

Table 1 Glide docking scores of lidorestat and HAHE against AKR1B1/10
proteins

Complex
Docking score
(kcal mol�1)

Glide score
(kcal mol�1)

Glide emodel
(kcal mol�1)

1Z3N/lidorestat �12.402 �12.402 �106.697
1Z3N/HAHE �8.292 �8.292 �70.150
1ZUA/lidorestat �3.940 �3.940 �61.826
1ZUA/HAHE �9.311 �9.311 �62.424

Fig. 2 Comparison of AKR1B1 and AKR1B10 in structure and sequence. (A)
Structure superposition of the AKR1B1-NADP+-lidorestat complex (PDB
code: 1Z3N, blue ribbon) and AKR1B10-NADP+-tolrestat complex (PDB
code: 1ZUA, yellow ribbon). The red boxes represent key amino acids
formed by ligands that bind to AKR1B1 and AKR1B10, which are shown in
blue and yellow sticks, respectively. (B) Sequence alignment of AKR1B1 and
AKR1B10. The blue characters indicate the identical residues of AKR1B1
and AKR1B10, the yellow and white characters indicate similar and non-
matching residues, respectively. (C) The asteroid plot formed by Protein
Contact Atlas based on the AKR1B1 (left) and AKR1B10 (right) co-crystal
structure. The ligand, represented as the central node and highlighted in
blue, is surrounded by residues that are color-coded according to their
secondary structures. The inner shell residues refer to the immediate
neighbors that directly interact with the ligand molecule, whereas the
outer shell residues engage in indirect interactions. The size of the circular
nodes corresponds to the number of contact residues established with the
ligand.
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the binding free energy of the ligand.31–33 It was obvious that
the Glide emodel further confirmed the above results (Table 1).
Although these results demonstrated that lidorestat exerted a
stronger binding affinity for AKR1B1 compared to AKR1B10,
while HAHE showed a more favorable impact on AKR1B10,
experiments are still needed for further verification.

As demonstrated in Fig. 4 and 5, the oxygen atoms on the
carboxyl group of lidorestat formed strong hydrogen bond
interactions with catalytic residues TYR48, HIS110 and key
residue TRP111. These interactions effectively anchored

lidorestat within the active site of AKR1B1, thereby significantly
enhancing the enzymatic activity of AKR1B1. It is worth noting
that the ‘‘specificity pocket’’ responsible for binding AKR1B1
consists of TRP111, THR113 and PHE122 from loop A, as well
as CYS298 to SER302 and TYR309 from loop C, particularly in
close proximity to LEU300, which exhibits considerable flex-
ibility. The opening of this pocket is typically induced by the
hydrophobic group of the inhibitor and plays a vital role in
AKR1B1 selectivity. Obviously, in the AKR1B1-NADP+-lidorestat
complex, the specificity pocket of AKR1B1 exhibits an

Fig. 4 Predicted binding patterns of lidorestat and HAHE against AKR1B1-NADP+ (PDB code: 1Z3N, blue ribbon) and AKR1B10-NADP+ complex (PDB
code: 1ZUA, yellow ribbon). (A) AKR1B1 with lidorestat. (B) AKR1B1 with HAHE. (C) AKR1B10 with lidorestat. (D) AKR1B10 with HAHE. Lidorestat and HAHE
were displayed as the green and chartreuse sticks, respectively. The gray sticks represent the coenzyme named as NADP+. The yellow dashed line
represents the hydrogen bonds and the magenta dashed line represents the p–p stacking interaction.
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additional hydrogen bond between the nitrogen atoms on the
benzothiazole group of lidorestat and the amide N–H of
LEU300, alongside an almost flawless p–p stacking interaction
involving the benzothiazole side chain and the indole moiety of
TRP111, resulting in a transition to an open state. These
interactions contribute to the high selectivity of lidorestat
against AKR1B1. In contrast, HAHE only forms a hydrogen
bond with LEU300 and p–p stacking with TRP111 of AKR1B1,
which does not impact the activity of AKR1B1. These results
suggest that selective AKR1B1 inhibition can potentially be

achieved by elongating the side chain of AKR1B1 inhibitors
with a bulky group to occupy a larger interspace within the
hydrophobic sub-pocket of AKR1B1. This would also improve
the capacity to establish robust hydrogen bond connections
with the catalytic residues TYR48, HIS110, and the crucial
residue TRP111.

As for AKR1B10, the hydroxyl oxygen atoms on the benzene
ring of HAHE and the oxygen atoms on the carboxyl group of
lidorestat occupied the anionic site and formed critical hydro-
gen bonds with catalytic amino acids TYR49 and HIS111. In

Fig. 5 Two-dimensional binding patterns of lidorestat and HAHE against AKR1B1 (PDB code: 1Z3N, blue ribbon) and AKR1B10 (PDB code: 1ZUA, yellow
ribbon). (A) AKR1B1 with lidorestat. (B) AKR1B1 with HAHE. (C) AKR1B10 with lidorestat. (D) AKR1B10 with HAHE.
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addition, the oxygen atoms on the side chain benzene ring of
HAHE formed additional hydrogen bonds with ASN300 and
engaged in p–p stacking with HIS111 and TRP220, thereby
further augmenting the activity of AKR1B10 compared to
lidorestat. Interestingly, lidorestat also formed hydrogen bonds
with TRP112 of AKR1B10. Zhang et al. have identified a
surprising TRP112 native conformation stabilized by a specific
GLN114-centered hydrogen bond network in the AKR1B10
holoenzyme, which could play a critical role in the determina-
tion of AKR1B1/10 inhibitor selectivity. They have confirmed
that the highly selectivity of AKR1B10 inhibitor flufenamic acid
was due to the steric clash that TRP111 in AKR1B1 (always in
flipped position) would have with the benzoic acid moiety of
the inhibitor, and that the native TRP112 position is avoided in
AKR1B10.39 Subsequently, we further compared the superposi-
tion of the holo-AKR1B10 active site structure with that of the
AKR1B10-NADP+-lidorestat complex and the holo-AKR1B1
active site structure with that of AKR1B10-NADP+-HAHE,
respectively. As shown in Fig. 6(A), lidorestat can induce an
‘‘AKR1B1-like’’ active site in AKR1B10, whereas it is incapable
of opening the ‘‘specificity pocket’’ in AKR1B10, which was in
accordance with tolrestat in a previous study, indicating that
the activity of lidorestat towards AKR1B10 was equivalent to
tolrestat and inferior to HAHE. Similarly, AKR1B10 selective
inhibitor HAHE caused a flip of TRP112, making it also induce
an ‘‘AKR1B1-like’’ active site in AKR1B10. However, this result
is in contrast to that of flufenamic acid in AKR1B10. On the
other hand, the benzene ring of HAHE adjacent to the anionic
site of AKR1B1 established p–p stacking and hydrophobic
interaction with the TRP111 indole ring, elucidating the weak
inhibition of HAHE to AKR1B1 than AKR1B10 (Fig. 6(B)).

3.3. Comparison of dynamics behaviors between AKR1B1 and
AKR1B10

3.3.1. Stability of dynamics trajectory from RMSD analysis.
In order to elucidate the dynamic behavior of the residues
located at the active sites of AKR1B1/10, the complexes’ crystal
structures were subjected to molecular dynamics simulations
in a realistic solution environment. The apo structure of both
AKR1B1 and AKR1B10 was selected as the control. The system’s

stability was assessed by monitoring the fluctuation of the
RMSD value, which serves as an indicator of the conforma-
tional changes occurring within the complex throughout the
course of the MD simulation. Generally, it is acceptable for the
RMSD value to fluctuate within a range of 3. Notably, the RMSD
values of the a-carbon (Ca) atoms within all the complexes
ultimately converged towards stability in the final 20 ns (Fig. 7),
indicating that the structures of each complex reached stable
states throughout the simulations.

3.3.2. Structural flexibility from RMSF analysis. Subse-
quently, the RMSF diagram of Ca atoms was utilized to analyze
the fluctuations in each complex system and compared to the
apo structure, as depicted in Fig. 8, lidorestat and HAHE
exerted comparable RMSF dynamics profiles in the system
when interacting with AKR1B1/10, indicating that both inhibi-
tors possess comparable binding modes at the binding pocket
of AKR1B1/10. Meanwhile, slight RMSF peaks observed in
residue TRP219 of AKR1B1 and TRP220 of AKR1B10 suggest
their involvement in stable interactions with the inhibitors.
Furthermore, it is observed that the AKR1B10 structure exhib-
ited smaller RMSF fluctuations compared to AKR1B1, poten-
tially due to hydrophobic interactions among residues within
the AKR1B1 binding pocket. In particular, the flexibility of the
loop region, as well as the C- and N-terminus, was evident
through the considerable fluctuation observed in the RMSF
curves. Furthermore, the flexibility of residues in the binding
pocket of AKR1B10 was also restricted by hydrogen bonds and
water bridges.

Fig. 6 Change in the TRP112 side-chain conformation in AKR1B1 and
AK1RB10. (A) and (B) The superposition of the holo-AKR1B10 (gray sticks)
active site structure (PDB code: 4GQG) with that of the AKR1B10-NADP+-
lidorestat docked complex (yellow and green stick) and the holo-AKR1B1
(blue stick) active site structure (PDB code: 1Z3N) with that of the
AKR1B10-NADP+-HAHE docked complex (yellow and chartreuse stick),
respectively. Hydrogen bonds are shown as dashed yellow lines.

Fig. 7 RMSD of protein backbone atoms monitored throughout the 100
ns molecular dynamics simulations. (A) AKR1B1/lidorestat (red line),
AKR1B1/HAHE (green line) and AKR1B1/Control (blue line) complexes. (B)
AKR1B10/lidorestat (red line), AKR1B10/HAHE (green line) and AKR1B10/
Control (blue line) complexes.

Fig. 8 RMSF plot from MD simulation. (A) RMSF of each residue of
the protein for the complex obtained from AKR1B1/lidorestat (red line),
AKR1B1/HAHE (green line) and AKR1B1/control (blue line) complexes
obtained from 100 ns MD simulation and (B) the RMSF maps of
AKR1B10/lidorestat (red line), AKR1B10/HAHE (green line) and AKR1B10/
control (blue line) complexes in the entire 100 ns MD simulations.
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Fig. 9 Intermolecular interaction analysis of protein–ligand interactions obtained from the last frame of the MD simulation trajectory for complexes of
AKR1B1/10. (A) AKR1B1/lidorestat. (B) AKR1B1/HAHE. (C) AKR1B10//lidorestat. (D) AKR1B10/HAHE.
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3.3.3. Intermolecular interaction analysis of AKR1B1/10
inhibitors from MD simulation. Intermolecular interaction
analysis was conducted to further elucidate the unique action
mechanisms among lidorestat, HAHE and AKR1B1/10 proteins.
During the MD simulation, this study monitored three primary
forms of protein–ligand connections, which included hydrogen
bonding, hydrophobic bonding, and water bridges. These
interactions exceeding 1% were recorded for analysis. As
demonstrated in Fig. 9(A), hydrophobic interactions were found
to be the primary contacts between lidorestat and the AKR1B1
residues TRP111 and PHE122, contributing to 50%, 49%, and
43% of the overall interaction, with no hydrogen bonds found.
Among them, TRP111 directly formed p–p stacking with the
benzothiazole groups of lidorestat, aligning with the findings
from molecular docking experiments. In the AKR1B1/HAHE
complex, HAHE also formed p–p stacking with TRP111,
accounting for 94%. Besides, hydrogen bonds were also formed
between HAHE and LEU300 (63%) and HIS110 (34%), as well as
a water bridge with TYR309 (46%). In Brief, in order to improve
the selectivity of inhibitors against AKR1B1, one can focus on
modifying the structure of current inhibitors to strengthen
their binding with TRP111 and PHE122.

Considering the AKR1B10/lidorestat complex in Fig. 9(C),
lidorestat formed hydrogen bonds with TYR49 (100%) and
HIS111 (96%) and two water bridge interactions with TRP21
(52%) and TRP112 (88%) were observed. In contrast, the key
amino acids responsible for the interaction between the
AKR1B10 protein and HAHE were HIS111, PHE123, TRP220,
VAL301, and GLN303. These amino acids primarily engaged in
hydrophobic and water bridge interactions, as depicted in
Fig. 9(D). Strangely, HAHE exhibited a hydrogen bond exclu-
sively with GLN303 (34%) and a water bridge was observed with
SER304 (31%), deviating from the molecular docking findings
of the AKR1B10/HAHE complex.

3.4. Calculation of the AKR1B1/10 composite structures’
binding free energy

To assess the binding affinities of the lidorestat, HAHE
and AKR1B1/10 proteins, the Molecular Mechanics/Generalized
Born Surface Area (MM-GBSA) method was used to calculate the
binding free energy, which included DG_Bind, DG_Bind_Cou-
lomb, DG_Bind_Covalent, DG_Bind_Hbond, DG_Bind_Lipo,

DG_Bind_packing, DG_Bind_Solv GB and DG_Bind_vdW from
Schrödinger Maestro version 13.5. The AKR1B1/10-lidorestat/
HAHE binding models were derived from the result of the MD
simulation. As demonstrated in Table 2, the MM-GBSA calcula-
tions yielded binding free energies of �61.12 kcal mol�1 and
�62.99 kcal mol�1 for the AKR1B1/lidorestat and AKR1B10/
HAHE complexes, respectively. These values aligned with the
experimentally-measured affinities, suggesting that lidorestat

Table 2 Complexes binding free energy calculated (kcal mol�1) using the
MM-GBSA algorithm from Schrödinger Maestro version 13.5

Energy

AKR1B1
(1Z3N, kcal mol�1)

AKR1B10
(1ZUA, kcal mol�1)

Lidorestat HAHE Lidorestat HAHE

DG_Bind �61.12 �52.88 �43.56 �62.99
DG_Bind_Coulomb 43.90 �12.21 �6.36 �16.46
DG_Bind_Covalent 1.59 2.58 3.81 4.65
DG_Bind_Hbond �2.09 �0.93 �2.18 �2.56
DG_Bind_Lipo �20.64 �31.02 �13.80 �25.47
DG_Bind_packing �12.76 �3.78 �6.55 �9.73
DG_Bind_Solv GB �20.15 38.13 16.88 21.81
DG_Bind_vdW �50.97 �45.65 �35.36 �35.23

Fig. 10 The spectrum of intermolecular interaction between protein–
ligand complexes determined from MM-GBSA calculation based on the
Schrödinger Maestro version 13.5 (A) and the AMBER version 18 (B),
respectively.
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exhibited stronger binding affinities towards AKR1B1. Never-
theless, lidorestat and HAHE exhibited an inferior binding
affinity towards AKR1B10 (�43.56 kcal mol�1) and AKR1B1
(�52.88 kcal mol�1), respectively. Furthermore, it is worth
noting that the lipophilic energy (�20.64 kcal mol�1 for
AKR1B1/lidorestat and �25.47 kcal mol�1 for AKR1B10/HAHE)
and the van der Waals energy (�50.97 kcal/mol for AKR1B1/
lidorestat and �30.23 kcal mol�1 for AKR1B10/HAHE) contrib-
uted the most. In particular, the AKR1B1/lidorestat complex
exhibited a coulomb energy of 43.90 kcal mol�1, which was
opposed to the other three complexes. This result probably
demonstrated that the binding process seems to be stabilized
by reducing the polar interaction between the ligand and the
receptor. By thoroughly analyzing the data on hydrogen bond
energy provided in Table 2 and Fig. 10(A), one can conclude

that hydrogen bonds primarily aided in the identification of
ligands by proteins.

To explore residues’ contributions in above complexes, four
groups of 100 ns equilibrium MD were performed using
AMBER version 18 and then MM-GBSA binding free energy
was further calculated. As shown in Fig. 10(B), the AKR1B1/
lidorestat complex formed stronger van der Waals interaction
than the AKR1B10/HAHE complex, whereas the AKR1B10/
HAHE complex established stronger electrostatic forces than
the AKR1B10/lidorestat complex. It is worth noting that van der
Waals energy is the major contributor in the entire binding free
energy. The discovery provides additional evidence for the
previous hypothesis regarding the connection between the
hydrophobic cavity of AKR1B1/10 and the heightened molecu-
lar specificity observed in the analysis of their interaction.

Fig. 11 Decomposition of the MM-GBSA binding energy per residue in the binding pocket of each complex. (A) MM-GBSA energy decomposition
scheme of the AKR1B1/lidorestat complex. (B) MM-GBSA energy decomposition scheme of the AKR1B1/HAHE complex. (C) MM-GBSA energy
decomposition scheme of the AKR1B10/lidorestat complex. (D) MM-GBSA energy decomposition scheme of the AKR1B10/HAHE complex.
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Furthermore, the per-residue energy decomposition analysis
using the MM-GBSA method was applied to evaluate the energy
contributions of each residue toward the overall binding free
energy in the activation region of the AKR1B1-NADP+-lidorestat
and AKR1B10-NADP+-HAHE complexes. The results indicated
that the selectivity of lidorestat against AKR1B1 protein was
mainly due to polar interactions with residues such as TRP20,
TYR48, TRP111, PHE122, TRP219 and LEU300, while the selec-
tivity mechanism of HAHE against AKR1B10 protein was based
on polar interactions with TRP21, TYR49, HIS111, TRP112,
PHE123, TRP220, ASN300 and VAL301 (Fig. 11). However, due
to the limitations of binding affinity calculations in accurately
determining selectivity attribution, it is plausible to hypothe-
size that the specificity of AKR1B inhibitors is influenced by the
distinct structural conformations of the binding pocket in
AKR1B1/10 and the variations in the hydrophobic region.

3.5. Alanine scanning mutagenesis analysis

Afterwards, to further gain rational insights into the key residues
impact in the activation region of the AKR1B1-NADP+-lidorestat

and AKR1B10-NADP+-HAHE complexes, an alanine scanning
mutagenesis analysis was conducted. The intermolecular inter-
actions, including the AKR1B1 residues TRP20, TYR48, HIS110,
TRP111, PHE122, TRP219, and LEU300, and the AKR1B10
residues TRP21, TYR49, HIS111, TRP112, PHE123, TRP220,
ASN300 and VAL301 were selected to mutate to alanine
(Fig. 12). Positive DDG values indicate that wild-type residues
interact more favorably with inhibitors than the mutated resi-
dues. Mutations weaken protein–inhibitor interactions in both
complexes. Mutations like W111A, F122A and L300A in the
AKR1B1/lidorestat complex and mutations like F123A and
Y49A in the AKR1B10/HAHE complex did not affect their binding
behaviour, suggesting that these residues primarily interact with
ligands through backbone atoms rather than side chains. The
alterations in binding free energy result from mutations in core
residues W20A, Y48A, H110A and W219A in AKR1B1/lidorestat,
as well as W21A, H111A, W112A, W220A, N300A and V301A in
AKR1B10/HAHE, highlighting the significance of unmutated
residues. It seems reasonable to conclude that mutations of
the above residues into alanine shorten the side chain length of

Fig. 12 Alanine scanning mutagenesis analysis of (A) AKR1B1/lidorestat, (B) AKR1B1/HAHE, (C) AKR1B10/lidorestat and (D) AKR1B10/HAHE complexes.
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Fig. 13 Three-dimensional and two-dimensional pharmacophore modeling derived from the two X-ray structures of AKR1B1 and AKR1B10 in complex
with lidorestat and HAHE, respectively. (A) and (B) AKR1B1/lidorestat. (C) and (D) AKR1B1/HAHE. (E) and (F) AKR1B10/lidorestat. (G) and (H) AKR1B10/HAHE.
The pharmacophore features were represented in LigandScout by color codes in which, hydrogen bond acceptors, hydrogen bond donors, hydrophobic
regions, ionizable positive charge and exclusion volume are depicted as red scissor, green scissor, yellow spheres and blue spheres, respectively.
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residues, thereby reducing interaction with ligands. Combined
with per-residue energy decomposition analysis, it can be
inferred that ligands binding with the AKR1B1 residues
TRP111 and LEU300 tend to exhibit greater selectivity as AKR1B1
inhibitors, while ligands binding with the AKR1B10 residue
TRP220 tend to display enhanced selectivity as AKR1B10
inhibitors.

3.6. Pharmacophore modeling of key chemical features

Pharmacophore is defined as the collection of spatial and
electronic features, including hydrogen bond acceptors, hydro-
gen bond donors, hydrophobic regions, cationic sites, anionic
sites, aromatic rings, and repulsors. It is necessary to ensure
optimal supramolecular interaction with a particular biological
target and trigger (or block) its biological response. To further
explain the selectivity mechanisms of AKR1B1/10 inhibition,
pharmacophore features were analyzed to better understand
the requirements of amino acid residues within the AKR1B1/10
active site. As shown in Fig. 13, there were four hydrogen bond
acceptors, six hydrophobic interaction areas and two aromatic
rings in the AKR1B1/lidorestat complex, indicating that the
carboxyl oxygen atom of lidorestat forms two hydrogen bonds
with the catalytic subunits TYR48 and TRP111 of AKR1B1, and
the nitrogen atom and fluorine atom on benzothiazole formed
additional hydrogen bonds with LEU300. However, two hydro-
phobic interaction areas and an aromatic ring were observed in
the AKR1B1/HAHE complex and did not form strong hydrogen
bonds with protein, resulting in a poor affinity towards protein.
For the AKR1B10 system, there were a hydrogen bond acceptor,
two hydrogen bond donors, two hydrophobic interaction areas
and an aromatic ring in the AKR1B10/HAHE complex. The
hydroxyl oxygen atom in HAHE formed two hydrogen bonds
with TYR49 and HIS111 of AKR1B10, and the hydroxyl oxygen
atom in its benzene ring formed additional hydrogen bonds
with ASN300. Nevertheless, two hydrogen bond acceptors and a
hydrophobic interaction area were observed in the AKR1B10/
lidorestat complex, indicating that the carboxyl oxygen atom of
lidorestat formed two hydrogen bonds with TYR49 and HIS111
of AKR1B10, respectively. Together, these results further con-
firmed the results of molecular docking and MD simulation.

4. Conclusions

In the present study, we utilized a series of computational
methods, such as sequence alignment, structural comparison,
Protein Contacts Atlas analysis, molecular docking, MD simu-
lation, MM-GBSA calculation, alanine scanning mutagenesis
and pharmacophore model analysis to explore and validate the
structural characteristics of crucial amino acid compositions
between AKR1B1/10 and their representative selective inhibitor,
as well as to elucidate the selectivity mechanisms of AKR1B1/10
inhibition. These crucial amino acids within the binding
pocket, namely TRP20, TYR48, HIS110, TRP111, PHE122,
TRP219 and LEU300 for AKR1B1 and TRP21, TYR49, HIS111,
TRP112, TRP220, ASN300 and VAL301 for AKR1B10, exhibited

the ability to establish robust interactions with the selective
inhibitors of AKR1B1/10, which significantly contributed to the
selective mechanism of the inhibitors. The perspective offered
in this research seeks to suggest a novel concept for AKR1B1/10
selective inhibitors while acknowledging the inherent con-
straints of computational chemistry techniques and the lack
of supplementary chemical and biological tests to authenticate
the presented arguments. In conclusion, these findings offer
potential for elucidating the mechanism of AKR1B1/10 selec-
tion, thereby informing future approaches for the rational
development of selective inhibitors targeting AKR1B1/10.
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