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Sensitivity of solid phase stability to the
interparticle potential range: studies
of a new Lennard-Jones like model†

Olivia S. Moro, *ab Vincent Ballenegger, a Tom L. Underwood c and
Nigel B. Wilding *b

In a recent article, Wang et al. (Phys. Chem. Chem. Phys., 2020, 22, 10624) introduced a new class of

interparticle potential for molecular simulations. The potential is defined by a single range parameter,

eliminating the need to decide how to truncate truly long-range interactions like the Lennard-Jones (LJ)

potential. The authors explored the phase diagram for a particular value of the range parameter for

which their potential is similar in shape to the LJ 12-6 potential. We have reevaluated the solid phase

behaviour of this model using both Lattice Switch Monte Carlo and thermodynamic integration.

In addition to finding that the boundary between hexagonal close packed (hcp) and face centred cubic

(fcc) phases presented by Wang et al. was calculated incorrectly, we show that owing to its finite range,

the new potential exhibits several reentrant transitions between hcp and fcc phases. These phases,

which do not occur in the full (untruncated) LJ system, are also found for typically adopted forms of the

truncated and shifted LJ potential. However, whilst in the latter case one can systematically investigate

and correct for the effects of the finite range on the calculated phase behaviour (a correction beyond

the standard long-range mean field tail correction being required), this is not possible for the new

potential because the choice of range parameter affects the entire potential shape. Our results highlight

that potentials with finite range may fail to represent the crystalline phase behavior of systems with

long-range dispersion interactions, even qualitatively.

1 Introduction

In a recent paper, Wang et al.1 have proposed a new class of inter-
particle potential for use in molecular simulation. The new poten-
tial, which has received considerable attention, takes the form

fðrÞ �
eaðrcÞ

s
r

� �2
�1

� �
rc

r

� �2
�1

� �2
for r � rc;

0 for r4 rc:
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>: (1)

Here s sets the length scale, and

aðrcÞ ¼
27

4

rc

s

� �2 rc

s

� �2
�1

� ��3
(2)

is a coefficient that ensures that the depth of the attractive well
is �e. The potential is formulated such as to vanish smoothly
at the specified value of the cutoff parameter rc, thus circum-
venting the question of which truncation scheme to employ
when seeking to render computationally tractable a truly long-
ranged interaction such as the well known Lennard-Jones (LJ)
potential. However, in contrast to a truncated LJ potential, the
choice of rc in (1) sets not just the truncation distance, but also
determines the overall shape of the potential. The authors find
that for rc = 2s (for which a = 1), its form is similar to that of the
LJ potential as shown in Fig. 1. We shall henceforth refer to
eqn (1) with rc = 2s as the Lennard-Jones like (LJL) potential.

Wang et al. presented various thermophysical properties of
the LJL potential including the phase diagram for the vapor,
liquid and crystalline solid phases, all computed from free
energy measurements via thermodynamic integration (TI).
They rightly stress that their potential is not suitable for use
in situations where long ranged interactions can significantly
affect the properties of a given system. It is therefore relevant to
assess under which circumstances this might be the case.
In the present work we have revisited the crystalline solid
region of the LJL model using both TI and Lattice Switch Monte
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Carlo (LSMC). The latter is a powerful method for determining
the free energy difference between crystalline phases. Our
results reveal an error in the measurement of the phase
boundary between hcp and fcc phase presented by Wang
et al.1 Furthermore we find that on increasing number density
the correct phase diagram for the solid region manifests several
reentrant fcc and hcp phases – features that are absent in the
full LJ potential. We trace the source of these re-entrant phases
to the finite range of the LJL potential i.e., the lack of
long ranged dispersion interactions. Our results for the phase
behaviour are set out in Section 2 while Section 3 provides
a discussion and summarises our conclusions concerning
the model.

2 Phase diagram of the Lennard-Jones
like model

We have studied the crystalline solid phase behaviour of the LJL
model using both Lattice Switch Monte Carlo and thermody-
namic integration in conjunction with Molecular Dynamics
simulation. We have also performed ground state energy cal-
culations as a function of number density for both the LJL
model and a truncated and shifted LJ potential. Implementa-
tion details for these methods and the results of our calcula-
tions are reported below and in the ESI.† In all cases, numerical
values are expressed in dimensionless units, namely reduced
temperature T* = kBT/e, pressure p* = ps3/e and particle number
density r* = rs3. For notational simplicity we shall henceforth
suppress the superscript * on these quantities.

2.1 Lattice Switch Monte Carlo calculations

LSMC2–5 is a well established and powerful simulation tech-
nique for determining solid–solid coexistence parameters.
Its high precision stems from the fact that it focuses on the
difference in the free energy between two candidate stable

phases rather than the absolute free energy of each.6 In the
course of a LSMC simulation the system repeatedly switches
back and forth between two crystalline phases allowing the
accumulation of statistics on their relative statistical weight.
To enable such switching, the sampling must be biased to
visit – on a regular basis – certain ‘gateway’ configurations
from which a switch from one phase to the other can be
launched. The requisite bias function can be obtained by using
the transition matrix method.7,8 The effects of the bias are
unfolded from the statistics a posteriori.

We have deployed the LSMC method to obtain the crystal-
line solid phase behaviour of the LJL model using the imple-
mentation included within the open source multipurpose MC
simulation engine DL_MONTE.9,10 Details regarding the simu-
lations can be found in the ESI.† We investigate in particular
the relative stability of hcp and fcc structures‡ as a function of
the particle number density r = N/V and temperature T. To do
so, we work within the isobaric-isothermal (constant-NpT)
ensemble for which LSMC provides direct access to the Gibbs
free energy difference between the hcp and fcc phases DG =
Ghcp � Gfcc. This is given by

DG = �kBT ln(Phcp/Pfcc)

where Phcp and Pfcc are the integrated probabilities for
the system to be found in microstates typical of hcp and fcc
respectively.

Coexistence state points are defined by DG = 0. We located
the value of the pressure (p) that corresponds to phase co-
existence for a prescribed temperature using a root finding
algorithm. Specifically, we applied Newton–Raphson’s method
to the function DG(p) which leads, since dG = VdP, to iterate the
pressure according to5

piþ1 ¼ pi �
DGi

DVi
; (3)

where DVi is the volume difference between the two phases at
the ith iteration. At each iteration, we computed the LSMC bias
function afresh, though it is possible to avoid doing so by
deploying histogram reweighting techniques.8

Our LSMC results for the phase diagram are presented in
Fig. 2. While we find agreement with the work of Wang et al.1

for the vapor-fluid binodal (which we have determined using
separate Gibbs Ensemble Monte Carlo (GEMC) simulations
within DL_MONTE), our results for the crystalline region are
very different. Specifically, we find at least three separate lines
of hcp–fcc transitions, none of which coincide with that of
Wang et al. In order to check our findings and throw light on
the discrepancy, we have performed TI calculations for the solid
region. The results of these calculations are described in the
next subsection.

Fig. 1 Comparison of the standard 12–6 Lennard-Jones (LJ) interaction
potential with the potential of Wang et al.1 (eqn (1)) with range parameters
rc listed in the legend. The case rc = 2.0s is the Lennard-Jones like (LJL)
potential.

‡ Note that in common with Wang et al., our treatment of the hcp phases fixes
the c/a unit cell ratio to its ideal value c=a ¼

ffiffiffiffiffiffiffiffi
2=3

p
which can potentially create a

small bias in the free energy.22 Other close packed structures are possibly stable23

but we do not consider them here.
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2.2 Thermodynamic integration calculations

To elucidate the origin of the discrepancy between our predic-
tion for the hcp–fcc coexistence line(s) based on LSMC calcula-
tions and the TI calculations of ref. 1, we have computed
absolute Helmholtz free energies of both phases using the
MD simulation package GROMACS,†11,12 and the TI method13

for a system comprising N = 768 particles. We selected a
number of (T,r) state points for which absolute Helmoltz free
energies have previously been calculated by Wang et al. and
given in their supplementary material (SM).1

For our TI calculations we adopted the integration path
described by Aragones et al.14,15 to connect the crystalline phase
of interest and a known reference state, namely an ideal
Einstein crystal that has one atom fixed at its lattice site
(state 0)§. The Helmholtz free energy of state 0 is A0 =

3/2(N � 1)ln(bkELT
2/p) where LT ¼ h

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT
p

is the thermal
de Broglie wavelength, b = 1/(kBT) and kE is the spring constant
of the (N � 1) harmonic oscillators. The absolute free energy A
can be expressed as14,16

A = A0 + DA1 + DA2 (4)

where DA1 is the free energy difference between state 1, which is
an Einstein crystal where the spring-bound atoms interact
through LJ-like interactions, and state 0. DA2 is the free energy
difference between state 2, the crystalline phase of interest but

with one atom fixed, and state 1. DA1 is computed using
Bennett’s formula DA1 = �kBT lnhe�b(E1�E0)i0 where the thermal
average is over equilibrium trajectories of the ideal Einstein
crystal (state 0). Notice that E1�E0 = Epair is merely the sum of
the LJ-like pair interactions. To avoid overflows in the expo-
nent, the formula is rewritten as bDA1 = bEpair

(T=0) �
lnhexp(�b(Epair�Epair

(T=0)))i0 where Epair
(T=0) is the sum of the

pair interactions in the perfect crystal at T = 0. The spring
constants were adjusted so that the second term (per particle)�
lnhexp(�b(Epair�Epair

(T=0)))i0/N is close to 0.02, as
recommended.14,15 The integral in the contribution DA2 ¼

�
Ð kE
0

PN
i¼1

1

2
~ri �~rð0Þi

� �2
 �
k0
E

dk0E; where ri
(0) is the reference lattice

site of the ith particle and the thermal average is over
an interacting Einstein crystal with spring constant k0E,

was computed by using the change of variable13,16 x ¼

ln b
1

2
k0E 10�1 nm
� 2þe3:5� �

and a Gauss-Legendre quadrature

with 15 points.
The results of our TI calculations are compared in Table 1

with LSMC calculations that we have performed in the canoni-
cal (constant-NVT) ensemble. The state points listed are a
selection of those also studied by Wang et al.1 (see their SM).
At T = 0.1, our LSMC and TI both predict a (first) transition from
hcp to fcc around density r E 1.18(1) (where DA(r) changes
sign), far removed from the density r E 1.29 at which coex-
istence is predicted in ref. 1. At higher temperatures we find
consistency between our canonical LSMC and TI estimates of
transition densities on this first hcp–fcc phase boundary, and
the constant-NpT LSMC calculations of the full phase boundary
reported in Fig. 2. Error bars are straightforward to assess for
LSMC (see ESI†) and standard deviations on the LSMC results
are reported in the table. Absolute free energies depend on the
atomic mass and on Planck’s constant via the thermal de
Broglie wavelength LT, while the free energy difference DA does
not. Our TI values were computed by setting LT = s, separately
at each considered temperature. This standard convention was
apparently also used in ref. 1. It leaves out not only Planck’s
constant17 but also a temperature-dependent contribution to
the free energy.

At all densities and temperatures reported in Table 1, the
free energy difference DA = Ahcp � Afcc that we obtain with TI
deviates slightly and systematically from our LSMC results by a
shift of the order � 0.02NkBT (see column 6 of the table). This
small difference might be due to systematic integration errors
in the TI calculations. Much larger discrepancies are observed
between our LSMC and TI values for DA and those of ref. 1
(compare columns 3 and 4 with column 5 of Table 1 respec-
tively). Comparing separately the free energies estimates of the
fcc and hcp phases, we find generally reasonable agreement
between our TI results and those of Wang et al.1 for the fcc
phase, but a much larger discrepancy for the hcp phase, as
reported in the rightmost two columns of Table 1. This shows
that the absolute free energies of the hcp phase (at least) have

Fig. 2 Phase diagram in the density-temperature plane of the LJL system,
eqn (1) with rc = 2.0s. Blue dots are phase boundaries reported in Wang
et al.,1 symbols are the present work. Green crosses denote liquid–vapour
coexistence densities calculated from GEMC. Our LSMC estimates of the
reentrant hcp–fcc coexistence boundaries are denoted by + and were
obtained in the reduced temperature range 0 o T r 1 and for the particle
numbers N shown in the legend. Note the complete disparity with the
single hcp–fcc boundary calculated by Wang et al., as marked by blue dots
in the solid region. In all cases, the difference in the coexisting hcp and fcc
densities is invisibly small on the scale of the graph. Uncertainties for the
coexistence densities were calculated as described in the ESI† and unless
indicated by an error bar, do not exceed the symbol size.

§ Note that this is a different choice of integration path to that adopted by
Wang et al.1
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very likely been miscalculated in ref. 1, leading to a very
different and incorrect crystalline phase boundary. Since the
missing contribution is proportional to the temperature, the
hcp–fcc coexistence curve determined in ref. 1 (for r r 1.4)
deviates increasingly from our coexistence curve. We note that
the error in the calculation of the free energy also raises
questions regarding the correctness of the estimates of the
vapor-solid and liquid–solid phase boundary reported by Wang
et al., as shown in Fig. 2, though we have not checked those
particular calculations.

2.3 Ground state energy calculations

The corrected r � T phase diagram for the LJL model displayed
in Fig. 2 shows that the boundaries between hcp and fcc phases
are almost linear and independent of temperature over a wide
temperature range which extends down to very low T. It is thus
reasonable to assume that coexistence properties calculated
from ground state (i.e., T = 0) energy calculations may aid an
understanding of the overall solid state phase behaviour.

In the ground state, particles occupy their lattice sites, there
are no entropic contributions to the hcp–fcc free energy differ-
ence, and energy calculations suffice to determine the phase
behaviour. We have used the potential eqn (1) to calculate the
ground state energy difference per particle DE/N = (Ehcp � Efcc)/
N as a function of r. The criterion r(DE = 0) corresponds to
hcp–fcc transition points. Note though that while the stability
of each phase is correctly predicted by the sign of DE, the
hcp and fcc phases have slightly different specific volumes. The
coexisting densities are then not given merely by the condition
DE = 0, but by DG = DE + pDV = 0. They can be deduced from the
curve E(r,T = 0) of each phase by performing the common
tangent construction, which imposes a common pressure
at coexistence. However as the coexistence densities straddle
the density r(DE = 0) and are very close in value to one another –
indistinguishably so on the scale of Fig. 2—it is sufficient in the
current context to simply determine r(DE = 0).

Our ground state energy calculations for the LJL model are
shown in Fig. 3(a), which plots DE/N as a function of r. One
sees that DE = 0 occurs for r = 1.195(5) (p = 12.48), which is
close to the extrapolation to T = 0 of the first hcp–fcc transition
line shown in Fig. 2. The same is true of the second and third
transition lines shown in Fig. 2 which our T = 0 calculations
place at densities of r E 1.815(5) (p = 145.31) and r E 2.585(5)
(p = 623.81) respectively. Thus our ground state energy calcula-
tions are consistent with the phase boundaries found at finite
temperatures via LSMC.

Following a suggestion by an anonymous referee, we have
also calculated the ground state energy difference between the
fcc structure and a body centered cubic (bcc) structure for the
LJL potential. This comparison is shown in Fig. 3(b) and in
conjunction with Fig. 3(a) confirms that at T = 0 bcc is unstable
with respect to fcc and hcp phases across the solid region.

It is instructive to compare the ground state phase behaviour
of the LJL model with that of the truncated and shifted LJ
potential which has the form

~fLJðrÞ �
fLJðrÞ � fLJ rcð Þ for r � rc

0 for r4 rc;

(
(5)

where fLJðrÞ ¼ 4e
s
r

� �12
� s

r

� �6� �
is the full LJ potential, a por-

tion of which is shown in Fig. 1. We have used eqn (5) to
calculate the ground state energy as a function of the density
for various values of the LJ truncation distance rc. The results,
which replicate and extend to higher values of rc similar
calculations by Jackson et al.,4 are shown in Fig. 4. This figure
also includes the results of calculations for the limiting case of
the full LJ potential given by Stillinger18 for which it is impor-
tant to note there is only a single hcp–fcc transition, which
occurs at r = 2.1728. On increasing rc, our results for DE/N
approach the limiting curve, but only for a large truncation
distance of rc \ 6s. For smaller cutoffs rc t 5s, DE fluctuates
wildly and changes sign at several densities, indicating that in

Table 1 Free energy difference DA, in units of NkBT, between the hcp and fcc structures of the LJL solid (rc = 2s) at a selection of state points. The
discrepancy between the LSMC and TI calculations is small (see 6th column) and might be due to systematic integration errors in the TI method. The
difference between the absolute free energy calculated via TI in this work and that in ref. 1 are shown for both the fcc and the hcp structures in the
rightmost two columns. Note the large discrepancy for the hcp phase

T r

DA = Ahcp � Afcc

Difference LSMC – TI

A (this work) � A (ref. 1)

LSMC TI Ref. 1 fcc hcp

0.1 1.16 �0.044(4) �0.021 �0.228 �0.02 0.02 0.23
0.1 1.20 0.027(3) 0.054 �0.157 �0.03 0.02 0.23
0.1 1.24 0.106(10) 0.131 �0.083 �0.03 0.02 0.23
0.1 1.28 0.181(17) 0.206 �0.012 �0.02 0.02 0.23
0.1 1.32 0.240(23) 0.264 0.020 �0.02 0.01 0.23
0.204 1.2 0.0185(17) 0.036 �0.168 �0.02 0.02 0.22
0.308 1.2 0.0147(14) 0.032 �0.172 �0.02 0.00 0.20
0.399 1.2 0.0135(13) 0.030 �0.175 �0.02 0.01 0.22
0.503 1.2 0.0120(13) 0.026 �0.178 �0.01 �0.01 0.19
0.607 1.0 �0.0107(11) �0.005 �0.206 �0.01 �0.07 0.13
0.607 1.1 �0.0053(6) 0.002 �0.204 �0.01 �0.04 0.17
0.607 1.2 0.0109(11) 0.028 �0.181 �0.02 �0.02 0.19
0.802 1.0 �0.0046(3) �0.006 �0.207 0.001 �0.05 0.15
0.802 1.1 �0.0007(1) 0.007 �0.206 �0.01 �0.05 0.16
0.802 1.2 0.0102(10) 0.018 �0.187 �0.01 �0.03 0.18
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this regime additional hcp–fcc transitions arises which are
artifacts in the sense that they are not characteristic of the full
LJ potential.

We have also considered the changes to the T = 0 phase
behaviour of the potential of Wang et al. that result from
varying the range parameter rc in eqn (1). The results displayed
in Fig. 5 show that the number and location of hcp and fcc
phases occurring varies dramatically, similarly to what was
found in Fig. 4 for the truncated and shifted LJ potential¶. In
order for a single hcp–fcc transition to occur, as in the full LJ
potential, one must utilise in eqn (1) a range parameter rc \ 7s.
However, as shown in Fig. 1 and discussed below, for this value
of the range parameter, the potential of eqn (1) is not at all
Lennard-Jones like. The reason for the large sensitivity of DE on
the range parameter rc and on the density is explained in the
next section.

3 Discussion and conclusions

In this work we have reconsidered the phase diagram of a
recently proposed finite-ranged potential, eqn (1), that has been
recommended as an alternative to the use of truncated LJ
potentials in molecular simulation.1 The advantage of this
LJL potential is that while it is similar in shape to the LJ
potential, it is defined in such a way as to vanish smoothly at
the prescribed value of the range parameter. It thus provides a
unique truncation scheme, which contrasts with the multiple
approaches in common use for the LJ potential.

We have studied the phase diagram of the LJL model both in
the liquid–vapor and the crystalline solid regions. While we
confirm the original authors’ findings for the vapor–liquid
binodal, our results in the crystalline phases deviate greatly.
Specifically, on increasing the number density starting from the

Fig. 4 Dependence on number density r of the ground state energy
difference per particle between hcp and fcc crystalline phases as calcu-
lated for the truncated and shifted LJ potential at a selection of cutoff
values. Also shown for comparison is the limiting case for the full
(untruncated) LJ potential.18 Note how the results for the finite cutoff
approach the limiting case for rc \ 7.0s.

Fig. 5 Dependence on number density r of the ground state energy
difference per particle between hcp and fcc crystalline solid phases as
calculated for the LJL potential of eqn (1) at a selection of values of the range
parameter rc. For solid like densities (r 4 0.8), the smallest value of the range
parameter for which only a single hcp–fcc transition occurs is rc = 6.89s.

Fig. 3 (a) Dependence on number density r of the ground state energy
difference per particle DE/N= (Ehcp � Efcc)/N between hcp and fcc crystal-
line phase for the LJL potential. Data is shown for a range of particle
number N. The results illustrate the reentrant hcp phase at r = 1.815(5),
while the accord between the curves for different particle number N
demonstrates that the behaviour is not a finite-size effect. (b) Dependence
on number density r of the ground state energy difference per particle DE/
N = (Efcc � Ebcc)/N between fcc and bcc crystalline phase for the LJL
potential.

¶ We find additionally (results not shown) that bcc is unstable with respect to fcc
and hcp for all values of rc shown in Fig. 5.
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solid branch of the vapor–solid coexistence region, we find a
very different hcp–fcc boundary to that reported. Our calculated
hcp–fcc boundary (Fig. 2) exhibits relatively weak temperature
dependence and intersects the freezing line at a fluid-hcp–fcc
triple point. We have traced the discrepancy between our
results and those of Wang et al. to an apparently incorrect
calculation of the free energy on their part.

We find, moreover, that on increasing the density further
within the crystalline region, the LJL potential exhibits not one
but multiple reentrant hcp–fcc transitions that extend over a wide
range of temperatures down to T = 0. Indeed a previous study by
Choi et al.19 of the LJ potential, truncated and shifted at rc = 2.5s,
reported a qualitatively similar phase diagram, displaying reen-
trant hcp and fcc transitions whose boundaries depend only
weakly on temperature, as well as a fluid-hcp–fcc triple point.
Importantly, however, such features are absent in the full LJ
potential which except for a very small temperature range exhibits
only a single hcp–fcc transition line, which is strongly tempera-
ture dependent at low T and does not intersect the melting
curve.4,5,20,21 Thus the solid phase diagrams of both the LJL
potential and the truncated and shifted LJ system can exhibit
solid phase behaviour quite different to the full LJ potential.

It is well established that the difference in free energy
between hcp and fcc phases for spherically symmetric inter-
particle potentials can be small across a range of state
points.3,4,13,22,23 Previous studies of the ground state (T = 0)
energy as a function of number density of the truncated and
shifted LJ potential have shown that artifact reentrant transi-
tions arise due to the sensitivity of the sign of the hcp–fcc
energy difference DE/N to the truncation range.4,5 This is
essentially because as one varies the number density, whole
shells of neighbouring atoms move in or out of the truncation
range.4 The radial distribution functions of the two competing
structures being different, the energy difference DE can involve
non-identical numbers of atoms within the interaction range,
leading to a large difference DE which can yield re-entrant solid
phases. The magnitude of DE/N for a truncated potential can be
much larger than for the full LJ potential. For instance, when
truncating the LJ interaction at some short cutoff, say rc = 2s, DE/N
is about 10 times that of the full LJ potential. The size of this
energy difference would appear to be responsible for the insensi-
tivity to temperature of the measured hcp–fcc coexistence bound-
aries, as seen for both the truncated LJ potential19 and the LJL
system (Fig. 2), because it dominates over the hcp–fcc entropy
difference. It is therefore not surprising that the much smaller
value of DE associated with the full LJ potential leads to very
different crystalline phase diagram.4,20,21 Ground state energy
calculations for the truncated and shifted LJ potential performed
in the present work (Fig. 4) demonstrate that, at least at T = 0, one
requires rc \ 6s in order to eliminate artifact phases. This would
therefore seem to represent a lower bound on the truncation
length scale necessary to obtain a solid phase diagram in qualita-
tive agreement with that of the full LJ potential.8

For unshifted truncated LJ potentials, a commonly adopted
approach is to apply a long-range mean field tail correction24 to
account for truncation effects. However, this doesn’t solve the
problem of the artifact phases highlighted here, because this
uniform correction is the same for both phases. By contrast,
Jackson et al. have shown that a crystalline phase diagram
resembling that of the full LJ potential can be achieved in
simulations of a truncated LJ potential with a small range
provided one treats the ground state exactly, i.e., one calculates
E(r) for each phase from the full potential, confining potential
truncation effects to the fluctuation spectrum.4,5 This simple
correction builds on the fact that the crystalline phase diagram
inherits many of its key features from the ground state. It seems
to us to provide an economical approach to accurate simulation
studies of solid phase behaviour.

In the case of the LJL potential of Wang et al., eqn (1), we
find (see Fig. 5) that the number of stable solid phases
occurring at T = 0 can be reduced by increasing the range
parameter rc, such that for rc \ 7s only a single hcp–fcc
transition remains. However, as Fig. 1 shows, for such large
values of the range parameter, the potential is no longer similar
to the LJ potential. This latter point exposes a significant
disadvantage of the LJL potential, eqn (1): whilst for a truncated
LJ system one can investigate (and systematically correct for4,5)
the effects of the finite potential range when modelling a given
physical system, this seems impossible for the LJL potential
because the range parameter controls not only the truncation
distance but also the entire potential shape. Thus while the LJL
potential may be perfectly adequate in situations where one
wishes to employ a simple truncated attractive interparticle
interaction, it comes with a caveat on its use for crystalline solid
phases since it may be unable to represent in a qualitatively
correct form the phase behaviour of real atomic systems whose
overall features are determined in significant part by long-
ranged dispersion interactions.
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8 This cutoff accords with previous comparisons of the r dependence of the radial
distribution functions for the fcc and hcp phases.25
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