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Multiple hydrogen-bonded dimers: are only the
frontier atoms relevant?†

Celine Nieuwland, a David Almacellas,b Mac M. Veldhuizen,a

Lucas de Azevedo Santos, a Jordi Poater bc and Célia Fonseca Guerra *a

Non-frontier atom exchanges in hydrogen-bonded aromatic dimers can induce significant interaction

energy changes (up to 6.5 kcal mol�1). Our quantum-chemical analyses reveal that the relative

hydrogen-bond strengths of N-edited guanine–cytosine base pair isosteres, which cannot be explained

from the frontier atoms, follow from the charge accumulation in the monomers.

Introduction

Intermolecular hydrogen bonding is one of the central interac-
tions underlying self-assembly and molecular recognition in
biochemistry, such as in protein folding and DNA duplex
formation by constituting the hydrogen bonds (H-bonds)
between the complementary DNA base pairs.1 The ability to
self-assemble has inspired the field of supramolecular chem-
istry to incorporate intermolecular H-bonding in the design of
novel catalysts,2 (macro)molecules,3 and materials.4 However,
in order to rationally design new and improved molecules and
materials, a profound understanding of the mechanism of
intermolecular H-bonding and the prediction of the interaction
strength is required.

The strength of an H-bond is often explained from the
properties of the interacting frontier atoms, that is, the partially
positively charged H-bond donor (i.e., H(–O) or H(–N)) and the
partially negatively charged H-bond acceptor (i.e., O or N)
groups.5–7 An example of this is the secondary electrostatic
interaction (SEI) model6 from Jorgensen and Pranata which is
widely used to predict and explain trends in intermolecular
H-bond strengths.7 This model is based on the assumption that
the H-bond strength between monomers can be predicted from
the position and charge of the frontier atoms. However, the SEI

model is physically incorrect due to the oversimplification of
the H-bonding mechanism by regarding the H-bond donor
and acceptor groups as interacting point charges. Popelier and
Joubert8 showed that the consideration of only frontier-atom
electrostatic interactions, like in the SEI model, is elusive
because also the electrostatic interactions between distant
atoms contribute to the stability of H-bonded pairs. More
importantly, it is nowadays well-established that H-bonds are
not purely electrostatic in nature but also contain a significant
covalent character,9 which arises from the donation of electro-
nic density from the filled s-lone pair orbital of the H-bond
acceptor into the empty antibonding s* orbital on the H-bond
donor. This additional stabilizing orbital-interaction compo-
nent is in fact essential to overcome the destabilizing Pauli
repulsion associated with H-bond formation (see ref. 9a for an
overview of all the relevant interaction components of H-bonds).
Our previous work into the predictive nature of the SEI model
revealed that the relative stability of H-bonded pairs follows
from measuring the charge accumulation in the monomers
rather than from the secondary interactions between H-bond
frontier atoms.10,11

In this work, we challenge the concept of explaining H-bond
strengths by the frontier atoms further. We show that the
binding strength of H-bonded pairs with identical H-bond
frontier atoms can be adjusted by minimal non-frontier atom
exchanges. Our dispersion-corrected density functional theory
(DFT-D) based analyses at the ZORA12-BLYP13-D3(BJ)14/TZ2P15

level using the Amsterdam Modeling Suite16 (AMS2022.101)
(see ESI,† Method S1 for the full computational details) show
that the stability of mimics of the guanine–cytosine (GC) DNA
base pair can be systematically tuned by varying the position
of the non-frontier N and NH groups (see Fig. 1a). We demon-
strate that these minimal non-frontier modifications have signi-
ficant implications on the H-bond strength of the corresponding
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base pairs although the charges on the frontier atoms are barely
affected in these so-called N-edited G and C isosteres (Fig. 1b).
We find that the relative binding strengths can be rather explained
and predicted by measuring the amount of charge accumulation
in the monomers. This allows for control of the H-bond strength of
these N-edited nucleobases, which can be applied in the design of
innovative (bio)supramolecular building blocks.17

Results and discussion

Based on the similar charges on the H-bond frontier atoms,
shown in Fig. 1b, one would expect no significant change in the
H-bond strength of the GC base pair upon changing the
position of the non-frontier heteroatoms in the G and C
monomers.18 However, we find that the interaction energy
(DEint) of the GC H-bonded base pair analogues, presented in
Fig. 2a, becomes more stabilizing from G1C (blue) o G2C
(orange) o G1C1 (pink) o G2C1 (green), associated with a
maximum stabilization of the H-bond interaction energy by ca.
6.5 kcal mol�1. So, the H-bond interaction is enhanced upon (i)
changing the G1 isostere to G2, thereby grouping the partially
negative N and O atoms on one side of the molecule, and
(ii) upon changing C to C1, in which the partially positive NH(2)

groups are in closer proximity. Note that we discuss here the
interaction energies because they dictate the trend in the
relative H-bond strengths (see ESI,† Data S1 and see Method
S2 for computational details).

To understand what causes this stabilization, DEint was
partitioned into four physically meaningful terms using a
quantitative energy decomposition analysis (EDA):19 (i) the
classical electrostatic interaction (DVelstat), (ii) the steric Pauli
repulsion (DEPauli) arising from the repulsion between over-
lapping closed-shell orbitals on the interacting monomers,
(iii) the orbital interaction (DEoi) which accounts for charge
transfer (i.e., covalency) in the s-electronic system and polar-
ization of the p-electronic system, and (iv) the dispersion energy
(DEdisp) (see ESI,† Method S2 for a theoretical overview of this
method).

The EDA can be performed on the equilibrium dimers (see
ESI,† Data S1). However, as the H-bond distances vary for the
different GC base-pair isosteres (see Fig. 2a), a more insightful
picture can be obtained when performed at similar H-bond
distances. This allows us to differentiate between interaction
terms that are intrinsically more stabilizing, from the inter-
action terms that are simply enhanced by shortened H-bond
distances. To this end, the EDA was performed as a function of
the middle H-bond distance rN(H)� � �N using the PyFrag 2019
software,20 in which the two monomers in the geometry of the
equilibrium dimer approach each other as two frozen blocks
(ESI,† Method S2 for details). The results of this analysis are
presented in Fig. 2b and show that the stabilization of DEint

from G1C (blue) o G2C (orange) o G1C1 (pink) o G2C1
(green) is preserved along the entire H-bond distance range.
Furthermore, it shows that DEint becomes more stabilizing
upon interchanging G1 to G2 and C to C1 because both the
electrostatic (DVelstat) and orbital interactions (DEoi) become
more stabilizing along this trend. For DEoi, in particular, the

Fig. 1 (a) Schematic structure of the guanine–cytosine (GC) base pair and
N-edited isosteres used in this work to tune the intermolecular H-bond
strength by the position of the non-frontier N and NH groups highlighted
in red and blue, respectively. (b) Voronoi deformation density (VDD) atomic
charges Q (in milli-electrons) of the H-bond frontier atoms of the isolated
guanine (G1 and G2) and cytosine (C and C1) isosteres in the geometry
within the dimer with C or G1, respectively.

Fig. 2 (a) Hydrogen-bonded GC base-pair isosteres with equilibrium
hydrogen-bond distances (in Å) and interaction energy DEint (in kcal mol�1

in between brackets) and (b) decomposed interaction energy terms
(DEint = DVelstat + DEPauli + DEoi (+ DEdisp)) as a function of the middle
H-bond distance rN(H)� � �N (in Å, step size of 0.01 Å).
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s-charge transfer orbital interactions (DEs
oi) are enhanced,

while the p-orbital interactions (DEp
oi) do not really vary for

the different isosteres. This means that the p-resonance assis-
tance in the H-bonds, that is p-polarization, is not affected by
the non-frontier modifications. Note that DEPauli does not
dictate the trend, as this interaction component becomes more
destabilizing from G1 to G2 and from C to C1 (DEdisp stays
constant for all isosteres, see ESI,† Data S2).

While the similar frontier atomic charges of the isosteres
cannot explain the enhancement of DVelstat and DEs

oi (vide
supra), we find that the origin of this effect lies in the amount

of charge accumulation in the N-edited monomers, as is pre-
sented in Fig. 3. Upon going from G1 to G2 and from C to C1,
the partially negative (O and N) and partially positive (NH and
NH2) functional groups, respectively, are grouped on one side
of the molecule, which induces an increase of the molecular
dipole moment (Fig. 3a). This grouping of the polar functional
groups is associated with an increase of charge accumulation
on both sides of the molecule, as is visualized by the electro-
static potential surfaces in Fig. 3b and the Voronoi deformation
density (VDD)21 charges in Fig. 3c (see ESI,† Method S3 for
details about the VDD method and Data S3 for the complete
VDD charge analysis). Although the charge on the H-bond
frontier atoms does not significantly change (Fig. 1b), the
grouping of all polar groups on one side of the molecule by
going from G1 to G2 and from C to C1, enhances the molecular
charge accumulation, that is, the interacting monomers
become more pronounced ‘mirrored dipoles’ of each other
(see Fig. 3c), which enhances the intermolecular electrostatic
interactions. This is a manifestation of the fact that the total
electrostatic interaction is not exclusively determined by the
frontier atoms but also by long-range electrostatic interactions
between distant atoms.

Besides DVelstat, the s-orbital interactions DEs
oi are also

enhanced upon grouping the polar functional groups on one
side of the nucleobases thereby increasing the molecular
charge accumulation. A larger accumulation of negative charge
destabilizes occupied orbitals (i.e., they become better electron
donors), while a larger accumulation of positive charge stabi-
lizes unoccupied orbitals (i.e., they become better electron
acceptors) (see Fig. 4).10 Important to note here is that mole-
cular orbitals (MOs) involved in the H-bonds are delocalized
over larger parts of the molecule and are not exclusively located
on the frontier groups (Fig. 3d). So even if the charge at the
frontier atoms does not change, a change in charge on other
parts of the molecule causes shifts in the energies of the MOs

Fig. 3 (a) Molecular dipole moment vectors (d� - d+ direction) and
magnitudes (in Debye), (b) molecular electrostatic potential surfaces
(at 0.01 a.u.) from �0.1 (red) to 0.1 (blue) a.u., (c) Voronoi deformation
density (VDD) atomic charges Q (in milli-electrons), and (d) isosurfaces (at
0.03 a.u.) with corresponding energies e (in between brackets in eV) of the
relevant H-bonding unoccupied (sLUMO) and occupied (sHOMO) orbitals of
the isolated guanine (G1 and G2) and cytosine (C and C1) isosteres in the
geometry within the dimer with C or G1, respectively.

Fig. 4 A larger accumulation of negative charge (d�) destabilizes the
occupied molecular orbitals (sHOMOs) of H-bond acceptors, while a larger
accumulation of positive charge (d+) stabilizes the unoccupied molecular
orbitals (sLUMOs) of H-bond donors. This results in a smaller HOMO–LUMO
energy gap (De) and therefore a better s-orbital interaction in case of
enhanced charge accumulation.
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[as long as the MO is asymmetric with respect to the molecule
(see below)]. As such, we observe that upon changing from G1
to G2 and from C to C1, the larger accumulation of negative
charge on the side of the H-bond acceptor group(s), that is,
where the highest-occupied molecular orbitals (sHOMOs)
involved in the intermolecular H-bonds have their coefficients,
destabilizes the sHOMOs (see Fig. 3d). At the same time, the
larger accumulation of positive charge on the side of the H-bond
donor group(s) stabilizes the lowest-unoccupied molecular orbitals
(sLUMOs) as these MOs have a coefficient on this side. Note that the
sHOMO�1 of the cytosine isosteres is not affected upon changing C
to C1 because this MO is relatively symmetric and therefore there
is no significant net effect of the change in molecular charge
accumulation. Nevertheless, both the destabilization of the other
sHOMOs and the stabilization of the sLUMOs reduces the energy gap
(De) between the interacting orbitals and, therefore, results in
better s-orbital interactions in the case of enhanced charge
accumulation (Fig. 4), that is, upon changing from G1 to G2 and
from C to C1.22

Conclusions

The binding strength of H-bonded aromatic dimers can be
systematically tuned by varying the position of heteroatoms on
the backside of the monomers while keeping the H-bond
frontier atoms unchanged. These minimal non-frontier mod-
ifications can induce large interaction energy changes (DDEint

up to 6.5 kcal mol�1) although the charge of the H-bond
frontier atoms is almost unaffected, as appears from our
quantum-chemical analyses. Nevertheless, the grouping of the
polar functional groups on one side of the monomer induces a
larger accumulation of positive and negative charge in the
molecule. This enhances the intermolecular electrostatic inter-
actions, as well as the s-orbital interactions by reducing the
energy gaps between the interacting molecular orbitals. This is
a manifestation of two effects: (i) electrostatic interactions are
not only between frontier atoms but also between distant atoms
(i.e., long-range); (ii) molecular orbitals are delocalized over the
molecule and their energies are therefore influenced by charge
changes in non-frontier parts of the molecule. Our findings
challenge the concept of explaining H-bond strengths by the
frontier atoms, revealing that the strength of the electrostatic
interactions, as well as the orbital interactions, are determined
by the whole backbone of the H-bond donor and acceptor
fragments.
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