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The development of efficient electrocatalysts for the hydrogen evolution reaction (HER) holds immense
importance in the context of large-scale hydrogen production from water. Nevertheless, the practical
application of such catalysts still relies on precious platinum-based materials. There is a pressing need to
design high-performing, non-precious metal electrocatalysts capable of generating hydrogen at
substantial current levels. We report here a stable monolith catalyst of Te-doped-WSe, directly
supported by a highly conductive W mesh. This catalyst demonstrates outstanding electrocatalytic
performance and stability in acidic electrolytes, especially under high current conditions, surpassing the
capabilities of commercial 5% Pt/C catalysts. Specifically, at current densities of 10 and 1200 mA cm™2, it
exhibits a minimal overpotential of 79 and 232 mV, along with a small Tafel slope of 55 mV dec™%,
respectively. The remarkable catalytic activity of Te—WSe, can be attributed to the exceptional electron
transfer facilitated by the stable monolithic structure, as well as the abundant and efficient active sites in
the material. In addition, density functional theory calculations further indicate that Te doping adjusts H
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atom adsorption on various positions of WSe,, making it closer to thermal neutrality compared to the
original material. This study presents an innovative approach to develop cost-effective HER electrocata-
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1 Introduction

The remarkable energy density and lack of pollutant emissions
make hydrogen an increasingly interesting candidate for renew-
able and eco-friendly energy."® One promising method for produ-
cing hydrogen on a large scale is the combination of renewable
energy sources and water splitting.”** This has led to the devel-
opment of high-performing and long-lasting electrocatalysts
designed specifically for HER. Presently, catalysts based on Pt
and Pt-based materials exhibit the highest activity for the HER,
but their limited availability and high cost have hindered wide-
spread adoption of water electrolysis technology.**® Consider-
able efforts are currently being devoted to expediting the
development of economically viable and easily accessible catalysts
for the hydrogen evolution reaction. This includes the exploration
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lysts that perform optimally under high current density conditions.
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of transition-metal carbides, nitrides, sulfides,
oxides®® and phosphides.”**' Within the category of catalysts
that are free of platinum-group metals, transition-metal disulfides
(TMDs), such as WS,,**> WSe,** and WTe,,** have received sig-
nificant attention and are regarded as promising electrocatalysts
for water splitting. Both theoretical predictions and experimental
findings suggest that the HER activity of TMDs primarily stems
from their edges rather than their basal planes.*>*°

Various techniques have been devised to improve the catalytic
performance of TMDs, such as defect engineering,’” heterostruc-
ture fabrication,*® phase conversion®® and foreign atom doping.*’
Wang et al. synthesized metallic WSe, nanoscrolls used as
electrocatalysts for the HER, demonstrating much enhanced
electrocatalytic performance compared to the semiconducting
2H WSe, nanoscroll counterparts.*’ Zhao et al. synthesized
NiMo-doped WSe, catalyst through a one-step hydrothermal
reaction, with overpotentials of 177 and 188 mV at a current
density of 10 mA cm ™2 in 0.5 M H,SO, and 1 M KOH, respectively.
Theoretical calculations confirmed that NiMo co-doping signifi-
cantly reduced the potential energy barrier of HER reaction, and
thus improved HER performance.*” These studies shed light on
the considerable potential of WSe, as a proficient catalyst for the
process of HER, thus revealing its promising prospects in the
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development of hydrogen production techniques. However, the
catalytic efficiency of WSe, in previous studies does not meet the
practical requirements, especially in terms of the high current
density needed for industrial production. The objective of this
research is to develop an effective approach to enhance the
performance of WSe, beyond that of Pt/C, in order to enable
the industrial implementation of non-precious metal catalysts. In
order to achieve this, we utilized a Te doping technique to
introduce a significant number of electroactive sites into WSe,.
The WSe, material was obtained by selenization of the oxide layer
of W meshes. The selenized W mesh can be used as an electrode
for HER. Additionally, the W wires play a crucial role in facilitating
electron transport. The Te-doped WSe, prepared in this manner
demonstrates outstanding catalytic properties in acidic environ-
ments. Notably, its performance at high current densities exceeds
that of the commercially available 5% Pt/C catalyst. We conducted
first-principles calculations to gain insight into the reasons
behind the improved activity.

2 Experimental
2.1 Sample preparation

The synthesis of the Te-doped WSe, catalyst involved a two-
zone chemical vapor deposition (CVD) method, as shown in
Fig. 1a. AW mesh (1 x 1 cm?, 200 mesh) was used as the growth
supports. First, the W mesh was cleaned ultrasonically with
distilled water and ethanol for 1000 s each. Then, in the CVD
furnace, 0.1 g of Se and 0.1 g of Te were placed separately in two
porcelain boats in the middle of the T1 zone. The W mesh was
positioned in the middle of the T2 zone.

The T1 and T2 zones underwent a gradual heating process,
with T1 reaching a temperature of 500 °C and T2 reaching a
temperature of 600 °C over a period of 25 min. These temperatures
were then maintained for an additional 25 min. Afterwards, both
temperature zones were further heated for 15 min until reaching a
temperature of 700 °C simultaneously, and this temperature was
maintained for 10 min. Throughout the synthesis process, a
stream of Ar gas at a flow rate of 100 sccm was continuously
passed under ambient pressure until T1 reached a temperature of
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Fig. 1 (a) Schematic illustration of the high-temperature reaction system
used for the synthesis of Te—WSe,. (b) Temperature—time profiles for the
synthesis of Te—WSe,.
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400 °C, as shown in Fig. 1b. Following this, a mixture of carrier
gases consisting of 100 sccm Ar/H, (with a ratio of 9:1) was used
until the furnace cooled down to room temperature. In order to
examine the effect of Te doping on the enhancement of catalytic
performance of WSe,, both WSe, and WTe, were synthesized
under identical conditions for comparative analysis.

Preparation of Pt/C electrodes involves the following steps:
490 pL of water, 490 uL of ethanol, 20 pL of 5% Nafion solution
and 3 mg of Pt/C were mixed together and subjected to
ultrasound for 1 hour. Then, 10 puL of the mixture were applied
as drops onto a circular glassy carbon electrode with a 5 mm
diameter for electrochemical testing.

2.2 Characterization

Scanning electron microscopy (SEM) images were obtained using
a Hitachi SU-8010 instrument. High-resolution transmission
electron microscopy (HRTEM) images were recorded using an
FEI Tecnai G2 F30 microscope under an acceleration voltage of
300 kv. Raman spectra were recorded on a Horiba Xplora spectro-
photometer with a 532 nm laser. Structural and chemical analyses
of the samples were performed using powder X-ray diffractometer
(XRD 7000 X-ray) with Cu Ko radiation (2 = 1.54 A) and X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha).

2.3 Electrochemical measurements

The electrochemical measurements were performed on an elec-
trochemical workstation (CHI660E). The W mesh supporting
Te-WSe, catalysts was used as the working electrode, and Ag/
AgCl and Pt electrodes were used as the reference and counter
electrodes, respectively. All the potentials mentioned are in
reference to the reversible hydrogen electrode (RHE): Egyg =
Eag/agc) T 0.059 x pH + 0.197 V. The electrochemical measure-
ments were carried out in 0.5 M H,SO,. High-purity Ar gas was
bubbled into the electrolyte for 30 min before the measure-
ments. Linear sweep voltammetry (LSV) measurements were
conducted between 0 and —0.6 V versus Ag/AgCl at a scan rate
of 5 mV s~ . All results were corrected by 95% ohmic potential
drop (iR) correction. The Tafel curve was obtained from the LSV
curves. Electrochemical impedance spectroscopy (EIS) was con-
ducted at an overpotential of 50 mV and in the frequency range
of 1000-10 Hz with an amplitude of 5 mV, and then Z-view
software was used to select a suitable equivalent circuit for
fitting. The value of the double-layer capacitance (Cgq;) was
calculated by testing typical CV curves in 0 to 0.2 V versus RHE
at different scan rates (20, 40, 60, 80, 100, 120, 140, 160, 180, and
200 mV s~ ). The electrochemical double layer capacitance (Cqj)
values is the slope of plotting AJ/2(AJ = Janodic — Jeathodic) at 0.1 V
against scan rates. Long-term stability tests were performed
using 16 h chronopotentiometry (CP) test under different current
densities.

2.4 Computational details

First-principles calculations in the framework DFT are performed
by using the Vienna ab initio simulation package (VASP)**™** with
the projector-augmented wave method (PAW). The exchange-

correlation energy was calculated by using the generalized
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gradient approximation (GGA) of Perdew-Burke-Ernzerhof
(PBE).*® The energy cutoff is set to 400 eV. Spin polarization
effects are considered in this study. We performed structural
optimization until the residual forces on each ion converged to
less than 0.01 eV. The adsorption energy for surface hydrogen
adsorbates is defined as follows: AEy = Eagsorption — Esurface —
0.5 X Ep,(y), where Eagsorption Tepresents the energy of the surface
with the adsorbed hydrogen atom, Eq;ace represents the energy of
the pure surface, and Ey (o) represents the energy of the H, species
in the gas phase. The calculation also includes entropy (S) and
zero-point energy (ZPE) to obtain the Gibbs free adsorption energy
of hydrogen: AGy = AEy + AEzpg — TAS.

3 Results and discussion

The surface morphology of the W mesh was analyzed using
scanning electron microscopy (SEM) both before and after the
CVD reaction. Initially, the W mesh displayed a fairly even
surface with slight surface striations (Fig. 2a). Following the
reaction, a significant transformation occurred, resulting in a
textured ‘‘accordion-like” surface with distinct split stripes
(as shown in Fig. 2b). In order to conduct a more detailed
examination, the W wire was carefully dissected to reveal its
cross section (Fig. 2c). This revealed the growth of layered
structures on the surface of the W wire, which corresponded
to the Te doped WSe, layers.

HRTEM was utilized to investigate the microstructure and
elemental composition of the products. The HRTEM image of
Te-WSe,, depicted in Fig. 3a, reveals a layered structure with
small grain coverage. Fig. 3b showcases the edge of Te-WSe,,
where a crystal lattice spacing of 0.28 nm corresponds to the
(100) plane of WSe,. The sample exhibits abundant structural
defects, such as irregular edges and internal micro pores, which
can potentially act as active sites for catalysis. Fig. 3¢ displays
the selected-area electron diffraction (SAED) pattern of the
products, clearly identifying the crystal planes including
(011), (013), (008), (023), and (—130) of WSe,. Additionally,
the STEM-HAADF images, along with EDS elemental mapping
of W, Se, and Te elements (as shown in Fig. 3d), validate the
uniform distribution of Te within WSe,, thereby confirming the
successful synthesis of Te-WSe,.

The chemical composition and electronic states of the Te-
WSe, sample were analyzed by using XPS measurements. The
XPS spectra reveal the presence of Te, Se, and W elements,
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Fig. 3 (a) and (b) HRTEM images of Te-WSe,. (c) SAED pattern of Te—
WSe,. (d) STEM-HAADF with EDS elemental mapping images of Se, W, Te.

confirming their coexistence in the sample. As shown in Fig. 4a,
two characteristic peaks observed at 573.20 eV and 583.71 eV
corresponded to Te 3ds, and Te 3djs, states, respectively.
The XPS spectrum of Te 3ds;, and Te 3d;z, at 573.20 eV and
583.71 eV corresponding to the Te>~ state, indicating the suc-
cessful doping of Te with a doping concentration of 0.65%. The
W 4f elemental binding energy profile in Fig. 4b displayed two
prominent peaks at 32.63 eV and 34.63 €V, corresponding to W
4f,, and W 4f;, states in Te-WSe,, respectively. Additionally, the
peaks observed at 54.51 eV and 55.33 eV were attributed to Se
3ds,, and Se 3d;), states in Te-WSe, (as shown in Fig. 4c). As
compared to WSe, (XPS spectra are shown in Fig. S1, ESIY), the
Se 3d;, and Se 3ds, peaks in Te-WSe, exhibited a shift of
—0.4 eV and —0.37 eV, respectively. This shift in Se 3d peaks can
be attributed to the reduced electron attraction strength of Te
and the enhanced electron attraction strength of Se. Conse-
quently, the electron density surrounding Se increased due to
the introduction of Te, which possesses a relatively lower elec-
tronegativity compared to Se.

Raman spectrum of Te-WSe, under 532 nm laser excitation
reveals the characteristic in-plane Ej, peak of WSe, at 250 cm ™!
(Fig. 5a). With the introduction of Te, the peak shifts to a lower
frequency (246.9 cm™ ") and the intensity decreases. This fre-
quency shift suggests that Te doping causes soft W-Se vibra-
tions. Additionally, the reduced Raman intensity is likely a

Fig. 2 (a) SEM image of the original W mesh. (b) and (c) SEM images of Te—WSe,/W.
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Fig. 4 XPS spectra of Te-WSe, showing the signals of (a) Te 3d, (b) W 4f and (c) Se 3d.

result of the change in lattice symmetry, which affects the
matrix elements and selection rules for Raman active vibra-
tional modes. XRD spectra were measured to confirm the
composition of the products. Fig. 5b illustrates the XRD pat-
terns of Te-WSe, and WSe,, with the observed peaks for WSe,
aligning well with the standard 2H-WSe, PDF card (JCPDS no.
38-1388). The XRD spectrum peaks show no significant change
upon Te doping, indicating that the original structure of 2H-
WSe, remains unchanged.

To evaluate the electrochemical catalytic potential of Te-
WSe,, we conducted a three-electrode cell experiment using an
Ar-saturated 0.5 M H,SO, electrolyte. Additionally, we mea-
sured the HER performance of the prepared WSe, and WTe,
samples to understand the impact of Te doping. The catalytic
properties of the samples were evaluated through LSV analysis,
and the polarization curves of the different catalysts can be
seen in Fig. 6a. By comparing the overpotentials at current
densities of 10, 100, 500, and 1200 mA cm ™2, we were able to
determine the catalyst activities (Fig. 6b). The results indicated
a significant improvement in the catalytic performance of WSe,
after Te doping. For the original WSe,, the overpotentials at
current density of 10, 100, 500, and 1200 mA cm > were
measured as 366, 461, 525, and 541 mV, respectively. However,
after Te doping, the overpotentials decreased significantly to
79, 170, 207, and 232 mV, respectively. Moreover, as the current
density increased, the advantage of Te-WSe, became increas-
ingly prominent. In fact, the sample achieved a high current
density of 1000 mA cm™* with a low overpotential of 225 mV,
surpassing both the commercial 5% Pt/C catalyst and most
reported high current density catalysts (Table 1). We have
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Fig. 5 (a) and (b) Raman scattering spectra and XRD pattern of Te-WSe,
and WSe,. The curves denoted with pink and blue colors correspond to
signals from Te—-WSe, and WSe,.
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Fig. 6 (a) The polarization curves, (b) overpotentials at different current
densities and (c) the calculated Tafel slopes for Te—-WSe,, WSe,, WTe, and
5% Pt/C catalyst. The measurements were performed in 0.5 M H,SO, at a
scan rate of 5 mV st (d) The double-layer capacitance (Cq) and
(e) Nyquist plots for Te-WSe,, WSe,, WTe,. (f) The polarization curves
for Te—-WSe, before and after 16 h CP test. (g) 16 h CP test at different
current densities (mA cm™2). (n) 100 h CP test at current densities of 10 and
100 mA cm~2.

prepared a series of Te-doped WSe, samples by varying
the quantity of Te reactant. It was observed that the sample
produced with 0.1 g of Te demonstrated the most favorable
catalytic performance (Fig. S2, ESIY).
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Table 1 The electrochemical catalytic performance of high current-density catalysts

Current density Overpotential Tafel slope
Electrocatalyst Electrolyte (mA cm™?) (mv) (mV dev )
Te-WSe, (this work) 0.5 M H,S0, 10 79 55
100 170
500 207
1000 225
CuMogSg/Cu®’ 1 M KOH 10 172 43
1000 320
P/Mo-Ni;S,/NF*® 0.5 M H,S0, 1000 240 75
o-MoB,*° 0.5 M H,S0, 10 149 74.2
1000 334
WS,1—Ses/NiSe,> 0.5 M H,S0, 10 88 74.2
400 ~175
CH,/H, thermal treatment®* 0.5 M H,S0, 1000 412 60
MoS,/Mo,C
o-MoWS,/N-RGO*? 0.5 M H,S0, 1000 349 43
CoP/NisP,/CoP>? 0.5 M H,S0, 10 33 43
500 ~130
1000 142
NiP,/NisP,/CoPS/CoP;>* 0.5 M H,S0, 10 11 45.2
100 88
500 130
1000 150
Ni;P,@Cu foam®’ 0.5 M H,S0, 10 90 49
100 164
1000 ~230
MoS,/Mo0,C’® 0.5 M H,S0, 1000 227 53
MoS,~-Fe@UiO-66-(0H),*” 0.5 M H,SO, 10 118 41
1000 297
Co/Se-Mo0S,-NF*° 0.5 M H,SO, 10 104 67
100 188
1000 382
Rh/SiNW*8 0.5 M H,S0, 10 180 24
1000 950
2H Nb;, 355,° 0.5 M H,S0, 1000 370 43
Co-Co,P@N,P doped C/rGO*° 0.5 M H,S0, 10 130 50.64
1000 900
MoS,/CNF** 0.5 M H,S0, 500 380 69
1000 450
MoS,/graphene™® 0.5 M H,S0, 10 62 43.3
1000 250
Ni,P-CuP,** 0.5 M H,S0, 10 12 41
100 124
1000 ~ 500
Co-N doped C** 0.5 M H,S0, 500 272 67.6
1000 343
o-MoS,** 0.5 M H,S0, 10 68 86
100 80
500 250
1000 322
MoSe,/Mo00,%® 0.5 M H,S0, 10 140 48.9
200 ~350

The relative activity of the catalysts was further compared by
the Tafel slope (Fig. 6¢). The Tafel slope is an inherent char-
acteristic of electrocatalysts and is indicative of the rate-
limiting step in HER. We fitted the experimental data from
the polarization curve to the Tafel equation and calculated the
Tafel slope (n = blogj + a) from the linear portion of the Tafel

plot, where “b”’ represents the Tafel slope. In acidic electrolytes,
the typical mechanism of electrochemical hydrogen evolution
involves three main steps: Volmer, Heyrovsky, and Tafel reac-
tions, each associated with Tafel slopes of approximately 120,
40, and 30 mV dec *, respectively.®® Pt/C has the best catalytic
performance, with a Tafel slope of 35 mV dec™*. The prepared

Table 2 HER catalytic activity parameters obtained from electrochemical tests

Cathodes f10 (mMV) 11200 (MV) Tafel slope (mV dec ™) R, (Q cm?) Re (Q cm?) ECSA (cm?)
Pt/C 50 — 35 — — —
Te-WSe, 79 232 55 2.008 2.68 701.4
WSe, 366 541 95 2.107 9.08 320.9
WTe,, 243 476 120 2.155 5.88 461.4
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WSe, and WTe, exhibit Tafel slopes of 95 mV dec™' and
120 mV dec ', respectively, indicating that both have high
initial energy barriers and slow reaction rates in the HER
process. After successful incorporation of Te into WSe,,
Te-WSe, exhibits a Tafel slope of 55 mV dec™ ", indicating that
the Heyrovsky-Volmer reaction is its main pathway in the HER
reaction process. The comparison of Te-WSe, with WSe, and
WTe, indicates that the introduction of Te effectively acceler-
ates the kinetic process of the catalytic reaction, thereby
improving the activity of the catalyst.

To elucidate the reason behind the superior hydrogen
evolution performance of Te-WSe,, we analyzed the electro-
chemical active surface areas (ECSA) of the catalysts. The ECSA
was evaluated by double-layer capacitance (Cyq) using cyclic
voltammetry at various scan rates in the potential range from 0
to 0.2 V versus RHE (Fig. S4 in ESIt). Typically, the ECSA is
directly proportional to the Cy; of the electrode, expressed as
ECSA = Cq)/Cs, where Cg represents the specific capacitance of
the catalysts per unit area under identical electrolyte condi-
tions. The specific capacitance typically falls within a reported
range of 0.015-0.110 mF cm ™ in acidic solutions. The general
specific capacitance of 0.035 mF cm™> was used to estimate
ECSA in this work.®” The Cq, of WSe, increased after Te doping
(Fig. 6d), indicating a positive effect of Te doping on the
electrochemical activity. Te-WSe, electrode has the largest
ECSA of 701.4 cm?, indicating the presence of a greater number
of active sites. The order of ECSA among the different samples
aligns with the catalytic performance observed in the LSV plots,
indicating that the active surface area is an important factor
that determines the catalytic properties. It should be noted that
the active surface area of the Te-WSe, electrode is much larger
than WSe, (320.9 cm?) and WTe, (461.4 cm?), implying that Te
doping leads to the formation of more active sites. The calcu-
lated ECSA values are summarized in Table 2.

EIS serves as a valuable technique for investigating the
kinetics of electron transfer in the HER. The solution resistance
(Rs) signifies the overall resistance within the electrolyte, while
the diameter of the semicircle in the high-frequency range
reflects the charge transfer resistance (R.). As depicted in
Fig. 6e, all catalysts demonstrate comparable R, values, imply-
ing similar solution resistance. However, when comparing the
charge transfer resistance, Te-WSe, exhibited the lowest R, at
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2.68 Q cm?, while WSe, and WTe, displayed higher resistances
of 9.08 Q cm?® and 5.88 Q cm?, respectively. The reduction in
resistance following Te doping signifies favorable reaction
kinetics and effective charge transfer within Te-WSe,.

The stability of a catalyst is a key parameter for evaluating its
performance.®®®® In Fig. 6g, a 16 h CP test is illustrated,
demonstrating that Te-WSe, maintains stability across
varying current densities: 10, 50, 100, 300, 500, 700, 900, and
1100 mA cm 2. It can be seen that Te-WSe, exhibits stable
operation under diverse current densities without notable over-
potential escalation. Notably, at large current densities of 900
and 1100 mA ¢cm ™2, the overpotential significantly diminishes
with prolonged operation, signifying the successful activation
and robust stability of Te-WSe,. Fig. 6h illustrates the 100 h CP
tests at current densities of 10 and 100 mA cm 2, further
proving the stability of the catalyst. Fig. 4f shows the polariza-
tion curves before and after CP test. It can be seen that the
electrode exhibits a high stability toward the HER with very
small cathodic current loss. After CP testing, Raman and SEM
measurements confirmed the retention of the original structure
of the catalyst (Fig. S5 and S6, ESIt).

In comparison to previously reported MoX, (X = S, Se, or Te)
catalysts, the Te-WSe, catalyst featured in this study showcases
superior catalytic performance, particularly at elevated current
densities. The catalytic performance of Te-WSe, is related to
the electrode’s microstructure. Te-WSe, is cultivated on a
metallic W mesh substrate, resulting in a stable monolithic
catalyst (Fig. 2c and 7a). The Te-WSe, layers are directly
supported by the highly conductive metal mesh, ensuring a
strong supply of electrons to each layer of Te-WSe,. As such,
electron transport within the Te-WSe, layers is facilitated. This
arrangement exhibits exceptional overall conductivity, leading to
outstanding catalytic performance even at high current densi-
ties. Furthermore, the distinct stripes within the ‘“accordion-
like” texture reveal a substantial active surface area within the
material. Additionally, the specimen exhibits numerous struc-
tural defects, including irregular edges and internal microporous
structures, all of which can function as highly effective catalytic
active sites.

We subsequently explore the potential of Te-WSe, as a
catalyst for the hydrogen evolution reaction in practical settings.
The catalytic performance of bipolar catalysts at the cathode and
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Fig. 7 (a) Schematic diagram showing electron transport in Te—WSe,/W. (b) Polarization curves of two-electrode overall water splitting performed in
0.5 M H,S0, at a scanning rate of 5 mV s~*. RuO, serves as the anode, while Te-WSe, and Pt/C are employed as cathodes, respectively. Inset: A

photograph of the overall water splitting system.

This journal is © the Owner Societies 2024

Phys. Chem. Chem. Phys., 2024, 26, 3880-3889 | 3885


https://doi.org/10.1039/d3cp05790a

Published on 03 January 2024. Downloaded on 10/21/2025 4:03:53 AM.

edgeg,.q AG=-0.; 28 ev

22 A

(o} O, . QO
Y99
O\O,Ovi\v{,‘\o
edges,., AG=0.22 ev

planey. AG=0.89 ev
0 Q ,Q n

dXAb

planeg, AG=0.89 ev

edger, AG=-0.27 ev

T

LI,

edgey AG=-0.26 ev

H+ e 1/2 H,
H+e 12 H, L =

0.4

Reaction Coordinate Reaction Coordinate

Fig. 8 (a) and (b) DFT-optimized structures showing H atom adsorption
on different positions of WSe, and Te—-WSe,. (c) and (d) The calculated AG
for H atom adsorption on different positions of Te-WSe, and WSe,.

anode plays a pivotal role in the overall efficiency of water
hydrolysis. To evaluate this, we employed commercial RuO, as
the anode catalyst and conducted a comparative analysis of Te-
WSe, and commercial Pt/C as cathode catalysts in the water
hydrolysis experiment. This experiment was carried out in an
acidic solution with a concentration of 0.5 M H,SO,. Signifi-
cantly, the catalysts Te-WSe,| RuO, and Te-WSe, || Pt/C exhibited
remarkably similar performance, as evidenced by their compar-
able overpotentials at different current densities (as shown in
Fig. 7b). This finding highlights the potential of Te-WSe, as a
highly effective catalyst for hydrogen evolution, thus indicating
its promising prospects for industrial applications.

To gain deeper insights into the active sites of Te-WSe, in
the context of catalyzing the HER, we conducted DFT calcula-
tions on both Te-WSe, and WSe,. The catalyst’s activity can be
assessed by the calculated Gibbs free energy (AG), which is
associated with the adsorption of hydrogen atoms onto the
material’s surface.”® Effective HER catalysts usually exhibit AG
values close to zero,” indicating a balanced hydrogen adsorp-
tion strength. If AG is excessively positive, hydrogen adsorption
becomes challenging, impeding the reaction. Conversely, an
excessively negative AG results in strong hydrogen adsorption,
leading to catalyst poisoning. Thus, an ideal HER catalyst
should exhibit a AG value close to 0 eV. In our study, we
investigated H adsorption at various positions on Te-WSe,,
including basal plane (planes.), doped Te atom at the basal
plane (planer.), metal edge (edgew), and non-metallic edge
(edgere, edges.). For comparison, we also computed H atom
adsorption at the basal plane (planeg.), metal edge (edgey), and
non-metallic edge (edges.) of WSe,. The optimized structures
and calculated AG values are shown in Fig. 8a—c. The pristine
WSe, exhibits AG values of 2.12, —0.34, and —0.27 eV for
hydrogen atom adsorption at the basal plane, W edge, and Se
edge, respectively. In the case of Te-WSe,, the AG value for
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hydrogen atom adsorption at the Se site of the basal plane
(planes.) decreases to 0.89 eV, while the AG value for Te site of
the basal plane (planer,) is also calculated to be 0.89 eV. The AG
value for hydrogen atom adsorption at the metal edge (edgew)
is —0.26 eV, which is closer to zero compared to pristine WSe,.
The AG value for hydrogen atom adsorption at the Te site of the
edge (edger.) is —0.27 eV. The calculated AG values for edge
Se sites in proximity to the Te atom (edgese.; and edges.,) are
—0.28 eV and 0.22 eV, respectively. Based on these findings, Te
doping of WSe, has the potential to promote the adsorption of
hydrogen atoms in a reversible manner, thus improving the
electrocatalytic properties.

4 Conclusions

In this research, we synthesized WSe, doped with Te and
investigated its electrocatalytic capabilities for HER. To
enhance the performance of Te-WSe,, we directly deposited
it onto a highly conductive W mesh, resulting in a stable
monolith catalyst that greatly enhances electron transport
and conductivity. The material exhibits numerous irregular
edges and an internal microporous structure, thereby exposing
a significant number of active sites. Moreover, our computa-
tional analysis demonstrates that Te doping effectively reduces
AG of the active sites and enhances the catalytic activity of the
sites. Consequently, the material exhibits outstanding catalytic
performance even at high current densities. Specifically, at
current densities of 10100, 500, and 1000 mA cm 2, the over-
potentials are 79, 170, 207 and 225 mV, respectively, with a
Tafel slope of 55.0 mV dec™'. This study introduces a novel
approach for developing cost-effective HER electrocatalysts that
function effectively under high current density conditions.
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