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The efficiency of machine learning algorithms for electronically excited states is far behind ground-state
applications. One of the underlying problems is the insufficient smoothness of the fitted potential
energy surfaces and other properties in the vicinity of state crossings and conical intersections, which is
a prerequisite for an efficient regression. Smooth surfaces can be obtained by switching to the diabatic
basis. However, diabatization itself is still an outstanding problem. We overcome these limitations by
solving both problems at once. We use a machine learning approach combining clustering and
regression techniques to correct for the deficiencies of property-based diabatization which, in return,
provides us with smooth surfaces that can be easily fitted. Our approach extends the applicability of
property-based diabatization to multidimensional systems. We utilize the proposed diabatization scheme
to achieve higher prediction accuracy for adiabatic states and we show its performance by
reconstructing global potential energy surfaces of excited states of nitrosyl fluoride and formaldehyde.
While the proposed methodology is independent of the specific property-based diabatization and
regression algorithm, we show its performance for kernel ridge regression and a very simple
diabatization based on transition multipoles. Compared to most other algorithms based on machine
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1 Introduction

Machine learning (ML) has been recently experiencing tremen-
dous expansion in various fields of science and computational
chemistry is not an exception." The motivation for using ML
approaches is the high computational cost of quantum
chemical calculations. We usually know how to obtain accurate
results; however, such calculations are often computationally
intractable and we have to settle with less accurate methods.
ML can help us to shift the balance in favour of accuracy.
Unfortunately, the applications of ML methods to electronically
excited states have not yet reached the level of accuracy as the
more common problem of dealing with ground-state
properties.” The fact that excited states are still an outstanding
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problem for ML is due to the high complexity of reference
quantum calculations, high densities of states, and the fact that
the predicted properties are not smooth in the vicinity of state
crossings and conical intersections.”> We tackle here the pro-
blem of the low smoothness of excited-state properties.
Eigenfunctions and eigenvalues of the electronic Hamilto-
nian, which we usually get from electronic structure calcula-
tions, correspond to the so-called adiabatic representation. The
states are ordered by their electronic energy for each nuclear
configuration, resulting in non-crossing potential energy sur-
faces (PESs). While adiabatic states might become degenerate,
they never truly cross if they have the same multiplicity.
Electronic energies and other properties are then highly curved
and non-differentiable. Low smoothness of the adiabatic basis
represents a major problem for ML regression. Using a smooth
diabatic basis, which allows for state crossings, seems like a
natural solution how to improve ML efficiency. The two repre-
sentations are connected through a geometry-dependent uni-
tary transformation. Unfortunately, finding the diabatic basis is
an outstanding problem itself. While the adiabatic basis can be
obtained from a diabatic basis simply by diagonalization, the
inverse procedure is highly complex as the diabatic basis is not
uniquely defined. Even state-of-the-art methods such as fitting-
while-diabatizing®® procedure usually require expert knowl-
edge about the system and lots of manual work and expensive
calculations. Dozens of various diabatization schemes based on
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nonadiabatic couplings (NACs) elimination, wavefunction
smoothness, or properties smoothness have been proposed.””
To date, diabatization has been mostly limited to low-
dimensional systems or specific wavefunction-based methods.
However, several works attempting to solve the problem of
automatic data-driven determination of the diabatic basis
emerged during the last few years, predominantly based on
neural networks."® > Very recently, an approach for the fitting
of adiabatic energies of coupled surfaces avoiding diabatization
by fitting coordinate-dependent coefficients of the characteristic
polynomial of a potential matrix decomposition was suggested.”®

While classical diabatization schemes are usually system-
specific and very laborious, current ML-based approaches
usually require lots of expensive training data and often a
manual selection of reference geometries where adiabatic and
diabatic bases coincide. We aim to combine the best of both
worlds: we augment simple property-based diabatization
schemes with an ML algorithm that corrects their deficiencies.
As a result, we can obtain a smooth diabatic representation
already with dozens or hundreds of samples. Note that our goal
is not to compete with complex state-of-the-art diabatization
schemes trained on huge samples in the accuracy of diabatic
states. Instead, we utilize the proposed diabatization to
improve the prediction accuracy in the adiabatic basis while
using small training datasets. Therefore, smoothness is more
important than for example exact locations of conical intersec-
tions, etc. Property-based diabatization is arguably the simplest
category of diabatization techniques.” It uses pairwise proper-
ties of adiabatic states such as transition dipole moments to
obtain diabatic states whose characters change as slowly as
possible. Unfortunately, there are some problems connected
with this category of diabatization methods, which prevent
their widespread application to larger molecules with multiple
electronic states involved. First, we need to select such proper-
ties that allow the discrimination of all the involved electronic
states. Second, ordering/labels of the states are not consistent
throughout the configuration space as each nuclear geometry is
diabatized separately: we get a set of diabatic energies and
couplings (off-diagonal elements) for a given geometry and we
have to assign them to the global diabatic states. The third
issue arises from random signs of the electronic wavefunctions,
which lead to random signs of the pairwise properties and
further to random signs of the diabatic couplings. While the
latter two issues can be easily resolved manually by inspection
in one or two dimensions, it is impossible for a general multi-
dimensional system.

The so-called cluster-growing algorithm has been previously
proposed to correct the signs of diabatic couplings obtained
with a different diabatization method.>**’ It uses a greedy ML-
based approach and it gradually corrects the signs of neigh-
bouring geometries, starting from a manually corrected initial
cluster. While it proved to be useful for sign correction, it has
not been used for the simultaneous correction of signs and
state ordering, which is a significantly more complex problem.
We identify two main problems connected with such applica-
tions: first, the manual correction of the initial cluster becomes
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cumbersome when dealing also with state permutations, espe-
cially for high-dimensional systems. Second, poor sign or state
assignments can lead to a cascade of more wrong assignments
as it is a greedy algorithm that makes only locally optimal
choices at each stage. As we aim at smaller training samples,
we can afford to overcome these limitations by employing
a stochastic iterative procedure to reach convergence in our
approach.

Within the proposed framework, we diabatize each geometry
separately using property-based diabatization, and correct for
inconsistent signs and ordering of diabatic states with the ML
approach. The general idea of our approach is simple: proper-
ties in the diabatic basis should be smooth and smooth proper-
ties are easy to fit so we change the ordering and signs so that
the properties are well-fitted with our ML model based on a
combination of kernel ridge regression (KRR) and clustering.
As a result, our methodology can extend the applicability of the
whole category of property-based diabatization schemes to
multidimensional systems with multiple states with as little
as dozens of training samples. At the same time, we get an
efficient way how to predict adiabatic energies, which can be
obtained from the fitted diabatic states and couplings simply
by diagonalization, and therefore save time on expensive
ab initio calculations. While our ML algorithm can be in
principle applied to any property-based diabatization, we pro-
pose here a series of simple diabatization methods based on
transition multipole moments from the ground state as a
byproduct. We also test the direct application of our ML
algorithm without prior property-based diabatization, that is,
testing whether ML prediction capabilities can be improved by
simple reordering of adiabatic states. For example, recent
research showed on the prediction of the energy gap between
the highest occupied and the lowest unoccupied molecular
orbital that prior classification can improve the smoothness
of the fitted property and therefore ML performance.”®

We focus here on the prediction of PESs but other properties
can be predicted as well: atomic forces and approximate NACs
can be directly obtained from the diabatic representation and
other properties such as dipole moments can be fitted sepa-
rately in the diabatic basis.>**> We show the performance of
the proposed methodology by reconstructing global PESs of
excited states of nitrosyl fluoride and formaldehyde in ther-
mally reachable regions at 300 K as we aim mainly at the
application in modeling electronic spectroscopies. Using these
small molecules for testing purposes allows us to use overlaps
between all the states of all the sampled geometries for analy-
sis, visualization, and benchmarking.

2 Computational methods
2.1 Property-based diabatization

We coupled our ML algorithm with property-based diabatiza-
tion as it in principle the most straightforward approach to
diabatization. Moreover, we propose here a series of very simple
property-based diabatization methods which are easy to
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implement. Within the Born-Oppenheimer approximation, the
eigenvectors of the electronic Hamiltonian are called electro-
nically adiabatic states and the eigenvalues are called adiabatic
PESs. The seam space of a conical intersection between two
interacting states, formed by geometries with degenerate adia-
batic energies, has Nj,; — 2 dimensions with Nj, being the
number of internal coordinates.”” It might seem that such a
small subspace cannot play a significant role but the Born-
Oppenheimer approximation breaks already for geometries in
the vicinity of conical intersections and this is where radiation-
less transitions take place. When we aim to describe processes
involving excited states, we usually have to go beyond the Born-
Oppenheimer approximation. To do so, we have to calculate the
probabilities of radiationless transitions usually expressed via
NACs for states of the same spin multiplicity. However, these
couplings are expensive to compute, often difficult to converge
and exhibit singularities at conical intersection seams.

To get rid of the cuspidal ridges in PESs and other properties
and singularities in NACs near conical intersections, we can
switch to a different representation by applying a geometry-
dependent unitary transformation matrix T(R):*®
=2 TiR

w(r;R) ‘l"‘d (r;R) (1)

U(R) = T(R)'V(R)T(R) (2)

where ¥7(r;R) are the original adiabatic wavefunctions, ¥{(r;R)
are the transformed diabatic wavefunctions, V(R) is the diag-
onal matrix of adiabatic PESs and U(R) is the transformed
potential energy matrix (PEM) which is not diagonal anymore.
The so-called strict diabatic basis would be obtained by such a
transformation which would completely remove NACs. How-
ever, Mead and Truhlar®® showed in 1982 that the strictly
diabatic electronic basis does not in general exist. Therefore,
we have to settle with a basis that provides smooth elements of
PEM and removes singularities in NACs. We call such a basis
diabatic even though, strictly speaking, we should use the term
pseudo-diabatic basis.

The diabatic basis is very convenient for ML applications as
the diabatic PEM and also other properties are supposed to
evolve smoothly with geometrical coordinates. At the same time,
we can switch back to the adiabatic basis at any time simply by
diagonalization. However, the non-existence of the strictly dia-
batic basis also means that the diabatic basis is not uniquely
defined. Property-based diabatization schemes based on prop-
erty unblending are the simplest and cheapest to apply. As
diabatic wavefunctions are supposed to be smooth functions
of geometry, we expect their properties to change smoothly as
well. While enforcing global smoothness is a difficult problem,
we can redefine the problem locally. Two crossing states become
blended in the vicinity of a conical intersection and so do their
properties. Property-unblending diabatization methods use this
observation and make properties of the transformed diabatic
states as different as possible which corresponds to the
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maximization of the following objective function:”

S = [(¥ (5 R) [P (1;R)) —

ij

(¥ (:R)[P]Y (5 R)))P - (3)

where P is the property operator. It has been shown that this
maximization is equivalent to the maximization of the following
objective function in the adiabatic basis:*°

Z Zle Tkl

i

2
N R)PYE(R)| (@)

Many different property-unblending methods have been proposed
using different properties to differentiate the states.™**%3%33 1t is
important to note that the separation of matrix eigenvalues can be
achieved by diagonalization.” Therefore, the matrix formed by the
eigenvectors of the property matrix corresponding to the P
operator in the adiabatic basis can be used for diabatization.
Unfortunately, this procedure leads to the above-mentioned pro-
blems with inconsistent ordering of the diabatic states and
random signs of diabatic couplings.

The methodology proposed in this paper can be in principle
connected with an arbitrary property-based diabatization
method to extend its applicability to multidimensional pro-
blems. Nevertheless, we also propose here a series of simple
and pragmatic property-based diabatization methods. The rea-
soning behind our methods is similar to the dipole-
quadrupole® (DQ) diabatization: we want to distinguish the
electronic states based on their transition multipole moments.
However, the DQ and similar methods require transition multi-
pole moments between all pairs of states, which are not always
easily available from electronic-structure calculations.'"*?*:30732
For example, the popular TDDFT method based on the linear-
response theory does not usually even yield the full matrix of
(transition) dipole moments. One has to usually perform a
separate calculation for each electronic state, which is both
computationally demanding and laborious. It is even more
problematic for higher multipole moments. We instead pro-
pose to form the property matrix based on inner products
between transition multipoles from the ground electronic state,
which are usually readily available.

This way, we form a series of methods, which we call
transition dipole (tD), transition dipole and quadrupole
(tDQ), and transition dipole, quadrupole and octupole (tDQO)
diabatization depending on the highest multipole included.
The property matrix P is then formed according to the following
formulas, respectively:

sz’i = HRoa'Rob (5)

P = Poghop + ®q{QoawQos)r (6)
P2 = pogpop + 0q{(Q0aeyQos)r T ®0(00w;00s)r  (7)

where pos, Qo and O, are the transition dipole, transition
quadrupole and transition octupole moments, respectively, as
implemented in the PySCF***> code, version 2.0.1. {-,-)p is the
Frobenius inner product, that is, the sum over the element-wise
product. The weights wqg and wo can be set by hand or
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optimized within cross-validation or a similar procedure. How-
ever, for simplicity, we do not use here this flexibility and set all
weights to 1. Also, we did not observe a significant improve-
ment when tweaking the coefficients for our test molecules.

We do not claim these methods to be universal but they are
pragmatic as they can be employed and tested very quickly. We
can simply form the property matrix P, calculate the matrix of
eigenvectors, and use it as the transformation matrix in eqn (2).
The employment of these methods is reasonable as long as the
ground is sufficiently separated from the other electronic states
within the sampled configuration space.

2.2 ML-based reordering

Eventually, we want to correct the deficiencies of property-
based diabatization but we start with a simpler problem: can
we reorder the adiabatic energies for each geometry so that they
form smoother surfaces than the original adiabatic PESs? We
simply want to reorder the adiabatic electronic energies of each
nuclear configuration so that they form new PESs that can cross
where it is advantageous for learning. If the answer were
positive, then we would be able to get better ML predictions
of adiabatic energies without any underlying property-based
diabatization. Also, such an algorithm can directly diabatize
states of different symmetry since they cross without mixing,
that is with zero NACs. Yet another motivation is the bench-
mark of our optimization procedure because we devised an
alternative approach to solving this problem based on wave-
functions overlaps as described below, to which we can com-
pare the results.

Direct optimization of the state ordering by the minimiza-
tion of the prediction error is problematic as the variable state
order introduces too much variability to the model, resulting in
difficult optimization and overfitting problems. Overfitting
might be reduced by introducing a regularization term penaliz-
ing the higher roughness/curvature of the predicted PESs.
Nevertheless, we propose here a simpler clustering approach
based on the expectation-maximization (EM) algorithm on
which many common clustering algorithms such as k-means
are based as well. By clustering, we refer here to the assignment
of adiabatic energies of individual geometries to global states
and their PESs. The main difference between our clustering and
k-means is that we cluster the data by minimizing the predic-
tion errors for each geometry instead of the distance to the
centroid. Also, we impose the restriction that each adiabatic
energy of a single geometry is assigned to a different global PES.

A simplified flowchart of the optimization procedure is
depicted in Fig. 1. We start the optimization from an initial
ordering/clusters corresponding to some PESs, that is, either
original energy-ordered adiabatic states or randomly shuffled
states. The order of states for individual geometries can be seen
as model parameters and we can use the EM algorithm to
optimize them. We fix the state clusters and set KRR model
hyperparameters in the expectation step and we use these fixed
state clusters to estimate new ordering for each geometry
separately in the maximization step. The excited states of each
geometry are iteratively reassigned to the clusters in the
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Fig. 1 Flowchart of the proposed ML-based reordering algorithm.

maximization step by training a KRR model for each cluster
corresponding to a single PES with the fixed ordering and
hyperparameters but without the geometry which is currently
being assigned. A distance matrix for the left-out geometry is
then formed by calculating the prediction errors for its states
using all the cluster KRR models. So we have a distance matrix
between the energies of a single molecule and the state clusters
and we want to find the best assignment so that the total
prediction error is minimized. This is a common linear sum
assignment problem, also known as the minimum (here max-
imum) weight matching. We solved this matching problem by
the modified Jonker-Volgenant algorithm®® minimizing the
mean squared error as implemented in the SciPy*” python
package. We repeat this process of fixing the clusters, setting
hyperparameters and estimating new state orders geometry by
geometry until the clusters do not change anymore. Note that
we observed better convergence by updating the clusters after
the assignment of each geometry, a modification also applic-
able to k-means.*®

Since the proposed clustering algorithm is stochastic and
does not guarantee the global minimum, we start the optimiza-
tion procedure many times from the original and also different
randomly generated initial orderings. The number of initial
conditions for the ML reordering optimization procedure was
selected to obtain reasonably converged results and also to
approximately match the results of the wavefunction-based
reordering described below, that is, 1000 optimization runs.
Since the results for different initial conditions are indepen-
dent, the whole procedure can be efficiently parallelized. The
obtained solutions are then compared by using cross-validation
prediction errors and the best one is selected. However, the
performance evaluated simply by the cross-validation predic-
tion errors from KRR hyperparameters tuning (described
below) is optimistically biased. The problem is when the same
data are used to both select the model and tune the hyperpara-
meters. We overcome this limitation by using nested (double)
cross-validation, that is, the hyperparameters are optimized for
each ordering in inner nested cross-validation. This way, we
avoid the leakage of information from the training set to the
test set.
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Note that the proposed clustering algorithm is just one of
the possibilities for how to perform the optimization. Alterna-
tively, it is possible to optimize the ordering for instance by
some metaheuristics such as simulated annealing or genetic
algorithms. The advantage of the proposed ordering is its
simplicity.

2.3 ML for property-based diabatization

The ML framework for state assignment outlined above is
directly applicable to crossings between states of different
symmetry which do not form conical intersections. Such states
do not mix and the couplings are zero by definition. The seam
has then the dimensionality of Nj,, — 1 with Nj,; being the
number of internal coordinates and simple reordering of states
is the optimal solution. The proposed algorithm, as defined in
the previous section, can even improve the learning of states
forming conical intersections with Nj,, — 2 dimensional seam
as the algorithm can find a route through the conical intersec-
tions which provides smoother surfaces with more slowly
changing characters of the involved states. In one dimension,
for example, when following a trajectory or a scan, it simply
decides whether it is advantageous for the learning to switch
adiabatic states in the vicinity of the conical intersection
depending on the number of training nuclear geometries.
Nevertheless, the most efficient learning for conical intersec-
tions can be achieved in a diabatic basis.

We first apply a property-based diabatization yielding adia-
batic PEMs with inconsistent state ordering and couplings’
signs. We now want to modify the assignment step of the ML-
based algorithm described above to obtain consistent order of
states and signs based not only on diabatic PESs (diagonal
elements) but also on diabatic couplings (off-diagonal ele-
ments). Mathematically speaking, for each iteration and
nuclear geometry, we want to find such an assignment of its
PEM B represented by a signed permutation matrix S, which
minimizes the Frobenius norm to the predicted PEM A from
ML models trained without that particular geometry:

nsl(i;lHA —SBS'||, = max Tr(ATSBST) (8)

where |- | is the Frobenius norm and S is the set of all signed
permutation matrices. Unfortunately, this is not a linear sum
assignment problem anymore because of the off-diagonal ele-
ments which couple the rows and columns together. This
problem corresponds to the quadratic assignment problem
(except the permutation matrices are signed) which is an NP-
complete problem so there is no known algorithm for solving it
in polynomial time. In fact, there are 2" 'n! signed permuta-
tional matrices for n states.

We can get an approximate solution by neglecting the
arguably small diabatic couplings and using only the diagonal
PESs; the problem then reduces to the linear assignment
problem described in the previous section. However, we still
need to correct the signs of diabatic couplings. The simplest
approach is to compare all 2"~ possible sign combinations for
n states of each geometry and select the combination with the
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minimum error, an approach similar to phase-free learning of
spin-orbit and nonadiabatic couplings by Westermayr et al.>
The assumption that the diabatic couplings are completely
negligible compared to the diagonal terms is unnecessarily
strict. We can use the result from such simplified optimization
as a starting point for further optimization taking into account
even the diabatic couplings. We use here an exhaustive search:
we iteratively test all permutations of states and signs for every
single nuclear configuration and choose the best-performing
permutation with the smallest loss function. Note, that the
search is exhaustive only in terms of states but it is iterative in
terms of nuclear configurations. Also, the exhaustive search can
be replaced by a 2-opt optimization if too many states were
included.

Note again that different optimization procedures can be
used. However, the main advantage of the iterative assignment
on the leave-one-out basis is its simplicity and its reasonable
resistance to overfitting.

2.4 Wavefunction-based reordering

To benchmark the ML algorithm and analyze the test cases, we
propose yet another reordering algorithm based on wavefunc-
tions, yet it is applicable only to direct reordering of adiabatic
states and it cannot be used for the diabatic basis. The
proposed wavefunction-based ordering is based on the assump-
tion that the states preserve, at least to some extent, their
character through the state crossings and conical intersections.
As a result, wavefunction descriptors can be used to reorder the
excited states of the sampled nuclear geometries in order to
obtain states most preserving their characters. The most nat-
ural criterion for the similarity of electronic states is their
overlap. Using wavefunction overlaps, we can define distances
between all the electronic states of all the nuclear configura-
tions representing the nuclear density.

As we have distances not only between nuclear configura-
tions but also between the excited states, we can directly cluster
the states. We propose here a clustering procedure based on the
direct maximization of the silhouette coefficient. However, note
that other clustering techniques can be applied as well; one has
to only incorporate the condition that each state of a single
nuclear configuration is assigned to a different cluster. The
silhouette coefficient measures how similar are data points to
other points within their own cluster compared to data points
in other clusters. The silhouette coefficient can be calculated
with any distance metric. In contrast, the most popular k-
means algorithm cannot be used to cluster states based on
overlaps as it requires the calculation of cluster centres.

We first define the distance of point i to its own cluster C;
and the closest different cluster, respectively:

ali) = = D (i) ©)

JeCr

b(i) = min |CJ\ > d(i.j) (10)

JECy
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where d(i,j) is the distance between points i and j and |C,| is the
size of the cluster C;. The silhouette for the given point is then
given by these two quantities:

b(i) — ali)
(0}

S(i) = —F—7— 11
(@) max{a(i),b (11)
The mean silhouette over all states of all the sampled nuclear
configurations represents our objective function to be max-
imized. Since the wavefunction overlap is a similarity metric,

we define the distance by its complement to one:

da(ij) = 1= | (Wil ¥)) (12)

where ¥; and ‘l‘; are the wavefunctions of the two electronic
states of two possibly different nuclear configurations. As
wavefunctions can have arbitrary signs, we use the absolute
value of the overlap. Alternatively, it is possible to use squared
values or apply a phase correction.

We work here with CI-type wavefunctions which can be
expressed as an expansion into Slater determinants:

Y, = Z i Py
k

where c; are the CI expansion coefficients into Slater determi-
nants ®;. Note that this group of methods includes also
popular time-dependent density functional theory (TDDFT),
which can be written in the form of CI singles (CIS) expansion.
The overlap is then given by the overlaps between the two sets

of Slater determinants:
= D2 cucilOl))

The overlap between two Slater determinants can be in turn
expressed as a determinant containing overlaps between the

(13)

(W% (14)

constituting molecular orbitals (MOs):*%*!
(b1dn) (et 1)
(D |@) = (15)
(Pinldin) (Pral b1

The calculation of wavefunction overlaps can be quite
laborious and we need overlaps between all the states of all
the geometries but this procedure serves here only to provide
insight and validate the ML algorithm. Also, the geometries
have to be aligned first in order to obtain meaningful values.

We start the optimization from the initial ordering/clusters,
that is, the energy-ordered adiabatic states. Analogically to the
ML reordering, we iteratively calculate the silhouette coefficient
for each possible cluster assignment of each state separately for
the selected geometry given the fixed clusters from the previous
iteration. This way, we obtain a square matrix of silhouette
coefficients between the states of the given geometry and the
clusters and we select the best assignment again by solving the
linear sum assignment problem. We iteratively repeat this
procedure geometry by geometry until the clusters do not
change anymore.
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2.5 Regression model

Our ML model serves two purposes: we want to reconstruct
diabatic PEMs and we want to predict adiabatic energies to
reduce the number of expensive ab initio calculations. Many
different regression models have been developed and their
applications to excited-state simulations have been discussed.’
We make our models reasonably simple mainly for two different
reasons: we want to keep our methodology clear and reproduci-
ble, and we need to perform the training many times during the
correction procedure of the property-based diabatization so it
has to be cheap. Therefore, we train a separate ML model for
each adiabatic PES or each element of the diabatic PEM using
the KRR method. KRR is a simple kernel method frequently used
in quantum chemistry.*>** Kernel methods use the so-called
kernel trick that allows using linear regression algorithms to
model nonlinear problems through an implicit transformation
of the input data into a higher-dimensional space.** In our case,
the KRR method is the favourable choice because of its simpli-
city and efficiency for small training samples.

In KRR, the quantity of interest is predicted for feature
vector x (molecular representation) using training samples x;
in the following way:*>

n
X) = ok(x;,x) (16)
i1
where k(x;,X) is a kernel function providing a similarity measure
between the two vectors and «; are the regression coefficients.
We use here the Gaussian kernel which is especially popular in
chemistry:*?
1 2
k(x;,X;) = exp (—FHX[ — x,-H2) (17)
where ||-||, is the Euclidean norm and ¢ is a model hyperpara-
meter. The regression coefficients are obtained from the train-
ing data by the following minimization:*’

n n

o= argmin <Z (yl —f‘(Xl'))z + A Z 9([k(X,‘,X]')OC/'> (18)
* i=1 i=1,=1

The first term is a common residual sum of squares. The

second term including another hyperparameter A is responsible

for the regularization which should prevent overfitting of the

training data. This minimization has a closed-form solution:

a=(K+ )y (19)

where y is the vector of known solutions for the training data
and K is a kernel matrix with elements K; = k(x;X;). This
equation is in practice solved by the Cholesky decomposition.
Within our approach, we need to solve this equation a lot of
times, very often for the same or slightly modified kernel but
with different y. This can be done efficiently by caching and/or
updating the intermediate results of the Cholesky decomposi-
tion, effectively reducing the formal O(n®) scaling with the
number of samples up to quadratic dependence. The hyper-
parameters ¢ and / are selected on a grid using 10-fold cross-
validation.
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A crucial ingredient for the prediction of molecular proper-
ties is a molecular representation or molecular descriptors, that
is, the feature vector x encoding the system, usually via the
molecular structure.*****” It should fulfil some basic require-
ments for ML to be efficient: it should usually possess transla-
tional, rotational, and permutational invariance.*®*° By
working with nuclear configurations of a single molecular
entity, some of the desired properties are automatically ful-
filled. Namely, the number of atoms is constant, resulting in a
constant-size molecular representation. However, as opposed
to adiabatic properties, the diabatic PEM is not in general
invariant with respect to permutations and inversion. Instead,
it follows the symmetry of the corresponding complete nuclear
permutation inversion (CNPI) group.'®*®*! While permuta-
tions do not play any role in the FNO molecule, formaldehyde
belongs to the C,,(M) CNPI group, which is isomorphic to the
C,y point group.® As a result, its diabatic states carry irreduci-
ble representations of the C,,(M) CNPI group. The symmetries
of the involved system-specific irreducible representations can
be directly incorporated into the fitted model.>*>>* However,
this can be a rather difficult task. We opted for a simpler option
as we are interested mainly in more accurate predictions of
adiabatic properties rather than accurate diabatic PEMs. By
using a representation invariant to inversion and permutation
of equivalent atoms, we effectively limit our model to a sub-
space of the whole configuration space. However, the rest of the
configuration space is still given by corresponding CNPI sym-
metries. Moreover, the fitted subspace is sufficient if we are
interested only in efficient prediction for adiabatic states as
these are invariant with respect to both inversion and
permutations.

We used a simple vector of normalized inverted internuclear
distances as the molecular representation:>>>°

ref
e
i,
X = N
Fij

where r;; is the Euclidean distance between atoms i and j and
775" is the reference value. The reference values are usually taken
from the minimal geometry but we used here average values
sampled in the nuclear ensemble. This representation is simple
yet efficient for our small molecules and it possesses both
translational and rotational invariance. While it is also invar-
iant with respect to inversion, it is not permutationally invar-
iant. Same as Guan et al,”” we enforce the permutational
invariance for the formaldehyde molecule by permuting the
hydrogen atoms so that the bond distances follow reu, < rem,
Alternatively, we could use for example the permutationally
invariant kernel.”®

forl<i< N forj< i) (20)

2.6 Computational details

The molecules were optimized at the B3LYP/6-31g* level
with subsequent vibrational analysis on the same level using
Gaussian G09,” revision D.01. 1000 nuclear configurations for
each molecule were subsequently sampled using the harmonic
approximation and the temperature-dependent Wigner
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quasiprobability distribution:**®!

1 h(,{),'
Pw(q,p,T) = Hﬁtanh<m>

fiow; P 10iqi*
. h i _ M
X exp (tan ( ;T T) ( Lo, 7

(1)

where g; is the deviation along the i-th normal mode and p;, w;
and y; are the corresponding momentum, angular frequency,
and reduced mass, respectively. 7 is the temperature set to
300 K and kg is the Boltzmann constant.

As described above, the hydrogen atoms were permuted for
the formaldehyde molecule so that rcu, < rcu, to ensure
permutational invariance. Moreover, we inverted the geome-
tries so that the oxygen atom was always located on the same
side of the CH;H, plane for the calculation of overlaps to
ensure invariance with respect to inversion. All the nuclear
configurations for each molecule were geometrically aligned to
one reference minimizing the mean square error between
atomic centres via translation and rotation in order to obtain
reasonable wavefunction overlaps needed for the analysis.
Subsequently, the excited-state calculations for the sampled
geometries were performed again at the B3LYP/6-31g* level of
theory within the Tamm-Dancoff approximation in the
PySCF**** code, version 2.0.1. Note that this level of theory
does not provide quantitative results and the present calcula-
tions serve only to show the performance of the proposed
algorithms. However, this level of theory combined with small
test molecules allows us to calculate overlaps between all pairs
of states of all sampled geometries, which is vital for the
analysis and tuning of the optimization procedure.

3 Results and discussion

We chose nitrosyl fluoride (FNO) as the first example to show
how the proposed methodology works. The first reason is that it
is small so it can be easily analyzed but it is already a 3D
problem that cannot be simply corrected by hand. The second
reason is its Cg point group resulting in two sets of electronic
states with either A’ or A” symmetry. We can therefore examine
the behaviour of the algorithm both when two states of differ-
ent symmetry cross without mixing and when states of the
same symmetry form conical intersections. The second test
case is the formaldehyde molecule which represents already a
6D problem but it is still possible to calculate pairwise wave-
function overlaps for analytical and benchmark purposes. Also,
both molecules contain a set of singlet states that do not
interact with other higher or lower-lying states at the employed
level of theory, which is a prerequisite for efficient diabatiza-
tion. States entering and leaving the predefined manifold
represent a general problem for diabatization methods.
Sampled geometries for both molecules, training indices, and
calculated excitation energies and transition moments are
included in ESL¥
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3.1 Nitrosyl fluoride: 1D scan

Let us first look at the 1D scan of the FNO molecule along the
NO bond to demonstrate how the proposed methodology
works. The first three excited singlet states are all energetically
well separated and do not mix or cross. We, therefore, focus on
the next three states S,-Sg which cross and mix within the
sampled configuration space. Note that these three states
actually include the brightest states of the FNO molecule. We
can see that while two states of the same A” symmetry form an
avoided crossing, the third state has a different A’ symmetry a
crosses them without any interaction (see Fig. 2a). We can
directly apply the ML reordering algorithm without prior dia-
batization (see Fig. 2b). Such treatment correctly reconstructs
the non-mixing diabatic state of different symmetry as the off-
diagonal elements are zero and reordering actually represents
the exact diabatization. The two states of the same symmetry
switch their order in the centre of the avoided crossing result-
ing in two almost linear curves only with a small disruption
located at the avoided crossing. While these states are not

o N

Adiabatic PESs of FNO

View Article Online

PCCP

properly diabatic, they are much easier to fit than the original
ones. Such a result looks encouraging; however, note that the
1D picture might be a bit misleading. The avoided crossing is
caused by a conical intersection which cannot be displayed in
one dimension. The reordering based on wavefunction overlaps
is not plotted separately as it provides here the same result as
the ML-based reordering but their agreement shows that the
clustering works properly.

As a next step, we apply a simple tD diabatization scheme as
outlined in Section 2.1. In this case, we need to distinguish only
two states of the same symmetry along one coordinate so the
property-unblending diabatization using just the transition
dipole moments from the ground state is sufficient. Fig. 2c
displays the diagonal elements of the diabatic PEM while
Fig. 2d displays the off-diagonal elements, that is, the diabatic
couplings. We can directly see the two problems of property-
based diabatization: the ordering of the diabatic states is not
consistent along the coordinate and the diabatic couplings
have random signs. By the subsequent application of our
algorithm, we get both smooth diabatic PESs and couplings

(o0
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Fig. 2 Excited states of the FNO molecule along the NO bond in the (a) adiabatic basis, (b) reordered adiabatic basis, (c) and (d) diabatic basis, and (e) and

(f) reordered and sign-corrected diabatic basis.
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(see Fig. 2e and f). One might point out that the correct
ordering and signs are obvious. This is true in one dimension
but the ordering and signs cannot be easily corrected by hand
in a multidimensional space. Our algorithm allows applying
property-based diabatization to multidimensional problems as
shown below.

3.2 Nitrosyl fluoride: 3D case

Let us now move to the full 3D space of the FNO molecule. In
the full space, we have to include another two higher-lying
states which interact with the three already included states.
There are now two states of A’ symmetry and three states of A”
symmetry. Fig. 3a presents a 2D multidimensional scaling
projection of the five excited states for 100 nuclear configura-
tions. Multidimensional scaling forms a low-dimensional
representation of the data, in which the distances respect the
distances in the original high-dimensional space as well as
possible.”” We defined the distances the same way as in
eqn (12) so the overlaps are also reasonably preserved given
the limitations of a 2D plot. The excited states form five clusters
corresponding to five diabatic states and none of them coin-
cides with a single adiabatic state plotted with different col-
ours. It can be clearly seen that the three states of A” symmetry
mix together as there are samples connecting these clusters. On
the contrary, the two A’ states do not mix suggesting that they
are well separated within the sampled space.

To provide insight, let us first look at wavefunction-based
clustering which serves here for visualization and benchmark
purposes. Fig. 3b shows the same projection after we applied
the wavefunction-based clustering described in Section 2.4. The
adiabatic states of each geometry are now assigned to the
clusters as well as possible. We can now create an ML model
for each of these clusters instead of the original adiabatic
states. The geometrical topologies of conical intersections are
of course still present but we might hope that the new clusters
present a better way through them. Nevertheless, these models
serve mainly as a benchmark to test our ML reordering on an
adiabatic basis before switching to a diabatic basis. Similarly,
we reordered the adiabatic states using our ML approach to see
whether such treatment is sufficient.

a) adiab. basis b) reordered adiab. basis
° (]
0.5 % @™ 054
. 0.0"0 .
® ® S
J \J
. ® Ss
©® o ) )
00 @oe ® S ° 0.0 °
o p
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Fig. 3 Multidimensional scaling projection of excited state clusters (a)
before and (b) after reordering based on wavefunction overlaps for 100
nuclear configurations and 5 excited states. The projection corresponds to
a 2D space in which the wavefunction overlaps are preserved as well as
possible.
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FNO prediction errors, S4-Sg, 3D
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Fig. 4 The mean absolute error of the kernel ridge regression for the FNO
molecule as a function of training set size for adiabatic basis (AB), adiabatic
basis reordered using wavefunction overlaps (OL), ML-reordered adiabatic
basis, and values obtained from the diagonalization of ML-corrected
diabatic basis (DB).

Finally, we applied the property-based diabatization and cor-
rected the signs and ordering with our ML approach. The tD
diabatization is not sufficient anymore as we need to differentiate
5 states. Therefore, we use here the tDQ diabatization. Let us now
compare the accuracy of the ML prediction before and after
applying all these methods, that is, original adiabatic states,
adiabatic states reordered using wavefunction overlaps, ML-
reordered adiabatic states, and ML-corrected diabatic states. The
results are plotted for different training set sizes in Fig. 4. We
always selected a training set of a given size, reordered/corrected it
with the proposed algorithms, and used it to train a separate KRR
model for each PES, and also each diabatic coupling in the case of
the diabatic basis. We subsequently used these models to predict
PESs for the rest of the 1000 geometries, which were not selected
for the training set and evaluated the prediction error by means of
the mean absolute error (MAE). In the case of the diabatic basis,
the predicted PEMs are diagonalized and the resulting adiabatic
energies are compared to the other models. Note, that the results
are plotted on the log-log scale.

We can see that the improvement in accuracy is enormous
for all the proposed approaches. Both adiabatic reordering
approaches improve learning consistently almost by one order
of magnitude. Also, both reordering approaches provide com-
parable results which suggest that our ML reordering proce-
dure is sufficient. By switching to the diabatic basis and
correcting the signs and ordering, we get another significant
increase in accuracy. Not only that the absolute errors are much
smaller but also the slope is better. The MAE is smaller by two
orders of magnitude already with 80 samples.

To inspect how the diabatic states look like, we plot their
PESs in Fig. 5 for a fixed bonding angle using ML models
trained on 320 geometries. While it is difficult to plot five
surfaces at once in a clear way, the PESs are clearly smooth and
cross each other without forming conical intersections.

3.3 Formaldehyde: 6D case

We repeated the whole procedure for the formaldehyde mole-
cule where we selected the tDQO property-based diabatization
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Fig. 5 Potential energy surfaces obtained by the proposed ML approach
based on the tDQ diabatization of the S;—Sg adiabatic states of the FNO
molecule. The bond angle is fixed to 110°. ML models were trained on 320
geometries from the Wigner distribution.

as the tDQ diabatization did not improve the learning. We
could have in principle diabatized states of different symme-
tries separately for the FNO molecule but this is not the case for
the formaldehyde molecule; while formaldehyde belongs to the
C,, point group in the minimal geometry, the symmetry is
broken virtually for all the geometries. We included the S,-Ss
states as those mix in the sampled region and are energetically
well separated from both the S, state and the higher-lying states
at the employed level of theory. The MAEs for both adiabatic
reordering approaches and the diabatic ML approach are
presented in Fig. 6. We observe again a major improvement
in prediction accuracy by up to one order of magnitude with
320 training geometries. While the improvement is not as
remarkable as for the FNO molecule, one order of magnitude
is still a huge improvement. It is important to realize that the

CH,O0 prediction errors, S,-Ss, 6D

10—1 4
3
g
= — AB
102 OL-reordered AB
—— ML-reordered AB
—— ML-corrected DB

20 40 80
# of training samples

1(I50 3&0

Fig. 6 The mean absolute error of the kernel ridge regression for the
formaldehyde molecule as a function of training set size for adiabatic basis
(AB), adiabatic basis reordered using wavefunction overlaps (OL), ML-
reordered adiabatic basis, and values obtained from the diagonalization
of ML-corrected diabatic basis (DB).
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final diabatic ML models are always limited by the underlying
property-based diabatization. Both adiabatic reordering appro-
aches decrease the prediction errors by up to half an order of
magnitude and provide again very similar results.

4 Conclusions

We tackled two different problems at once: efficient machine
learning for excited-state properties and diabatization. We
proposed and tested methodology for correcting deficiencies
of property-based diabatization techniques including random
signs of the diabatic couplings and inconsistent ordering of the
diabatic states throughout the configuration space, which
prohibited the wider deployment of these methods to multi-
dimensional systems. To this end, we developed a stochastic
ML optimization procedure based on the combination of KRR
and clustering. The optimization provided us with smooth
diabatic states which are also easy to fit and predict. The set
of adiabatic energies can be then easily obtained by diagona-
lization of the predicted diabatic PEMs. This way, we were able
to improve the prediction accuracy by about 2 orders of
magnitude in terms of MAE for the adiabatic energies of the
FNO molecule and almost 1 order of magnitude for the
formaldehyde molecule. We managed to efficiently utilize
unprecedentedly small training sets including from dozens
up to hundreds of nuclear geometries. However, it is important
to note that the quality and performance of the final ML models
are heavily dependent on the underlying property-based diaba-
tization. Our ML approach corrects inconsistent state ordering
and sings but it cannot correct for improperly chosen diabati-
zation properties or state manifolds.

Our ML approach is applicable to any property-based dia-
batization. However, we also proposed a series of simple
property-based diabatization schemes that are easily applicable
even to single-reference methods such as TDDFT. These
schemes are based only on transition multipoles from the
ground state which makes them pragmatic and easily applic-
able but also not universal. The algorithm can be in principle
applied to conical intersections of three or more adiabatic
states occupying even lower-dimensional space whenever the
underlying property-based diabatization is able to distinguish
them. The direct application of our reordering algorithms
without prior diabatization also improved the learning signifi-
cantly: up to one order of magnitude for the FNO molecule and
up to half an order of magnitude for the formaldehyde mole-
cule. However, such behaviour cannot be probably expected for
much more complex PESs of large systems.

Overall, we developed a methodology making diabatization
more accessible for quantum-chemistry practitioners as it is
based on the simplest category of diabatization methods, that
is, property-based diabatization. The ML-corrected diabatic
basis can save us many computationally expensive ab initio
calculations as we can use much smaller training samples to
achieve the same prediction accuracy. We also kept our opti-
mization procedure as simple as possible for the sake of better
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transferability and reproducibility. Nevertheless, more efficient
optimization procedures can be used for example by merging
our algorithm with some metaheuristics; also, the cluster-
growing®® algorithm can be used as the initial solution for
the proposed optimization if we find a way how to form the
initial cluster automatically. The methodology can be in prin-
ciple used with different ML models instead of KRR. However,
the ML model has to be reasonably efficient as it gets retrained
many times during the optimization procedure.

This work opens the way to various applications. While we
used the presented ML-corrected diabatization to fit PESs of
two simple molecules, an analogous approach can be used to
efficiently model electronic spectra using the nuclear ensemble
method or any other property reflecting the ground-state geo-
metry distribution.>®®*"% The proposed ML algorithm can be
also directly used as an alternative to the cluster-growing
algorithm to correct signs within other categories of diabatiza-
tion methods as this particular problem is not specific only to
property-based diabatization. Moreover, wrong state ordering
was identified as a possible problem when learning differences
between two electronic structure methods within A-ML.> The
basic reordering algorithm could resolve the issue caused by
inconsistent ordering of adiabatic states at the two employed
levels of theory. The present approach might be extended in the
future to tackle also the problem with states entering and
leaving the predefined excited-state manifold for diabatization
by fitting a larger number of diabatic states (or predicting a
smaller number of adiabatic states) than the number of input
adiabatic states. Implicitly fitting a larger number of diabatic
states within neural network architecture has been already
shown to improve prediction accuracy.”® Eventually, the
proposed diabatization might be in principle also used for
efficient nonadiabatic dynamics simulations but one would
have to take care that the configuration space is properly
sampled and it might be advantageous to include gradients
and NACs to the loss function if they are available for training.
However, this application is yet to be explored. Also, such an
application is in general more prone to the problem of states
entering and leaving the predefined manifold.
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