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We present an efficient quasi-Newton orbital solver optimized to reduce the number of gradient
evaluations and other computational steps of comparable cost. The solver optimizes orthogonal orbitals
by sequences of unitary rotations generated by the (preconditioned) limited-memory Broyden—Fletcher—
Goldfarb—Shanno (L-BFGS) algorithm equipped with trust-region step restriction. The low-rank structure
of the L-BFGS inverse Hessian is exploited when solving the trust-region problem. The efficiency of the
proposed “Quasi-Newton Unitary Optimization with Trust-Region” (QUOTR) solver is compared to that of
the standard Roothaan—Hall approach accelerated by the Direct Inversion of Iterative Subspace (DIIS), and
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1 Introduction

Orbital optimization is a fundamental ingredient of the elec-
tronic structure methods at all levels of approximation, from
1-body models (Hartree-Fock (HF), Kohn-Sham density functional
theory (KS DFT), collectively known as the self-consistent field (SCF)
method" §), to many-body methods (e.g;, multiconfiguration self-
consistent field (MCSCF)). Despite the long history of innovation,> >
development of improved orbital optimizers continues to this
day*** Although the relevant functionals of the orbitals are
nonconvex, and global and local nonconvex optimization is NP-
hard,>**” it is known that many practical orbital optimization
problems are easily solved using existing heuristics. For the crucial
HF/KS SCF use case, the most popular solvers in the molecular
context are based on the Roothaan-Hall (RH) iterative diagonaliza-
tion of the Fock matrix>*® augmented by convergence accelerators
such as Anderson mixing® or the closely related direct inversion in
the iterative subspace (DIIS) method,"*"**%*" as well as others.*>
However, several issues plague the efficient RH/DIIS heuristics:

o for systems with complex electronic structure (such as
molecules far from equilibrium, open-shell systems,*>** and
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other exact and approximate Newton solvers for mean-field (Hartree—Fock and Kohn—Sham) problems.

systems with small HOMO-LUMO gaps>®) convergence will be
slow,® erratic, or nonexistent,****

e the use of diagonalization produces canonical orbitals
whose lack of localization makes them incompatible with fast
algorithms for the Fock matrix construction (e.g., using local or
sparse density fitting®>*"),

e applications to large systems and/or in non-LCAO
representations can be bottlenecked by the ((N®) cost of
diagonalization,”*8¢

e locating non-Aufbau (e.g., excited state) solutions is
possible*® but is not robust, and

e even in favorable cases the convergence rate is linear
(i.e., the error is reduced by approximately the same factor each
iteration) or perhaps slightly better when accelerated with
DIIS;*" this is slower than the quadratic convergence exhibited
by, e.g., the Newton method.”*

The lack of convergence guarantees is probably the most
severe of these in practice. Extensions of the standard RH/DIIS
heuristics have been devised to improve the robustness*®>*°*
but for challenging cases the user is expected to control the
many heuristic solver control parameters that help the conver-
gence (level shift, damping, etc.).

Orbital optimizer solvers that rely on direct energy mini-
mization can address some/all of these concerns and thus have
a long history of development.>>®8911:12:147192172955 1 the
molecular mean-field context direct minimization SCF solvers
have long been employed as the recommended alternative in
the case of convergence problems, used in combination with
RH/DIIS to gain superlinear convergence, and to enable
reduced-scaling SCF approaches.”®*® Nevertheless, RH/DIIS
remains the default SCF solver, not due to its formal advantages,
but due to its superior efficiency. This may be puzzling since
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direct minimization solvers are often demonstrated to converge
in as few as (or fewer) iterations than RH/DIIS.”"*> However, the
number of iterations is a misleading figure since each update of
the orbitals or density matrix may involve multiple energy/
gradient evaluations or solving similarly expensive subproblems
(such as multiplication of a trial orbital rotation by the orbital
Hessian). In other words, the number of gradient evaluations
(Fock build equivalents, Ng) in a direct minimization solver is
typically significantly greater than the number of iterations (Ny),
whereas in RH/DIIS they are equal. Thus the latter typically
involves significantly fewer Fock matrix evaluations, which in
most practical applications determines the overall cost.

The objective of this work is to design a quasi-Newton
orbital optimizer that minimizes the number of gradient eva-
luations (and its equivalents) to be as competitive with RH/DIIS
as possible, and as robust as possible without the need to
adjust the control parameters. Our “Quasi-Newton Unitary
Optimization with Trust-Region” (QUOTR) solver uses precon-
ditioned limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm®® step-restricted by trust-region (TR) and
leverages the inverse L-BFGS Hessian’s low-rank structure to
efficiently solve the trust-region update problem.”®

The rest of the manuscript is structured as follows. In Section 2
we briefly review the general classes of SCF solvers before describ-
ing the theoretical aspects of QUOTR. Next, the implementation
of QUOTR is discussed in Section 3. In Section 4 we display solver
performance statistics for a standard set of chemical systems and
make a comparison to a method that uses information from the
“exact” Hessian. Additionally, in Section 4 we illustrate the utility
of QUOTR for several prototypical problems where RH/DIIS and
other SCF solvers struggle, such as a system with vanishing
HOMO-LUMO gap as well as select d- and f-element containing
systems. In Section 5 we summarize our findings.

2 Formalism
2.1 Overview of SCF solver approaches

All SCF methods attempt to iteratively minimize the electronic
energy E(x) or its Lagrangian counterpart, where x is a set of
independent parameters defining the particular method. In
practice the minimum is determined by using the energy, its
gradient g, and optionally the Hessian B. Starting with an initial
(guess) set of parameters x®) SCF solvers construct improved
parameter values using the current energy and its derivatives,
(optionally) their values from previous iterations (histories), as
well as any optional additional parameters and their histories:

X&) Zf({X(k)}, {E(k)}, {g(k)},_ ) (1)

The SCF solvers differ in how they construct the update in
eqn (1); unfortunately, it is not possible to systematically
classify the solvers since in the vast majority of cases f() is an
algorithm, not a simple function. Thus here we only focus on
essential common elements of all SCF solvers.

Most solvers split the update problem (1) into 2 subpro-
blems by defining the parameter update,
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in terms of a search direction p(k) and a step size «®, each of
which has its own prescription similar to eqn (1)

p® = g((x®y, (B0, (o®) ) 3)
o® = p(x®Y, (WY (o®Y ), (4)

The need to control the step size is common to all SCF solvers
due to the fundamental nonlinearity of the energy function.
Therefore even solvers that do not employ eqn (2), such as RH/
DIIS, still introduce ad hoc ways to control the step size by level
shifting, damping, and other means of step restriction.

The simplest “2-step” solver is the steepest descent (SD)
method® in which the search direction p® is opposite to the
current gradient g

(k)
(kSD__&
L G)

Unfortunately, although the SD method is guaranteed to con-
verge to a nearby minimum, the plain SD variant converges very
slowly;>”>® this can be rationalized by comparing it to the
(exact) Newton step:

st Nemen () g6, ()

Hessian B is a diagonally-dominant matrix with a large (and growing
with the basis set size) condition number. Luckily it is relatively
simple to construct an effective approximation to the Hessian; a
particularly popular way is to use only the 1-electron terms in the
Hessian, B,.. Approximate Hessians can then be used for precondi-
tioning SD (using the 1-electron Hessian for preconditioning is also
known as the “energy weighted steepest descent” method>*®) by
replacing g¥ in eqn (5) with the preconditioned gradient:

g9 = B{) "g". )

The RH method can be viewed as a simplified version of
preconditioned SD, due to its step being exactly the negative
of the gradient preconditioned by the 1-electron Hessian:**?®

s R _5(0), (8)

More sophisticated prescriptions for direction include the
conjugate gradient (CG) method'®>%>*%7%° in which history is
limited to the information about the current and previous
iteration. Of course, the use of preconditioning is mandatory
with CG just as with SD. Unfortunately neither SD nor CG, even
with an approximate preconditioner, lead to an optimal con-
vergence rate near the minimum. Thus the most efficient
solvers utilize exact or approximate Hessians near the minimum.
The time-determining step of such models usually involves
direct evaluation of the action of exact (or approximated) Hes-
sian onto a trial step, at a cost similar to the cost of the gradient
evaluation (i.e., the Fock matrix evaluation in the mean-field
case).”>!®'” Although it is possible to apply the straightforward
Newton method using the exact Hessian when sufficiently close
to the minimum,’ to be able to use the exact Hessian further
away from the minimum requires some form of step restriction.
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The popular augmented Hessian (AH)*' method can be viewed
as a Newton method with optimally restricted steps; it can also
be viewed as a quasi-Newton method in which an approximate
(level-shifted) Hessian is used. The diverse family of quasi-
Newton methods each use approximate Hessians of some form,
often generated from information contained in the gradients
and steps of the previous iterations.> The quasi-Newton idea
has been used in MCSCF for a long time,”® and the most
commonly employed approximation in SCF is some form of
the BFGS algorithm.'**>!921:2933 The BFGS method has recently
been used with success in the MCSCF context®® and the selected
configuration interaction (CI) context.®*

Although some solvers compute the step length separately
from the direction, more sophisticated approaches fuse step
restriction deeper into the step computation. Indeed, when an
underlying quadratic model of the energy exists, it is not natural to
simply perform a line search toward the (unrestricted) minimum of
the model, considering that the model is known to be locally
accurate in all directions. The alternative concept of searching for
the minimum of a model in all directions, but restricting the step
size to some maximum value, is the key idea of the trust-region (TR)
method.>? 262831356263 w6 important aspects of any TR method
are: how the trust-region is updated between iterations, and how the
trust-region problem is solved for the step. The update method that
is commonly used is based on an algorithm developed by Fletcher,**
and one of the first true TR applications in quantum chemistry used
it in the context of MCSCF.®> A common occurrence of the TR
problem in quantum chemistry is within the framework of the AH
method; due to the use of full (level-shifted) Hessian in AH the cost
of the TR solve is similar to the cost of the unrestricted step.>' Here
we use the TR method in the context of the L-BFGS method which
allows us to exploit the low-rank structure of the L-BFGS Hessian to
essentially eliminate the extra cost of using the TR method.”®

2.2 QUOTR: quasi-Newton unitary optimization with
trust-region

Our direct minimization SCF solver is a preconditioned quasi-
Newton (L-BFGS) solver with TR step restriction. Although its aspects
are similar to prior SCF solvers, there are several novel elements:

View Article Online
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Table 1 User-controllable parameters of the QUOTR solver
Description Symbol Value
Energy convergence threshold tee 10*?
Gradient convergence threshold teg 107°
L-BFGS start threshold ty 0.1
Max history size m 8
Regularizer threshold tr 0.25
History keep threshold th 107>
Exponential tolerance te 10"
Compare zero threshold to 10"
Line search fitting range shrink factor it shrink 1/2
Minimum TR tolerance t 1071
TR step accept threshold T4 0
TR shrink threshold T, 0.25
TR expand threshold T3 0.75
TR shrink factor 11 0.25
TR shrink by step factor /5 0.5
TR expand check factor 73 0.8
TR expand by factor N4 2.0

e The optimization is parameterized with a consistent
“reference” (epoch) MO basis allowing use of the exact gradient
with minimal computation after the Fock matrix is constructed.

e The preconditioner is updated only on some iterations,
and it is regularized in a simple way to ensure a positive
definite Hessian.

e The low-rank structure of the L-BFGS Hessian is exploited
when solving for the quasi-Newton step on the TR boundary.

The QUOTR algorithm is described in Algorithm 1, and its
user-controllable parameters are listed in Table 1. The para-
meters listed have been divided into three groups: free user
choice, convergence tweaking, and expert-only controls. The
two convergence criteria for the solver can be chosen however
the user wishes, within reason. The next three parameters could
be adjusted in cases that convergence is not as fast as desired.
Finally, the remaining parameters are not recommended to be
adjusted. Below we elaborate on each key aspect of the solver.

2.2.1 Parameterization. It is important to consider how the
standard unconstrained quasi-Newton minimization scheme
can be mapped to the constrained minimization of the single-

Algorithm 1 QUOTR SCF solver

1: function QUOTR (C()

2: k < 0, Staken < false, Ryise < false, Uepoen «— 1, {E®, Fao} « Fock(C?)

3: g[k] - GRAD(FAO’ C(k)y Uepoch2 I>eqn (14)

4: By < PrECONDITIONER(Fpq, C D>eqn (24)

5: while RMS(g®) > ¢, AND (k=0 OR AE® > ¢,) do

6: if Siaien then

7. s[k—l) - B51/2§(k—1)

8: if yE Vs > t;,uy(k’l) I Is*~|| then

9: FE o gy e

10: S — Apeenn(S, §€7Y), § — Trim(S, m), ¥ — Apreenn(¥, 7€), ¥ « Trmm(¥, m) V « Concar(8, ¥) >update history
11: end if

12: end if

13: Ryise « AW < t, OR |g¥] . > 1,

14: if NOT Rupjist then

15: PG SN

16: if k > 0 AND V not empty then >BFGS

17: §® — L-BFGS(g®,V) D>eqn (27) and (29)

This journal is © the Owner Societies 2024
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18: if Hg[")u > A® then

19: §® — TRSTER(AW, g0, 50, V) I>Algorithm 2

20: end if

21: q® « eqn (38), Ryise < ¢ > 0 D>energy increase predicted
22: else

23: §0 « —g® D>steepest descent
24: end if

25: end if

26: if Rpsc then >new epoch

27: if not Si,ien then

28: {EW, Fao} « Fock(CW)

29: end if

30: (k) «~{}L U 1/12;% <—(k) , By 4—(k)PRECONDITIONER(FAO C(k] g1k) « Grap(Fo, c®, Uepoch) I>steepest descent
31: g S g

32: end if

33: if k = 0 OR V is empty then P>line search

34: a® — Linesearcu(sW) D>Section 2.2.4
35: ~U<) - a(k)i(k)/HﬁlkJH, ABD 4B

36: end if

37: Seaken < true, s « By1250 D>attempt step
38: U® — Unimarystep (8%, Uepocn) B>eqn (16) and (12)
39: c®D P gk, {E(k”) Fro} « Foa(Ck™), AEW g1 _ g0

40: if Kk > 0 AND V not empty then

41: (k) « A E(k)/q(k)

42 stake « p®'> ¢, OR AEW < ¢,

43: if pl& ¢ < 1, then

a4: AE o Min(,AY, )8 s

45: else 1f§ o > ©3 AND 159 > 1,A®) then

46: AF naA*

47: end if

48: else

49: Staken < AE® <t

50: if Siaken then

51: AT )

52: end if

53: end if

54: if Siaken then

55: k< k+1, Uspoeh « UepocnUF™, ¥« GRraD(Fa0, C¥, Uepocn), ¥ — g _ o= D>accept step

56: else

57 AW AED D>reject step, change TR
58: end if

59: end while

60: return C%

61: end function

determinant energy where the orbitals are required to be
orthonormal. In the following, we assume the linear combi-
nation of atomic orbitals (LCAO) representation of the mole-
cular orbitals (MOs), and thus the MOs are defined by the
coefficient matrix C.

We seek a unitary matrix, U, that transforms the initial
(guess) set of orthonormal orbitals, C*, into the target
solution, C.

¢ =cg 9)

The target unitary matrix is built as a sequence of unitary
rotations,

c
[
=4
=]
I

v, (10)
k

with each unitary rotation U® obtained by solving a local
subproblem. The orbitals at iteration k£ > 0 are given by the
coefficient matrix obtained from the total rotation determined

6560 | Phys. Chem. Chem. Phys., 2024, 26, 6557-6573

thus far.
= ck-Dylk=h (11)

We use the standard®® ¢’

unitary U®:

exponential parameterization of

UW = exp(e™), (12)

where ¢) is an antihermitian matrix encoding the unitary
rotation of the orbitals. Formulating the optimization problem
in terms of the antihermitian coordinate matrix ¢ rather than
in terms of the density matrix allows us to avoid the need for
diagonalization (which restores the idempotency of the density
matrix in extrapolation/interpolation methods like DIIS'**).
The matrix exponentials are evaluated accurately (to finite
precision ¢.) as a Taylor series expansion using a simple
scaling-and-squaring approach®"®® with a fixed order of 2.
In this technique, the matrix to be exponentiated is first divided
by 2% = 4. Next, the Taylor expansion for the exponential function
is carried out on this scaled matrix, truncating when the norm of

This journal is © the Owner Societies 2024
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the next term in the series drops below ¢. The resulting matrix is
raised to the fourth power (by squaring twice) to obtain the
exponential of the original matrix. Although some approaches
evaluate the exponential approximately and return to the target
manifold by additional orthogonalization,”'® accurate evaluation
is important to be able to maintain the fidelity of the relationship
between parameters and the objective function values in the
context of extrapolation methods like BFGS. Evaluation of the
matrix exponential could be improved further, e.g., by leveraging
the block-sparse antihermitian structure of ¢.>*

It is important to express both the gradients and parameter
updates for each iteration in the same coordinate frame (basis).
In the context of the DIIS methods this is usually done by
working in the AO basis (e.g., as noted by Pulay in ref. 13 “In
order to be useful for extrapolation purposes, [the Fock]
matrices (one in each iteration step) must be transformed to
a common basis, e.g., to the original AO basis set.”). Here the
working frame is defined by the initial orthogonal MO basis for
each epoch (namely, the sequence of iterations whose history is
used to construct the current approximation to the Hessian).
The gradient of the energy evaluated with orbitals C with
respect to their arbitrary rotation ¢ has the familiar form
when expressed in terms of C:

3 19)) 3
(g(k))m = —= 2,11.(F(A))W (13)

ai

where a and i refer to the unoccupied and occupied MOs in c®,
respectively, and n; is the occupancy of ith orbital (2 for spin-
restricted closed-shell SCF,1 for spin-unrestricted SCF). However,
the gradient “at” arbitrary MOs can be expressed in an arbitrary
(e.g., epoch) basis. For example, the gradient at current orbitals
c® in epoch basis can be obtained by transforming eqn (13) to

the epoch basis:
gggoch = Zni[Fggoch; P(e]goch]- (14)

Here F(e’goch is the Fock matrix evaluated with current orbitals
c® but represented in the epoch MO basis and P(elgoch is the
projector onto the occupied MOs in C*) expressed in the epoch
basis. In practice, the Fock matrix in the epoch basis is
evaluated in AO basis using the AO density matrix evaluated
from C® and then transformed to the epoch basis. The projec-
tion operator onto the occupied space at iteration k in the
epoch basis is obtained as

ngoch = Ug;))ochP(Uggoch)T, (15)

where P is the diagonal matrix, with ones and zeroes on the
diagonal for the occupied/unoccupied MOs, respectively. Not
only does this formulation of the gradient allow us to have a
consistent basis for forming the L-BFGS Hessian, but it also
avoids evaluating the gradient at particular MOs using a non-
truncating Taylor series around the reference/epoch basis, as in
other solvers.*

Note that ¢) is a matrix, but only some of its elements can
be varied independently. It is also traditional in applied mathe-
matics literature to arrange the parameters of multivariate

This journal is © the Owner Societies 2024
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functions into vectors. Thus it is appropriate to comment on
the detailed relationship of ¢ and the corresponding step
vector s®. Due to the antihermiticity of o, 6,4 = — 74, hence for
real orbitals (which we assume here without any loss of generality)
only the lower elements are independent. Although for 1-body
SCF methods considered here elements of the gradient matrix are
nonzero only between occupied and unoccupied orbitals, hence
one would think that only (¢),, elements need to be independently
varied, this is only true for ¢ expressed in the current MO basis
(i.e., the basis defining the density). To be able to work in an
arbitrary (e.g., epoch) basis all lower-triangular elements of ¢ thus
must be considered independent. For an MO basis with 7,
orbitals, this means that the number of independent parameters
is n = n, (1, — 1)/2, assuming no additional symmetries are taken
into account. In the spin-unrestricted case, the sigma elements for
the separate alpha and beta spin MOs are simply concatenated
into one vector. Notice that the gradient matrix in eqn (14) is also
antihermitian, with the same structure as ¢. Thus, we can map the
matrix elements of the gradient to a vector in exactly the same way
as for the matrix elements of &, using only the lower (or upper)
triangle. We use the symbol s® for the vector version of 6; for
the gradient henceforth only its vector form, g®, is used.

The steps and gradient differences are the ingredients for
the L-BFGS update to the Hessian and its inverse. All quantities
throughout each epoch (see below) are kept in the epoch
“reference” basis to make application of L-BFGS and TR con-
sistent. However, when a new step s®) is proposed, to convert it
to the unitary rotation via eqn (12) it must be transformed to
the current MO basis, via

a® = Uk Ye®) UL (16)

Our convergence criteria require both the energy change
between iterations (AE® = E&*Y — g0 and the root mean
square (RMS) of the unique gradient elements to be small.
Generally, we require energy change to be below 1 x 10~ °E}, and
the RMS gradient (in epoch basis) to be smaller than 1 x 107°.
However, for some comparisons with other solvers, we use the
2-norm of the gradient instead of the RMS version.

2.2.2 Quasi-Newton method. The L-BFGS algorithm is
used to approximate the Hessian, B¥.s ~ BX, and its inverse,
H¥es = BRas) ' ~ BY)!, using the history vectors from
(at most) m previous iterations. In the following, we will assume
that the history size is equal to m for simplicity. This approx-
imate Hessian and its inverse can be represented in low-rank
form as follows:>°

Bils = By — VID(WH) {7 (17)
H s = Ho + VMOV (18)

Here the matrix B, is an initial (often diagonal) approximation
to the Hessian chosen at the beginning of the current epoch,
which in principle could be any positive definite matrix.>?
The matrix H, is the corresponding initial inverse Hessian
approximation: Hy = B, . More will be said about these critical
components later. At iteration k with the BFGS history containing
m {step, gradient difference} pairs, matrix Vi has 2m columns,
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with the first m being history step vectors multiplied by the initial
Hessian, Bos(k), followed by the m matching gradient differences,
yB = g& _ o® v is obtained from Vi as V¥ = H VY. The
square matrices W% and M® have dimension 2m, and the need
for the inverse of W is not a problem since m is typically small
(we have used m = 8). The formation of W* and M® is described
in the literature,>* but essentially they are composed of various
dot products involving the history vectors, (requiring an inverse of
one of the m x m subblock).

(S©)TByS®)  |L®)
W = (19)
(L(/v) )T |,E(k)

(20)

In eqn (19) and (20), S¥ is an 7 x m matrix containing the history
column vectors, s®, and similarly Y¥ contains the gradient
differences, y®. The smaller m x m submatrices L® and E® are
simply constructed as below.

" glom=15) | yle=m=14) i j > j
LY = . (21)
0 otherwise
“ glk=m—1+i) y(k—m—l-%—j)7 ifi=j
El = . (22)
0 otherwise

One of the advantages of the L-BFGS Hessian approximation,
apart from not requiring calculation of second derivatives, is that
it can be stored in this factorized form by simply keeping the
relatively small matrices By, Vgc), and Wi, Considering that B, is a
diagonal matrix, we only need to store (2m + 1) n + 4m” elements,
which is typically much smaller than the full Hessian which
requires n” elements. From the development up to this point, it
would seem that we also need to store the information for the
inverse L-BFGS Hessian, specifically V(}’f), but this will be dealt
with soon.

The quasi-Newton step, s® = —H%‘%ng(k), is calculated by
multiplying the inverse L-BFGS Hessian of eqn (18) with the
negative of the gradient. Thus, the factorized form of eqn (18)
makes the task of calculating the quasi-Newton step simply a
matter of a few matrix-vector multiplications. Note that
although we only need the inverse Hessian to compute the
quasi-Newton step, the Hessian is used to compute the energy
decrease predicted by the quadratic model. This is needed for
determining how the TR is to be updated between iterations as
described in Section 2.2.3.

As is well known, due to the large (and increasing with the
basis) condition number of the Hessian it is important to use a
preconditioner to achieve competitive convergence.'®'®*! Since
the orbital Hessian is often diagonally dominant and its
1-electron (Fock) contributions are cheap to evaluate, we define
B, in terms of the diagonal elements of the 1-electron

6562 | Phys. Chem. Chem. Phys., 2024, 26, 6557-6573
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component of the exact Hessian, B;., whose unique nonzero
elements in the current MO basis are

(Bie)(ia)jp) = 2niFapdy — Fyjdan)- (23)

Since we compute the preconditioner once per epoch (ie.,
infrequently), for each epoch we choose the basis to make the
Hessian as diagonally dominant as possible by choosing the
“pseudocanonical” basis,> which makes the occupied-occu-
pied and unoccupied-unoccupied blocks of the Fock matrix
diagonal (the off-diagonal blocks are non-zero until conver-
gence). In such choice of the epoch basis B, is defined as the
regularized nonzero unique elements on the diagonal of B;:

(Bo)iiayia) = 21 Faa — Fii); (24)

the rest of the unique diagonal elements are set to 1 to ensure
the finite condition number of the Hessian and existence of the
inverse Hessian in an arbitrary basis. Regularizer r(x) in
eqn (24) is defined as

x, if x>,
(x) = { (25)

t, otherwise.

with the regularizer threshold ¢, defining the minimum accep-
table HOMO-LUMO gap at the beginning of the epoch. Unlike
some other quasi-Newton solvers,”® we do not update the
diagonal part of the approximate Hessian every iteration. In
principle, this could lead to slower convergence, since the
approximation becomes less accurate as the orbitals are chan-
ged from the point where the diagonal Hessian was
calculated.”’ Indeed, we found that in the early iterations, it
is imperative to use an updated preconditioner, and thus we do
an approximate line search along the preconditioned steepest
descent direction until the max element of the gradient drops
below a threshold (we generally use 0.1 which is smaller than
0.25, which has literature precedent'®). During this early phase
of the solver, the orbitals are made “pseudocanonical” in each
iteration, and the preconditioner is rebuilt. Essentially, the
epochs are only 1 iteration long. However, near the solution,
we have found that it is not necessary to update the precondi-
tioner every iteration, and because we work in the epoch MO
basis it would be difficult to update the preconditioner. We
have found that with a good initial guess, only a median of 3
iterations of this line search are required to drop the max
gradient element below 0.1 and trigger L-BFGS starting for
simple systems (see Section 4.1). If the gradient gets large
again, the history is reset, and preconditioned steepest descent
is again carried out with an updated preconditioner. Every time
the history is reset the epoch basis is also reset to the current
orbitals.

An alternative and perhaps more conventional view of the
preconditioner is that it is a basis transformation that makes
the diagonal part of the L-BFGS Hessian or its inverse closer
to an identity matrix. To see how this view relates to the
diagonal Hessian, consider the following transformation of
the quasi-Newton equation: s = —Hg (omitting iteration
index). Multiply both sides of the equation by B,"* and insert
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1 = B,"?By*/* (which is clearly acceptable because the diagonal
matrix B, is guaranteed to be positive definite due to the
regularizer) between the inverse Hessian and the gradient, to
get an equivalent equation.

Bol/Zs - _ (B01/2HB01/2)B071/2g' (26)

Wwith § = B,"*s, § = B,” g, and H = B,"?HB,"* identified as
the step, gradient, and inverse Hessian, respectively, in the
“preconditioned” basis (henceforth denoted by the tilde), the
Newton step (eqn (26)) becomes

§ = —Hg. (27)

The L-BFGS Hessian and inverse Hessian in the preconditioned
basis simplify to

Boras = By “BgrasBo 2 =1 — V(W) 'V, (28)
Hgros = Bo"HirasBo'> = 1 + VMV, (29)

where
V = B,"?Vy = By ?V;. (30)

The V® matrix is computed straightforwardly from the history
vectors in the preconditioned basis. Note that some steps of the
algorithm require quantities in the original basis, such as the
sanity checks and computing the orbital rotation matrices via
eqn (12), thus it is not possible to work exclusively in the
preconditioned basis. Transforming back to the original basis
is straightforward, e.g., s®) = B, /%%,

Here is probably a good place to summarize the steps to
obtain the unitary rotation at iteration k, since there are now
quite a few layers.

) )

s B, G(e]goch—’ - y® (31)
To keep the L-BFGS Hessian positive definite between itera-

tions, we require that®’
sOyE > 2,159 1y“). (32)

When this requirement is not met vectors {§%, §®} are not
added to the history. Here we used t, = 10™°.

2.2.3 Trust-region step restriction. Since the quasi-Newton
methods use a quadratic approximation to the objective func-
tion, when optimizing a nonlinear function every proposed
quasi-Newton step must be tested for sanity to ensure that
the quadratic model is a faithful approximation. First, we
expect each step to lower the energy, hence each proposed step
should point downhill. Second, steps in downhill directions
should not be too large, due to the increasing likelihood that
the quadratic model becomes poor. QUOTR uses the trust-
region method for step restriction. In the TR method the
maximum step size is limited by the trustradius that is
dynamically updated by comparing the quadratic model pre-
dictions with the actual objective function values encountered
during the optimization. Namely step §® is TR-acceptable if

180 < 4®, (33)
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Table 2 User-controllable parameters of the TR solver
Description Symbol Value
Initial guess o Cinit 0.0
Convergence criterion 1 Ty 107"
Convergence criterion 2 T, 1077
Maximum iterations Tmax 500
Sigma modify factor Fy 1.1

where trust-radius 4% is updated using Fletcher’s algorithm.**
By comparing the quadratic model prediction for the energy
with the actual energy value every iteration the trust-radius can
be expanded, contracted, or left unchanged (see Algorithm 1).
Fletcher’s algorithm parameters (t;/1;) were borrowed from a
recent study.>® The initial value of the trust-radius is set to the
most recent successful line search step size since this should be
of the correct order of magnitude for the next step. Also, we
always perform line search when there are no history data
available so the most recent step size from line search is always
a known quantity when quasi-Newton steps are attempted.
When the quasi-Newton step does not satisfy eqn (33), we
solve for the optimal step that is within the TR, which must be
on the TR boundary: |§®| = A®, This is done by finding an
optimal level-shift, ¢, which satisfies the two conditions:>®

(Bgras + 01)8® = —g® (34a)
18%)| = 4®. (34b)

Level-shift ¢ of the L-BFGS Hessian is updated iteratively until
eqn (34) is satisfied to the desired precision controlled by
parameters T, , (see Table 2 and Algorithm 2).

The TR solver in QUOTR is based on the solver described by
Burdakov et al.>® that leverages the low-rank structure of the
L-BFGS Hessian. The advantage of this approach is that the cost
of each TR solver iteration is trivial compared to the conven-
tional TR formulation with exact Hessian in which each itera-
tion has a cost similar to that of the gradient evaluation. The TR
solver algorithm is outlined in Algorithm 2 and its user-
controllable parameters are given in Table 2. Although the
parameters for the TR solver could be adjusted, we recommend
keeping them as listed. The initial guess for ¢ is best kept at
zero, as this will help convergence in cases where the optimal
level shift is a very small value. Changing parameters T; , only
impacts when the TR problem is considered solved, and
tightening the values given is not expected to have a significant
impact on QUOTR overall.

Algorithm 2. Trust-region step update

1: function TRStep (A, g, §, V)

2 0 < Oipit, C « false, F < F, >initialize

3 G « V'V

4:  {R, R} « OrrHOGONALIZE(G) D>eqn (37)

5. RO'W 'R YT =UAUT I>diagonalize
6: P, =VRU >eqn (12)*7
7 g =(@)'g

8

T'max = dim(g))
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9 IgLI*=1g1*~ 1g1* >eqn (25)°

10: 1=0
11:  while not C AND i < i, do
12: ¥« — (A+01)7'g, >eqn (16)*7
13 9] < (1917 + 18170+ 0))"  >eqn (20)7
14: Veemp < — 1§ 17/(1 + o) >eqn (21)*7
15: r< o0
16: while r < r,. do
17 Ve © Veemp— @[ (1 + 0 Deqn (21)7
18: r—r+1
19: end while
20: ¢(0) _ (I =A)F* Deqn (19)7
G—0——F—~=0—
¢'() ViempAA
21: ifo € {6_4,0 5,0 3, 0_4 then >>stabilize
22: 1
g — 5(6 +o_1)
23: end if
24: {0.4,0 2,0 3,0 4% « {0,060 1,0
o_3}
25: if [||V]|—A| < min (T; A, T,) then  >converged?
26: if < 0 then >wrong sign?
27: o « —oF Dreset ¢
28: F « FF,
29: C = false
30: else if ¢ > 0 then
31: C = true >converged
32: end if
33: end if
34: I« i+1

35: end while

36: V)« —(A+o1)7'g

37: =P +(1+0) ') - (1+0) g
38: if i > i, then

39: $ < Sgiven

D>eqn (16)*7
>eqn (27)*

P>use original
step

40: end if

41: return §

42: end function

We have modified the algorithm of ref. 56 in several ways.
First, the use of rank-revealing Cholesky decomposition in
ref. 56 (see text around their eqn (9)) is replaced by the use of
Léwdin canonical orthogonalization.”® Inserting eqn (28) in
eqn (34a) produces

(1 +0) 1 — V(W) )0 = _gh), (35)

Burdakov et al. use rank-revealing Cholesky decomposition of
the history Gramian G = V’V. Here we obtain matrix R
satisfying

R'GR=1 (36)

by canonical orthogonalization ignoring Gramian eigenvalues
less than &:
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G=UgU", g > ¢ (37a)
R =Ug 2 (37b)
R = (Ug"y)” (37¢)

This allows us to implement the algorithm more portably,
using only standard linear algebra available in LAPACK. Other
differences can be seen in the algorithm listing, but the most
notable changes include:

e we enforce ¢ > 0,

e we prevent some infinite loops by averaging ¢ with the
previous value if that value of ¢ occurred in the last four
iterations,

e we simplify convergence criteria to merely check that step
size is within a threshold difference of 4.

Once a TR-compliant step has been determined energy (and
gradient) is evaluated at the displaced geometry and compared
to the quadratic model estimate

K = gk . gk) 4 Lsw ~]~3§3k]_ZGS§(k). (38)

q 55
If the actual energy change differs too much from ¢ (based on
7, and ¢,), the step is rejected, the trust-radius is decreased and
used to update the step by re-solving the TR problem. If the
quadratic model is catastrophically bad, repeated shrinking of
TR may occur. The lower limit for TR, ¢, plays the role of an
escape hatch for such a scenario; if TR becomes smaller than ¢,
we reset the history, do a single line search iteration, and
continue from there with the new trust-radius determined from
the line search step size.

Note that the TR problem is always solved in the precondi-
tioned epoch basis; this is yet another reason to use the same
basis throughout the epoch. When a new epoch starts and the
preconditioner and the epoch basis change we cannot simply
carry over the TR value between epochs. Thus, however, since
each epoch starts with a line search step, this produces a fresh
initial estimate of the trust-radius valid in that epoch’s
preconditioned basis.

2.2.4 Line search. Each QUOTR epoch starts with a single
steepest descent step:

5 SD _a<k>g(k>/”g<k> - (39)

Step “size” o) is determined by a line search. To reduce the
number of gradient evaluations we use an approximate line
search. First, the energy along the SD direction E(«) is approxi-
mated by its 3rd-order polynomial Eg(x) on a fitting interval
[0,055¢):

E(0) = Eg(2) = as® + bo® + cu + d (40)

Coefficients {a, b, ¢, d} are determined by matching exactly
the energies and gradients evaluated with the current orbitals
(x=0) and at the end of the fitting interval oz, (see below). Thus
at the beginning of QUOTR 2 gradient evaluations are required
for the line search; in subsequent epochs only 1 extra gradient
evaluation is needed since the current orbitals’ gradient has
been computed as part of the previous epoch. A similar
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procedure has recently been used,** and a nearly identical
method for the step determination also has precedent.*’
Choosing ag; is crucial for the success of the line search. Due
to the fact that the exponential parametrization of the unitary is
periodic, it is straightforward to estimate the shortest period of
oscillation by finding the largest (magnitude) eigenvalue ®,ax
of the ¢ matrix (or matrices, for the unrestricted case) corres-
ponding to the SD direction —§®/||g®|.”* This results in

2n

= 41
qloomax] (40

it
Here q is set to 4 due to the quartic dependence of the Hartree—
Fock energy on the orbitals without the orthonormality
constraint.

The minimum of Eg(x) is found by solving the quadratic
equation dEg/da = 0. Each of its two solutions, oyin, is checked
for sanity in turn; it is expected to be real, positive, resulting in
a decrease of energy (i.e., Eg(dmin) < Efie(0)), and the second
derivative of Eg, at ami, should be positive. Since a 3rd-order
polynomial can have at most one local minimum, the solution
with the smallest positive o is checked whether it satisfies all of
these criteria. The failure to meet these conditions indicates a
poor quality of the fit, and in such case the polynomial fit is
recomputed with og scaled by ageshrink = 1/2. Note that the
energy decrease criterion is checked only after building the new
Fock matrix, while the other conditions can be checked imme-
diately after solving the quadratic equation.

2.2.5 Orbital guess. Starting (guess) orbitals are another
critical component for rapid SCF convergence. We generally use
an extended Hiickel initial guess,”* which is constructed in a
minimal basis and then projected onto the full orbital basis.
The standard Wolfsberg-Helmholtz formula for the off-
diagonal elements of the extended Hiickel Hamiltonian is
used:"> Hy = K'Sy(Hy + Hy)/2, but with the updated formula
for the value of K’.”® Instead of experimental ionization poten-
tials for the diagonal elements, we follow a suggestion by
Lehtola”™ (earlier by Norman’®) and use numerical Hartree-
Fock orbital energies’® for each shell. Although the guess
orbitals are populated according to the Aufbau principle using
the extended Hiickel energies and in the minimal basis, after
projection to the orbital basis the populations may not be
qualitatively correct. When this situation occurs, and the sym-
metry of the orbitals is such that there is no gradient between
incorrectly occupied and incorrectly unoccupied orbitals,
QUOTR will not be able to correct the populations. Therefore,
we have added an option to perturb the guess orbitals to allow
the solver to rotate the incorrectly occupied orbitals and find
the lower energy solution. The orbitals are perturbed by exp (o)
with unique elements of ¢ filled with uniformly-distributed
random numbers in [—0.05,0.05]. The “strength” of this ran-
dom perturbation can be changed, which simply scales all
elements of ¢ such that the maximum absolute value is some-
thing other than 0.05 (default). Additionally, we can choose to
either perturb ““all” or just the “valence” orbitals. Pseudoran-
dom number generator is used with user-controlled seed to
ensure deterministic perturbation.
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2.2.6 Additional heuristics. Unfortunately, the sole use of
preconditioned L-BFGS with TR step restriction is not sufficient
when dealing with problems with complex optimization land-
scapes that arise for open-shell and, especially, metal-
containing systems. This occurs due to poor quality of the
quadratic model when far from convergence. Thus, as is typical
with second-order solvers'®*" QUOTR uses SD steps until the
|gll o drops below the L-BFGS start threshold, .

Here’s a brief recap of all situations that cause history reset:

e The gradient is too large (|g®||., > &)

e The TR is too small (4% < )

e The quadratic model predicts energy increase (g% > 0)

The first 2 of these situations are detected before the L-BFGS
step is constructed, allowing the solver to skip this step to go
directly to re-building the preconditioner and on to perform the
line search. The last situation is only determined after the
L-BFGS step is calculated.

3 Technical details

The QUOTR solver was implemented in a developmental version
of the Massively Parallel Quantum Chemistry (MPQC) version 4
program package.”” The default values for parameters in Tables
1 and 2 were used throughout, unless noted. The orbital bases
sets used were 6-31G*,”®% 6-31G**%° 6-311++G***>58 def2-
TZVPP,* cc-pVIZ-DK,”® and cc-pVIZ-X2C.”' Density fitting,
where noted, used the def2-universal-] basis.”®> The extended
Hiickel initial guess was constructed in the Huzinaga MINI
basis,”® then projected onto the orbital basis. Calculations on
the f-element containing system in Section 4.2.3 did not use the
extended Hiickel guess to avoid the uncertainties about its
quality in such heavy systems. Instead, we use a superposition
of minimal atomic basis guess densities to construct the initial
Fock matrix in the orbital basis (without projection), followed by
diagonalization. The minimal AO basis used the corresponding
subset of the ANO-DK3 basis® on Fm atom and the MINI AO
basis on the other atoms. The same minimal bases were used to
compute the atomic charges in Section 4.2.3, using the pseu-
doinverse method described in ref. 95. The orbital bases used in
the relativistic calculations employed cc-pVTZ-X2C on the Fm
atom, and cc-pVTZ-DK on all other atoms.

Hartree-Fock calculations were performed in Section 4.1 for
the G2 set,’® the geometries for which were obtained from the
Gaussian output files on the NIST website®” with the exception
of four systems that were not available with the correct method
(MP2 = FULL/6-31G*). For the four systems that were not
available from NIST (acetamide, furan, SiH,-triplet and
2-butyne) Gaussian 09°% was used to obtain the geometry. The
G2-1 set consists of 55 systems and is a subset of G2-2, which
consists of a total of 148 systems.”®

Henceforth RH/DIIS will be denoted simply by DIIS. Unless
explicitly mentioned, DIIS results were obtained with its imple-
mentation in MPQC using the default parameters: keeping the
5 most recent pairs of Fock matrix and error vectors for the
extrapolation, and no damping applied.
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The KS DFT implementation in MPQC uses GauXC> (which
uses LibXC'®) for calculation of the exchange-correlation poten-
tials and energies. The integration grid used for the 1PLW calcula-
tions in Section 4.2.1 was the “ultrafine” grid (99 radial Mura—
Knowles'! points, 590 angular Lebedev-Laikov'** points). All other
KS DFT calculations used the “superfine” grid which has 250 radial
points and 974 angular points for all atoms except hydrogen, which
has 175 radial points. The particular parameterization we use for
LDA is Slater Exchange'® with VWN RPA."™ For the B3LYP
calculations on the Cr systems in Section 4.2.2, we use VWN3 for
the local correlation functional'® to match PySCF. The structure of
the neuropeptide, 1PLW,'® was obtained from the Protein Data
Bank (PDB).'%

Calculations using KDIIS>® for SCF acceleration on the CrC
and Cr, systems in Section 4.2.2 were performed with the Orca
program system, version 5.0.4.°” Additionally, the DIIS imple-
mentation from Orca was also used for these systems instead of
the MPQC version. The bond length used for both of these
diatomic systems is 2 angstrom, as has been used in previous
studies.’®*" Orbitals were plotted for Cr, with Jmol; due to its
inability to read in Molden files with [ = 4 (g) AOs, the
calculations (only for the visualizations) were performed with
def2-TZVPP with g-type AOs removed.

Full (2-component) and spin-free (1-component) 1-electron
X2C Hamiltonians were implemented in MPQC using the
standard formalism.'*'% No empirical scaling was utilized
to emulate the mean-field effects on the Dirac Hamiltonian. For
the sake of comparison with the results of ref. 110 only the
spin-free X2C Hamiltonian was used here.

4 Results and discussion
4.1 Easy testset: G2 data set

Performance of QUOTR was first assessed for converging
Hartree-Fock wave functions (RHF and UHF for closed- and
open-shell systems, respectively) and compared to DIIS, as well
as published literature data for three second-order solvers,
GDM,*' ETDM,* and CIAH.*° The computations where con-
vergence was not achieved in 256 iterations (333 for ETDM, 50
macroiterations for CIAH) were removed from the statistical
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values and aggregated in the “no convergence” row. The
number of “local minima” for each solver was determined by
comparing converged energies to the lowest energy that we
obtained, except for the GDM and ETDM results (which are the
numbers reported by the respective publications). All calcula-
tions with QUOTR and DIIS used the extended Hiickel guess
with perturbed valence orbitals. Although we attempted to
compare solvers as faithfully as possible, due to lack of direct
access to the source code and/or implementation of GDM and
ETDM this was not always possible (see below).

Table 3 reports the number of Fock matrix evaluations Ng
(“Fock builds”) and the number of solver iterations N;. Due to
the different performance statistics reported in the literature
for GDM and ETDM, three different sets of G2 calculations were
performed.

4.1.1 G2-1/6-311++G**. Similar to QUOTR, the geometric
direct minimization (GDM) solver is a BFGS-based solver intro-
duced by Head-Gordon and Van Voorhis in 2002.>" A key difference
between GDM and QUOTR is the use of the TR by QUOTR.
Additionally, GDM updates the preconditioner every iteration
(rather than once per epoch in QUOTR), with regularization applied
by adding a diagonal shift to the Hessian equal to the energy
change in the most recent iteration. Therefore, comparison to GDM
is appropriate as a way to evaluate the effectiveness of the TR and
the appropriateness of the preconditioner. Due to the lack of access
to the commercial implementation of GDM, we restricted our
comparison to the data published in ref. 21.

To make the comparison with GDM as faithful as possible,
we used the same orbital basis set and convergence criteria (1 x
107 "°E;, for the energy difference between iterations and 1 x
107 for the RMS of the unique gradient elements). Our initial
guess orbitals were likely similar; however, we did apply a
random unitary perturbation to the valence orbitals, which
was not done by GDM. The average number of iterations taken
by QUOTR is about 4 more than GDM, and it has a higher max
at 107 for NO followed by P, at 66 iterations. Notice, though,
that GDM found 5 local minima relative to the lowest energy
that they could obtain in any of their calculations. Thus, while
the convergence with QUOTR takes more iterations, QUOTR
appears to be more robust than GDM. Unfortunately, the num-
ber of Fock builds used by GDM was not reported in ref. 21.

Table 3 Performance comparison of QUOTR to other SCF solvers for standard G2 set

G2-1/6-311++G** G2-2/6-31G** G2-2/6-31G*

DIIS QUOTR GDM? DIIS QUOTR ETDM” DIIS QUOTR CIAH
Ny: mean 15.2 26.8 — 13.6 20.5 (17) 15.3 19.4 34.5
Ng: median 14 20 — 12 17 17) 12 16 30
Ng: max 40 136 — 64 107 72 234 69 77
Np: mean 15.2 20.5 16.3 13.6 15.3 — 15.3 14.2 2.9
Np: median 14 15 — 12 12 — 12 12 3
Np: max 40 107 42 64 96 — 234 55 5
Local minima 3 0 5 5 0 — 8 0 4
No convergence 2 0 0 2 0 0 1 0 1

@ Geometric direct minimization.?! ?
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The computational cost of QUOTR is fairly competitive with
DIIS, with a median number of Fock builds being 20 and 14,
respectively; note that the latter is close to the reported perfor-
mance of DIIS in the GDM paper.>! The only systems that did not
converge for DIIS in 256 iterations were HCO and Si,. There were
no local minima found by QUOTR (relative to the DIIS solution)
but for 3 systems (CN, O, and CH singlet) QUOTR got a
significantly lower energy than DIIS. Also note that for 5 systems
GDM landed on local minima too.*" Thus for the G2-1/6-
311++G** test set QUOTR was found to be more robust than
DIIS and GDM, albeit with a slightly worse performance.

4.1.2 G2-2/6-31G**. Another similar, and more recent,
direct minimization SCF solver is the exponential transforma-
tion direct minimization (ETDM) solver.*® Again, the lack of TR
is one of the main differences compared to QUOTR, but ETDM
also approximates the gradient as it does not work in the epoch
formulation. The fact that ETDM does not use TR may be
compensated by the stronger criteria used in the line search.
Due to the lack of access to the implementation of ETDM we
restricted our comparison to the data published in ref. 33.

Comparison to ETDM was less precise for a few reasons. The
data presented in Table 3 for ETDM used KS DFT (PBE) and a
different basis (double-zeta polarized numerical atomic orbital
basis equipped with projector augmented wave (PAW) for
the inner region). Here we performed all-electron SCF in the
6-31G** Gaussian AO basis, because it is a double-zeta basis
with polarization functions on all atoms, so should be similar
to the basis used by ETDM. Also, the open-shell KS DFT
implementation in MPQC is not yet finalized, hence we are
comparing QUOTR HF SCF to ETDM PBE SCF. Lastly, QUOTR
set m = 3 to make the comparison with ETDM as faithful as
possible. The average number of iterations (unclear if it is mean
or median) reported for ETDM was 17, which compares well
with the median of QUOTR at 17. Therefore, we conclude that
QUOTR is roughly equivalent in computational cost to ETDM.
Notice also that 5 of the DIIS solutions are local minima relative
to QUOTR.

4.1.3 G2-2/6-31G*. The last batch of comparisons pits
QUOTR and DIIS against CIAH, a second-order (augmented
Hessian) solver that uses exact Hessian.”” The augmented
Hessian (AH) approach can be viewed as a variant of the
Newton method with step restriction induced by a spectral
shift of the Hessian tuned at each step to ensure that the
predicted step results in energy decrease (this idea is suffi-
ciently general to be applicable in combination with RH/
DIIS*®). The spectral shift can be viewed as an optimal regular-
izer for the Hessian; since it vanishes automatically in the
vicinity of the minimum the augmented Hessian approach
approaches the quadratic convergence rate of the unmodified
Newton method. Thus the augmented Hessian methods are
potentially superior to RH/DIIS or quasi-Newton methods (like
QUOTR) that have slower convergence rates. Indeed, for the
SCF problem the AH methods are known***' to converge in
substantially fewer iterations than the RH/DIIS heuristics, and
are more robust. Thus the AH-based SCF methods can viewed
as the benchmark to beat for QUOTR.
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With access to the implementation of CIAH in PySCF'"" we
were able to perform a direct comparison with QUOTR (Table 3).
Note that the number of iterations is sometimes used® to
compare the cost of the AH-based methods to that of RH/DIIS
and quasi-Newton approaches; such comparison is misleading.
Each iteration of the AH approach, in addition to the evaluation
of the gradient, involves iteratively solving an eigenproblem
defining the optimal shift; thus the cost of each iteration is
determined by the cost of multiplying a trial step vector by the
(exact) Hessian times the number of iterations of the eigensolver.
The cost of applying exact Hessian to the trial step is comparable
to the cost of the Fock matrix evaluation (in fact many programs
will use the same machinery for both). Thus the performance
assessment of CIAH and other AH-based methods will report the
number of Fock build equivalents, Ng. For CIAH the total number
of Fock build equivalents is the sum of the key frames (KF) and
coulomb/exchange (JK) calls, with the former accounting for the
cost of the exact evaluation of the gradient and the latter the cost
of Hessian-step products.®®

The convergence statistics in Table 3 indicate that the
median Ny for QUOTR is roughly half of the median N¢ for
CIAH. QUOTR was also more robust: for one system (HCI) CIAH
did not converge as it could not reduce the gradient norm below
1.2 x 107° and failed to make progress until the maximum
number of iterations was reached (50). In four other systems
(CH, O,, NO, and Si,) CIAH landed on a local minimum, as
indicated by the substantially lower energies obtained with
QUOTR. For the rest of the systems, CIAH and QUOTR agreed
within 1 x 107 °Ey. The systems that took the most Fock build
equivalents to converge with QUOTR and CIAH were Si, and NFs;,
respectively, requiring 69 and 77.

As expected, RH/DIIS is on average slightly faster than
QUOTR, but is far less robust, with 8 local minima and 1
system where converged solution could not be obtained. This
demonstrated proliferation of incorrect solutions found with
DIIS for even such “easy” chemical systems as those in the G2
test set has significant implications. How could high-throughput
screening be performed with confidence using such a solver? We
expect that other programs that default to using the RH solver
will also have similar issues. And, as demonstrated in ref. 21,
second-order solvers are not a panacea.

Even with direct access to the CIAH implementation it was
difficult to compare methods fairly. Some differences were
minor, such as the convergence tests. Both solvers use magni-
tudes of energy change and gradient for convergence monitor-
ing. For the former threshold was set to 1 x 10~ °Ey, but the
CIAH gradient criterion (1 x 10~°) is defined in terms of the
gradient norm rather than the RMS value used by QUOTR (1 x
107°). Some differences were more significant, like the choice
of the guess orbitals. The QUOTR data in Table 3 was obtained
with its default guess (perturbed extended Hiickel) that differs
from the default minimal AO guess used for CIAH calculations.
To elucidate the impact of the guess differences we performed
additional tests with (unperturbed) core Hamiltonian guess
implemented identically in MPQC and PySCF to ensure that
the initial energies matched to better than 9 digits between the
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Table 4 Performance comparison of CIAH and QUOTR for a subset of
G2-2/6-31G* with core Hamiltonian guess

CIAH QUOTR

System KF JK Ng Ny
CH,4 9 35 44 14
CcO 17 70 87 22
F, 7 24 31 12
H, 3 7 10 5
H,0 11 43 54 14
HF 12 48 60 13
Li, 6 18 24 10
LiH 5 15 20 10
N, 9 34 43 13
NH; 12 53 65 19
Median 9 34.5 43.5 13
Mean 9.1 34.7 43.8 13.2
Max 17 70 87 22

two programs. The convergence criteria for QUOTR were chan-
ged to match the criteria of CIAH, using 1 x 10~ ° norm of the
unique elements of the gradient, and the criterion on energy
change was kept at 1 x 10 °Ey,. The results for RHF computa-
tions of 10 small molecules in the G2 set are displayed in
Table 4. In all cases, CIAH and QUOTR found the same solution
but the former required on average 3 times more Fock build
equivalents.

A deeper breakdown of QUOTR’s convergence statistics for
the G2-2/6-31G* set is presented in Table 5, where “Before L-
BFGS” refers to the line search iterations before the first use of a
quasi-Newton step, and ‘“Line Search” refers to all instances of
line search (including those occurring later in the SCF process
e.g. due to the gradient becoming too large again). On average 7
Fock builds are needed before the gradient is sufficiently
reduced to start quasi-Newton steps. This is consistent with
the average of 3 line search iterations before stating L-BFGS
because each line search takes two Fock builds and we need
one initial Fock build. These results are mostly an indication of
the quality of the initial guess and the relative simplicity of the
electronic structure in this test set. The data in Table 5 also
illustrates the efficiency of the L-BFGS/TR combination used in
QUOTR since almost half (8.8) of the total number of Fock
builds (19.4) are spent in performing steps that ultimately use
line searches. The negligible difference between ‘“Line Search”
and “Before L-BFGS” statistics indicates that in most cases
there is no need for line search after starting L-BFGS/TR steps.

Although the G2-2 test set is composed of systems with
relatively simple electronic structure, there is substantial

Table 5 QUOTR convergence statistics breakdown for G2-2/6-31G*

Median Max Mean
Ng Cumulative 16 69 19.4
Before L-BFGS 7 21 7.8
Line search 7 27 8.8
Ny Cumulative 12 55 14.2
Before L-BFGS 3 10 3.4
Line search 3 13 3.9
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variance within the set, as illustrated in Fig. 1. Although for
most systems convergence is achieved in fewer than 30 Fock
builds, there are more than 10 systems for which more Fock
builds were required.

Quality of the initial guess unfortunately matters even with
very robust solvers. Specifically, the need for random perturba-
tion of the initial guess orbitals was found to be crucial for
some systems with geometric symmetry. In particular, we found
for AICI; that without breaking the symmetry of the extended
Hiickel orbitals, a local minimum at —1619.598631E;, was
obtained by QUOTR. However, when the perturbation was

101 .

10—1 .

10—5 .

Energy Error (En)

10—11 4

Iteration

Fig. 2 Convergence of AlClz using QUOTR with random perturbation to
extended Huickel guess orbitals.
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applied, a solution at —1620.576010E}, was consistently found.
To examine how the random perturbations to the initial guess
impact convergence, we ran AlCl; with 50 different seeds for the
random number generator. The plot in Fig. 2 shows that when
the minimum solution is accessible by symmetry, then QUOTR
is robust in converging to the solution.

4.2 Challenging tests

We have now shown that QUOTR is competitive with standard
RH/DIIS and competitive or superior to the representative
quasi-Newton SCF solvers for the relatively easy test problems
(G2 test set). To test the robustness of QUOTR we considered
several prototypes of systems where the standard (RH/DIIS)
usually fails outright, and even representative quasi-Newton
heuristics struggle. We selected 3 types of problems where
convergence difficulties often occur: (a) systems with small or
vanishing HOMO-LUMO gap, (b) transition metal-containing
systems, and (c) f-element containing systems.

4.2.1 System with vanishing HOMO-LUMO gap. To
demonstrate the performance of QUOTR for a more challenging
problem, we considered a small neuropeptide (1PLW'%%) among
several identified by Rudberg et al.,** for which the semilocal KS
DFT SCF solutions could not be obtained using an RH-based
solver. We used QUOTR to obtain converged KS determinants
with hybrid (PBEO and B3LYP), semilocal (PBE), and local (LDA)
functionals. The converged energies for the HOMO and LUMO
along with the gap are displayed in Table 6 using the 6-31G**
orbital basis, with the def2-universal-J basis used for density
fitting. For the KS DFT calculations, QUOTR found somewhat
lower energy solutions when the initial guess was not perturbed
(about 0.36 mE;, for LDA, 0.31 mE;, for PBE, and 0.17 mE;, for
B3LYP). Thus, the data in Table 6 is for the unperturbed initial
guess. As this system is significantly larger than the G2 tests, it is
appropriate to comment on the orthogonality of the final orbitals.
We repeated the calculations for 1PLW and computed the
orthogonality error, |c'sc — 1|, for the converged coefficient
matrix. In all cases, this measure was on the order of 1 x 10,
indicating that the final solution does not deviate significantly
from orthogonality.

The sizeable 7.24 eV gap found for HF nearly vanished with
the hybrid DFT functionals (PBEO, B3LYP), with all values
within 0.01 eV of the values found in ref. 44. For the LDA and
PBE functionals, for which solutions could not be located in
ref. 44, QUOTR produced converged solutions with a nearly
zero HOMO-LUMO gap! The origin of the vanishing gap in this
and other similar biopolymers will be elaborated elsewhere, but
we emphasize that the vanishing gap solution is the unphysical
but “correct” solution, and QUOTR successfully located it.

Table 6 Frontier orbital energies (eV) and the HOMO-LUMO gap for HF
and KS DFT models of the 1PLW popyleptide (see text)

HF LDA PBE PBEO B3LYP
HOMO —6.38 —3.26 —2.53 —2.70 —2.75
LUMO 0.86 —3.25 —2.52 —2.34 —2.47
Gap 7.24 0.01 0.01 0.36 0.28
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Fig. 3 Convergence of HF and KS DFT for the 1PLW polypeptide (dis-
played energy error relative to the lowest energy obtained for each
method).

A key motivation for the development of QUOTR was the need
to understand the origin of such unphysical solutions.

Fig. 3 illustrates how the HF and KS LDA energies converge
with QUOTR and RH/DIIS solvers. The two panels in the figure
illustrate the impact of the starting orbitals on the solver
convergence. While the ultimate outcome—RH/DIIS did not
converge for LDA, the rest of the combinations converged—did
not depend on whether the starting orbitals were perturbed or
not, it took twice as many iterations for QUOTR to converge to
the LDA solution without perturbation than with. Note that the
perturbation in these cases is applied to all orbitals, not just
valence. Both solvers converge at a similar rate for the HF case
where the HOMO-LUMO gap is large, with approximately 20 or
fewer iterations sufficient for microhartree accuracy. With
unperturbed guess the number of Fock builds for RH/DIIS
and QUOTR are 17 and 43, respectively; with perturbed guess
the corresponding counts are 28 and 34.

While QUOTR manages to locate the LDA solution correctly,
its rate of convergence can be relatively slow. We identify
regularization of the preconditioner as the likely culprit. Since
at the converged KS LDA solution the HOMO-LUMO gap is zero
(see Table 6) and the condition number of the exact Hessian is
large and grows with the system size, the exact Hessian (hence,
the preconditioner) can vary significantly as the solution is
approached. The last iteration where the preconditioner was
recomputed was 51 (with non-perturbed guess) and 32 (with
perturbed guess).

4.2.2 Transition metal-containing molecules. We consid-
ered two small systems that are well-known to be challenges to
mean-field solvers: Cr, and CrC in their lowest-energy singlet
states.>%?1?°

Phys. Chem. Chem. Phys., 2024, 26, 6557-6573 | 6569


https://doi.org/10.1039/d3cp05557d

Published on 19 December 2023. Downloaded on 1/20/2026 9:00:48 AM.

Paper

Table 7 Performance of various SCF solvers for HF and KS DFT singlet
ground states of CrC and Cr,?

QUOTR TRAH DIS? KDIS? QUOTR® CIAH®

CrC

RHF 162 377 44 474 205 1644
LDA 148 202 — 3204 107 208
B3LYP 129 300 254 4404 91 240
Cr,

RHF 249 295 267 — 472 1607
LDA 208 233 20 113¢ 144 478¢
B3LYP 123 267 187 2014 169 330

% Ng are reported for each solver. The core Hamiltonian eigenstates
were used as the initial guess, unless noted. The def2-TZVPP basis used
throughout. ? As implemented in ORCA. ¢ Initial guess: hcore + 1 Fock
build and diagonalize. ¢ Local minimum.

Table 7 reports the number of Fock builds necessary to
converge HF and KS DFT using a variety of solvers. The first set
of comparisons juxtaposes QUOTR (implemented in MPQC)
against a quasi-Newton TRAH solver (implemented in the Orca
program) and 2 variants of DIIS (both implemented in Orca).
These computations used the core Hamiltonian initial guess
throughout and the default convergence criteria of Orca: 5 x
107" for the gradient norm, 1 x 10~ °Ey, for the energy difference
between iterations. Although the core Hamiltonian initial guess
is known to be poor, it was chosen to make sure that the same
initial orbital set was used to bootstrap computations in MPQC
and Orca. The choice of such a poor starting point makes the
job of the orbital optimizer even more difficult. It should be
noted that TRAH uses a random number in one of the Davidson
diagonalization start vectors which helps break symmetry,
while for QUOTR we apply a small random unitary rotation to
the initial guess (all orbitals, not just valence) with a maximum
o element of 0.01 for these systems. Thus, the initial guess for
QUOTR differs from the others by this perturbation, and the
QUOTR initial guess is usually higher in energy (approx. 1-2Ey,
for CrC and 4-4.5E;, for Cr,).

Comparing QUOTR to TRAH, we see that in all cases QUOTR
requires fewer Fock builds. The largest error in converged
energies for QUOTR was for CrC with B3LYP, which was higher
than TRAH by 1.1 x 10~ °Ey,. This error is reasonable since the
energies were only converged to 1 x 10 °Ey,.

The results for DIIS and KDIIS look promising according to
the number of Fock builds; however, local minima are very
common, so the rapid convergence is deceiving. Only in the
LDA case for Cr, was DIIS able to find a solution that is not a
local minimum relative to QUOTR’s solution.

The second batch of comparisons juxtaposes QUOTR (in
MPQC) against the CIAH solver (in PySCF) using the custom
variant of core Hamiltonian (hcore) guess in PySCF, namely the
standard hcore guess followed up by a single RH iteration. The
first thing to notice is that QUOTR takes more Fock builds than
CIAH for RHF, but fewer Fock builds for the other two methods.
However, CIAH converges to a local minimum for both systems
when using RHF, indicating that QUOTR is more robust and/or
faster than CIAH in both cases.

6570 | Phys. Chem. Chem. Phys., 2024, 26, 6557-6573

View Article Online

PCCP
RHF

-6.00 -4.32
f

-6.20 & i 4.32

!

AT E TR

-9.61 5.12

=)
-10.14 -5.50
-10.73
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The very large number of Fock builds for Cr, with RHF merits
further investigation. While QUOTR does converge to the lowest
energy solution that we could find, it does so at a cost of 249
Fock builds (or 472 for the comparison with PySCF hcore guess).
However, this difficulty is not unique to QUOTR, as TRAH also
takes nearly 300 Fock builds to achieve the same solution. This is
in contrast to the LDA solution, which seems to be generally
easier to converge. Fig. 4 provides some insight into why RHF for
Cr, is a difficult case. Namely, the RHF solution located by
QUOTR lacks cylindrical symmetry, in contrast to LDA.

To summarize: for CrC and Cr, QUOTR was able to locate
the lowest-energy solution (unlike DIIS and CIAH) and was
faster than TRAH.
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Table 8 Convergence statistics (N, Ng), energy error in kcal mol™ (AE),
and atomic charges on the fermium atom (Q) for the UHF ground state of
[FM(NO3)12* obtained by QUOTR starting from a series of quasirandomly-
perturbed minimal atomic guesses

Valence perturbed All perturbed

Seed N; N AE 0 N Ny AE 0

1 124 189 4019 2,70 131 201 0.58  1.81
2 132 199 4013 270 102 168 0 1.81
3 203 274  0.76 1.81 205 295 0.54 1.81
4 136 191  40.16 2.70 225 307 0.04 1.81
5 189 262 4016 270 209 290 025 1.81
6 167 229 4034 270 144 215 034 1.81
7 126 170  0.92 1.82 155 243  0.35 1.81

4.2.3 Actinide-containing molecule. For the ultimate chal-
lenge, we considered the problem of converging the all-electron
UHF orbitals in fermium mononitrate dication ([Fm(NO;)]*"),
which is a known challenge for the SCF solver.''® Namely,
Penchoff et al.'*® located 2 solutions, one with the expected
+3 formal charge on Fm but located ~ 100 kcal mol™" above the
correct ground state characterized by a +2 formal charge on Fm.

We used QUOTR with superposition of atomic densities guess
orbitals, constructed as described in Section 3. Due to the
complex optimization landscape in this system, it was necessary
to explore the landscape of solutions by varying the initial guess.
Thus the entire set of guess orbitals, or just their valence subset,
was perturbed by pseudorandom unitaries generated using
seven different integers (between 123 and 129) as the random
engine seed. The results are displayed in Table 8 and Fig. 5. The
column labeled “energy error” is relative to the lowest energy

Valence Perturbed

seed-1
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seed-3
seed-4
seed-5

1073 H
seed-6
seed-7
1076 ~ \

T T T T T T T T T
0 25 50 75 100 125 150 175 200

Iteration

All Perturbed

100 A

T
RENNE

Log(Energy Error)

103 4 = seed-1
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Fig. 5 Convergence of X2C-UHF for [Fm(NO3)]?* starting from a series of
quasirandomly-perturbed minimal atomic guess orbitals; for each panel
the energy error is defined relative to the lowest energy obtained in that
panel's subset.
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solution that we obtained, which was for seed 2 with all orbitals
perturbed (total energy —35 045.703224E},). As can be seen, two
types of solutions were found; the lower energy one has a formal
+2 charge on Fm, and the other, roughly 40 kcal mol " higher in
energy, has a +3 charge on Fm. The ground state energy agreed
quite well with the value located by Penchoff et al. in ref. 110
using Molpro’s RH/DIIS SCF solver using complicated guess
obtained by merging converged fragment MOs (in fact, the
ground state energy located by QUOTR is slightly lower in
energy). Unfortunately, it was only possible to obtain 10 signifi-
cant digits of precision in the energy, due to the impact of
roundoff errors and the non-determinism of the Fock matrix
construction in MPQC. As we did for 1PLW, we ran separate
calculations to check the orthogonality of the converged orbitals.
Again, we found errors on the order of 1 x 10 ** in all cases.
Clearly, all electron computations in heavy element systems with
Gaussian AO bases that have high condition numbers will be
increasingly untenable in double precision.

There are clearly many outstanding challenges suggested by
the computational experiments on this actinide-containing
complex. In particular, the sensitivity of the final solution to
the initial guess suggests that various global (e.g., stochastic®®)
approaches to the orbital optimization should be considered.

5 Summary

We have presented a state-of-the-art solver for quasi-Newton
unitary optimization that combines the preconditioned L-BFGS
orbital update with the trust-region step restriction method.
The exploitation of the low-rank structure of the L-BFGS
Hessian, including in solving the trust-region (sub) problem,
makes the QUOTR solver remarkably efficient, approaching the
efficiency of the mainstream RH/DIIS heuristics when applied
to problems with easy optimization landscapes (like the stan-
dard G2 test set). When applied to problems with complex
optimization landscapes (problems with vanishing HOMO-
LUMO gaps, d- and f-element containing molecules) QUOTR
matches or exceeds the robustness of representative quasi-
Newton solvers, all at a significantly lower computational cost
due to avoiding the exact Hessian evaluation.

While QUOTR guarantees convergence to a local stationary
point, it is not able to guarantee global convergence due to the
nonconvexity of the energy. However, its efficiency makes it a
robust building block for even sophisticated solvers that com-
bine efficient local minimum search with global (e.g., stochas-
tic) landscape traversal.
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