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We propose an approach utilizing gamma-distributed random variables, coupled with log-Gaussian
modeling, to generate synthetic datasets suitable for training neural networks. This addresses the
challenge of limited real observations in various applications. We apply this methodology to both Raman
and coherent anti-Stokes Raman scattering (CARS) spectra, using experimental spectra to estimate
gamma process parameters. Parameter estimation is performed using Markov chain Monte Carlo
methods, yielding a full Bayesian posterior distribution for the model which can be sampled for synthetic
data generation. Additionally, we model the additive and multiplicative background functions for Raman
and CARS with Gaussian processes. We train two Bayesian neural networks to estimate parameters of
the gamma process which can then be used to estimate the underlying Raman spectrum and
simultaneously provide uncertainty through the estimation of parameters of a probability distribution.
We apply the trained Bayesian neural networks to experimental Raman spectra of phthalocyanine blue,
aniline black, naphthol red, and red 264 pigments and also to experimental CARS spectra of adenosine
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phosphate, fructose, glucose, and sucrose. The results agree with deterministic point estimates for the
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1 Introduction

Raman and coherent anti-Stokes Raman scattering (CARS)
spectroscopies are vital tools used in chemistry, physics, and
biomedical research.' The insights they offer into molecular
vibrations, structural dynamics, and chemical compositions
are invaluable. However, working with their data presents
challenges. Measurement artifacts including noise, and, espe-
cially, background signals in Raman and CARS spectra often
obscure crucial molecular information. Traditional methods
for data correction are typically manual and may fall short in
capturing the full complexity of the data. For instance, standard
approaches used for removing the background signals include
asymmetric least squares polynomial fitting, wavelet-based
methods, optimization with Tikhonov regularization, and Kra-
mers-Kronig relations.*® While appealing, these methods
suffer from practical drawbacks such as the need for manual
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underlying Raman and CARS spectral signatures.

tuning of the model or regularization parameters. The need for
automated, robust, and statistically sound solutions to enhance
our spectroscopic analyses is evident.

Deep neural networks offer a compelling solution for auto-
matic spectral correction across various applications, from
weather predictions™™® to medical imaging'®'® and many
others.’>* In the realm of Raman spectroscopy, deep neural
networks have been used in chemical species identification
and background removal.***® Similarly, they have been
applied to extract the underlying Raman spectra from CARS
measurement.’*”>> Despite their efficacy, non-Bayesian neural
networks lack a critical feature: the ability to quantify uncer-
tainty in Raman spectrum estimation. Bayesian inference, on
the other hand, provides an avenue to solve this problem.

Bayesian inference treats the parameters of a given model as
random variables. These models consist of a likelihood func-
tion that is combined with prior distributions for the para-
meters to produce posterior estimates. The likelihood function
is analogous to a utility function in an optimization context.
It quantifies how well the model fits the observed data. The
aforementioned prior distributions for the model parameters
represent the information known beforehand, including any
constraints dictated by the physical nature of the parameters,
such as non-negativity. In spectroscopic analysis, the model
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parameters can be, for example, amplitudes, locations, and
widths of Gaussian, Lorentzian, or Voigt line shape functions.
The combination of the likelihood and the priors results in a
posterior distribution over the model parameters. The posterior
is a probabilistic representation of the uncertainty in the
parameter estimates. Bayesian approaches have been consid-
ered for estimating spectrum parameters, where the authors
used sequential Monte Carlo algorithms to numerically sample
from the posterior distribution.*®*” While the uncertainty
quantification provided by Bayesian modeling and Markov
chain Monte Carlo (MCMC) methods is compelling, the
approach is known to be computationally expensive, see for
example.*® This becomes a major issue particularly with hyper-
spectral data sets. A hyperspectral data set, or an image,
consists of pixels where each pixel contains a spectrum. This
can quickly result in millions of individual spectra, experi-
mental or synthetic, which are to be analyzed.

Bayesian neural networks are a synthesis of the aforemen-
tioned two ideas. Bayesian neural networks model the weights
and biases of standard neural networks as random variables,
which can be assigned prior distributions. When combined
with a likelihood according to Bayes’ theorem, the resulting
utility function corresponds to the posterior for the neural
network parameters. Advantages of this Bayesian neural net-
work approach in comparison to non-Bayesian neural networks
include robustness in terms of overfitting, providing uncer-
tainty estimates instead of only point estimation, sequential
learning, and better generalization.* In particular, uncertainty
quantification has seen widespread research covering many
application areas and topics, for example.*’

One of the challenges of Bayesian neural networks is that
they typically contain an enormous number of parameters. For
instance, our network comprises over 11 million parameters,
far beyond what is commonly considered high-dimensional for
MCMC.*"*> Some neural networks, such as large language
models (LLMs), can have billions of parameters.*® Thus, it
can be challenging to establish convergence of such a large
number of parameters in a statistically rigorous manner.
To combat this, partially-Bayesian neural networks have been
used as a practical tool to provide uncertainty estimation with
neural networks. In addition to empirical validation through
practice, studies have provided compelling analytical and
numerical evidence that partially-Bayesian neural networks
are indeed capable of providing posterior estimates on par or
even superior performance to fully-Bayesian neural networks.**
The above points lead us to construct our neural network for
this study as a partially-Bayesian neural network.

Neural networks typically require large volumes of training
data. This has been noted to be a problem also in spectroscopic
applications as it is difficult to acquire large sets of indepen-
dent data sets.*® Therefore, many studies mentioned above
use synthetic data to train the neural networks. The synthetic
data is usually generated using random linear combinations of
Lorentzian line shapes, where the amplitudes, locations, and
widths are sampled from predefined probability distributions,
see for example.>®?>** The background data is generated
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Fig. 1 Structure of our generative spectrum model using GPs and log-
Gaussian gamma processes. On top, an experimental CARS spectrum of
adenosine phosphate in blue and an example multiplicative background in
red. We model the backgrounds as a GP. At the bottom, an example
underlying Raman spectral signature in blue. We assume the Raman peaks
to be distributed according to our proposed log-Gaussian gamma process
model. The stochastic processes are parameterized according to ue, 0., .
and Bv). We further model B(v) using GPs which are parameterized
according to ug and 6. We construct statistical samples with MCMC for
the model parameters which allow us to generate synthetic spectra for
training our Bayesian neural network.

similarly. The backgrounds are modeled explicitly using a
parametric functional form, such as a polynomial or a sigmoi-
dal function, and the parameters of the model are again
sampled from a predefined probability distribution.>>*>*°
An extension to this is to use experimental Raman spectra on
top of the randomly generated spectra.*

Stochastic processes can be used to draw samples of random
functions. A typical example of a stochastic process is the
widely-used Gaussian process (GP). Properties of the drawn
samples such as differentiability are governed through kernel
functions, which are used to model dependencies between data
points. For readers unfamiliar with GPs, we recommend the
book by Rasmussen and Williams.*” Instead of using explicit,
parametric functions to model the spectroscopic features, we
propose using stochastic processes as a more flexible tool for
the purpose. In this study, we use GPs as a generative model for
the additive and multiplicative backgrounds of Raman and
CARS spectra, see Fig. 1.

For the purpose of generating synthetic Raman spectral
signatures, we propose a specific type of doubly-stochastic Lévy
process which we call a log-Gaussian gamma process. Our
construction of the log-Gaussian gamma process is inspired
by log-Gaussian Cox process which the authors have previously
used as a model for spectra.*® While it makes sense to model
spectra as a Cox process where the relaxation from higher
energy levels happens at a constant rate and results in counts
of photons, the data is often available in scaled floating-point
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numbers which prevents direct application of the log-Gaussian
Cox process model. Gamma-distributed variables have direct
connections to Poisson-distributed variables, which constitute
the Cox process, making the extension to a log-Gaussian
gamma process intuitive as a model for Raman spectroscopy.
The log-Gaussian gamma process can be used to generate
arbitrary amounts of synthetic spectra once parameters of the
stochastic process have been estimated. We perform the esti-
mation using MCMC methods which allow us to construct a
Bayesian posterior distribution for the model parameters,
thereby including uncertainty of the parameter estimates in
our data generation. This also applies to our GP-based back-
ground model. We present a high-level diagram of our stochas-
tic process method for data generation in Fig. 1. Fig. 2 shows an
example of the aim of this paper, a Raman spectral signature
extracted from a CARS spectrum using a Bayesian neural net-
work. We provide a pseudo-code description of our approach in
Algorithm 3.

The key contributions of this paper are the following. We
propose using log-Gaussian gamma processes for modeling
Raman spectral signatures and GPs to model additive or multi-
plicative background signals. The aforementioned doubly-
stochastic processes are sampled randomly, enabling us to
generate an arbitrary number of synthetic spectra that are
statistically similar to experimental spectra. Finally, we
present a partially-Bayesian neural network for analyzing
Raman and CARS spectral measurements, which we train
using the sampled synthetic spectra. Once trained, we use
these neural networks to estimate the spectral signatures for
experimental Raman spectroscopy measurements of phthalo-
cyanine blue, naphthol red, aniline black, and red 264 pig-
ments and for experimental CARS spectra of adenosine
phosphate, fructose, glucose, and sucrose in addition to syn-
thetic test spectra.
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Fig. 2 On top, an experimental CARS spectrum of adenosine phosphate
in blue. With a trained Bayesian neural network, we can extract the
underlying Raman spectral signature from the data along with an uncer-
tainty estimate for the spectrum. At the bottom, the corresponding
Bayesian neural network median Raman spectrum estimate and 90%
confidence interval of the estimate for the adenosine phosphate data.
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Algorithm 1 Log-Gaussian gamma process data generation for
training Bayesian neural networks

Step 1: Fit a log-Gaussian gamma process to Raman spectrum
data.

Step 2: Fit a GP to background data.

Step 3: Draw a large number of realizations from the fitted log-
Gaussian gamma process.

Step 4: Draw a large number of realizations from the fitted GP.

Step 5: Use a forward model to combine the realizations to
form a data set of synthetic spectra.

Step 6: Use a forward model to combine the realizations to
form a data set of synthetic spectra.

The rest of the paper is structured as follows. We detail the
steps used to generate the synthetic training data in three
stages in the following three sections. We first present the
log-Gaussian gamma process as a model for Raman spectral
signatures and explain how to draw realizations of this doubly-
stochastic process. This is followed by a description of our
GP-based additive and multiplicative background models. We
finalize the explanation of our synthetic data generation
method with definitions of the forward models used to
simulate synthetic training data for Raman and CARS mea-
surements with additive and multiplicative backgrounds,
respectively. Next, we present our partially-Bayesian neural
network architecture, which we train against the synthetic
data sets that we have generated. We document computa-
tional details and prior distributions in the next section,
followed by a presentation of our results for both artificial
and real experimental data. Finally, we conclude with a
discussion of the significance and other potential applica-
tions for our method.

2 Log-Gaussian gamma process
spectrum model

We model a Raman spectral signature as a collection of
conditionally-independent, gamma-distributed random variables

I = r(l/k) ~ Gamma(aaﬁ(l/k))v (1)

where r, denotes a Raman measurement at wavenumber loca-
tion vy with o and (1) being the shape and scale parameters of
the gamma distribution, respectively. The scale f(v) is thought
to model the spectral line shapes and other artefacts, while
the shape « models the noise level present in the spectrum.
The above construction is motivated by log-Gaussian Cox
processes”® but without the restriction of modeling of only
integer-valued data and with an additional parameter in the
stochastic process allowing for more flexible modeling of
uncertainty. Poisson-distributed random variables, which con-
stitute the Cox process, have a single parameter to control both
the mean and variance of the distribution. Very often in real
data, this assumption is found to be too restrictive, leading to a

Phys. Chem. Chem. Phys., 2024, 26, 3389-3399 | 3391


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3cp04960d

Open Access Article. Published on 08 January 2024. Downloaded on 11/13/2025 2:48:42 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper
model that is either under- or over-dispersed.’® In contrast, the
gamma distribution has two parameters which together allow
for a range of different variances for a given mean.

We extend eqn (1) by modeling the log-scale as a GP,
resulting in a hierarchical model

log (V) ~ GP(up,Z4(v,v,04)), (2)

where v: = (v4,...,k) is a vector of the wavenumber locations
with u5 € Rand Z4(v,v,0;) € R**X being a constant mean and
a covariance matrix parameterized according to hyperpara-
meters 0. This doubly-stochastic model introduces depen-
dence between values r; and r; at different wavenumbers v;
and v;. For the covariance function of the log-scale GP, we use
the squared exponential kernel

1 (V,'—V

_)2
! ) + aﬁé(ui — Z{/)7 (3)

[Z5(v,v,0p)] ;= o}, exp (‘2 T

where [Z,(v,v, Oﬁ)]i/_ denotes the jjth element of the covariance
matrix Zg(v,v,0p), o5 is the signal variance, I; is the length
scale, 0,52 denotes the noise variance, and §(v; — 1) is the Dirac
delta function with 0 = (5, 7,/3,05%). The GP construction yields
an analytical form for the log-scale log ff(v) which we will detail
below as we construct the posterior distribution according to
Bayes’ theorem. This log-GP parameterization is identical to the
log-intensity model for Poisson variables that features in log-
Gaussian Cox processes. For more details on the log-Gaussian
Cox process, see*® and for example.*

The posterior distribution involves the likelihood function
ZL(rla, B(v)), a log-GP prior for the scale mo(f(v)|up,05), and a
joint prior distribution m(e,4,05) for rest of the model para-
meters. Given a measured Raman spectrum r: = (7(v1),. . .,/ (1)),
we can formulate the likelihood as a product of conditionally-
independent, gamma-distributed random variables
ﬁk ‘exp —u/m n

k=1

Z(rlo, B(v)

where fi: =f(vi), and I'(«) is the gamma function. The hier-
archical prior for f(v) can be evaluated as

70 (B(3) 115.65) =¢(2%7|2ﬁ<v,v;q,;>r

X exp (—%(ﬁ(V) —15) Zp(v.v.00) " (B) _”/3))7
(5)

where |X5(v,1505)| denotes the determinant of the covariance
matrix. With the above and a joint prior my(a,us,05), we can
construct the posterior distribution for the model parameters
conditioned on the measured spectrum data r as

(ot B(v), 5, 011) o< L ([, B(v) 0 (B(v)) 11,0 ) n
Xno(a,,uﬁ,ﬂﬁ).

In the posterior in eqn (6), the dimension of f(v) is K.
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The scale is a vector of the same dimension as the data,
B(v) € [fo'. MCMC methdos are known to struggle estimating
high-dimensional parameters. At a minimum, the high-
dimensional parameters incur a computational cost for infer-
ence with MCMC. To amend these issues and to simplify the
inference, we perform dimension reduction for the scale f(v).
To achieve this, we observe that our data r should be a reason-
able estimate for the expectation of the gamma process in
eqn (1), r = E[Gamma(a, f(v))] = af(v). This implies that the
shape of the data r is close to the shape of the scale function,
p(v). Thus, we approximate the scale f(v) as a convolution
between a Gaussian kernel and the data

bv) = ¢Gvio6)*r, )

where * denotes convolution, ¢z is a scaling constant, and
G(v;05) is Gaussian smoothing kernel with width 6. By this,
we reduce the inference of the scale (v) € Rf“ to inference of
two parameters, cg and 0. With this smoothing approximation,
we formulate an approximate posterior for eqn (6) as

) =7

x 1o (o, ¢, 06, g, Op),

n(a,cﬁ,og,uﬁ, (r\oc, c/;,ac)no([)’(v)\uﬂ,ﬂ/;)

= 3,’7(1 o, cp,G(viog) *r) and mo(x,C4,06,-
1p,0p) is the prior distribution augmented with [c,;,aG)T. We
detail the prior distribution my(a,c4,06,u4,05) in the section on
computational details and prior distributions. We perform
inference of the posterior in eqn (8) by sampling all the model
parameters simultaneously using the DRAM algorithm.>”
Given samples from the posterior distribution m(x,cs,06,-
1,05 | 7) obtained with MCMC, we can sample realizations
for the synthetic spectra to generate an arbitrary amount of
synthetic data in the following way. First, we sample the GP

where :(Z)(r\oc, 4, 06)

parameters (figd;)" from the MCMC chain. Next, we use (fig0;)"

sample a GP realization B(I/"lﬁﬁé/j) at prediction locations v*: =
(vi,..., yk)T modeling the scale f(v*) with

B(v*|iig0p) = exp(fis + L(v*|0)u), ©)

A x B(v)/ max B(v) (v | A1)
04 04
” ” W
0 0
0 0

” M " MMM\,
0 0
0.2
0.2
\/R/J\/W o WMJ\’.M\)"LJ\
0 0

600 500 400 300 200 100 0 600 500 400 300 200 100 0

v v

Fig. 3 Example realizations drawn from the log-Gaussian gamma process
model defined in egn (10). On the left, realizations for the scale process
p(v), drawn from a log-Gaussian process. On the right, corresponding
realizations from the gamma process. All realizations are normalized and
multiplied by a sampled amplitude.
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where L(v* | 0p) is the lower triangular Cholesky decomposition
matrix of Z,;(V*,V",éﬁ) and w: = (uy,...,ug)" is Gaussian white
noise such that u; ~ A(0,1). Finally, by sampling &, we can
draw a spectrum realization 7(r) from the gamma process,
Gamma(3,5(v)).

We normalize the realizations #(v) such that max{f(v)} = 1
and introduce an additional parameter to control amplitudes of
the realizations. With an amplitude parameter A, we sample a
normalized shape (v | ¥) of the spectrum and multiply this by
a sampled amplitude A. This procedure results in the following
statistical model

ry(v)

ry (W) ~ Gamma(a, f(v)),
A~ TEO(A)a

¥~ (),

r(vld,y) ~ 4

where Y: = (w,¢5,06,15,05)" is a shorthand for the gamma
process parameters and mo(A) is a prior distribution for the
amplitude A. Example realizations from the above statistical
model are shown in Fig. 3. In the following section, we detail
how we model additive and multiplicative backgrounds for
Raman and CARS spectra using GPs.

3 Additive and multiplicative
background models

We propose GPs as a flexible way to randomly draw additive
and multiplicative background functions for Raman and CARS
spectrum modeling. This is in contrast to more standard
polynomial models such as the ones used in.**

As noted above, we model additive or multiplicative spectral
backgrounds as a GP

e(v) ~ GP(ue,Zc(v,v,0,)), (11)

with u, € R and Z,(v,v,0,) € R*X being a constant mean and
the covariance matrix of the GP parameterized according to
hyperparameters 6. For the background GP covariance func-
tion, we use again the squared exponential kernel

e

2
1 Vi —Uj .
[Ze(v,v,0,)],,= 0, s exp (2 (lz/)> +od(vi—vy) (12)

where [Z.(v,1,0,.)];; denotes the 7jth element of the covariance
matrix, o, fz is the signal variance, [, is the length scale, and ¢,
denotes the noise variance with 0,: = (o, f,lg,ag)T.

Given a measurement of the background process, e: =
(e(v1),- - ,e(vk))", we can formulate a posterior distribution for

the background GP parameters (y,0.)" as
Tt Ocle) o L (el e, 0 )mo(pte, 0o ), (13)

where % (e|,, 0.) is the GP likelihood and my(g,0.) denotes the
prior distribution for the GP parameters. The log-likelihood is
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given as

e im0 e - )

log (el 0) =

(14)

— %log\Ze(v,v, 0.)] — glog 2m,
where |Z.(v,1,0,)| is the determinant of the covariance matrix.
Again, we perform the posterior estimation for eqn (13) by
sampling all the model parameters simultaneously using DRAM.
Given a posterior n(u,,0, | €), we construct realizations for the
spectrum by drawing realizations from the GP predictive dis-
tribution. We sample starting and ending points for the back-
ground function from priors my(€stary) and To(Escop), To(EstartsEstop) =
To(Estart)To(Esop)- Next, we compute the predictive mean

e*(’/lﬂsyéwgss) = ze(V)Vss;ée)ze(yssyyss;ée)71 X (éss - .as) + ﬂey

(15)

and the predictive covariance

X, (v,v;é;) =3, (v,v;(;e) -, <v7vss;0~e)2() (vmvss;():)il
o (16)
XE(,(v,vss;He) ,

where (fi,,0,) are samples from the posterior distribution
n(ue,0, | €) obtained via MCMC, and vg= (VstartsVstop) are the
wavenumber locations corresponding to the sampled starting
and ending points ég = (éstart,ésmp)T. Elements of the covariance
matrix X (v,v; 0,) are given as defined in eqn (12) and elements
of the covariance matrices Ze(u,uss;ée) and Ee(uss,uss;ée) are
given by otherwise the same covariance function but without
the diagonal elements produced by the Dirac delta function.
With the above mathematical machinations, we can sample

realizations for the background function by

é(’/lﬂeyée)éss) ~ e*[’/ | ﬂsyée)éss) + L(V | ﬂe’éw)wy
(17)

where L(v | jie,0.,) is the lower triangular Cholesky decomposi-
tion matrix of *(v,v; 0,) and w € RE*! is a Gaussian white
noise vector. This is compiled into the following statistical

e | pe0.,e)

108 1.4
0.975 1.05
0.9 1
o /\ 1.05 f\
1.05 \// 1.025

1 1 \_//

11 1.05
1.025 1
095 095
12

1
09 1.1
08 4

600 500 400 300 200 100 600 500 400 300 200 100

v v

Fig. 4 Example realizations drawn from the background model defined in
egn (18) for a multiplicative background. The starting and end points are
sampled from a prior distribution and the GP predictive mean and
covariance are used to sample the background shape.
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model for the background function sampling:

é(‘)'/'Lw oeveSS) ~ N(8*7 2*)7
(18)
(Mo, 0c, e55) ~ (i, Ocl€) o (e55),

where mo(€ss) = To(estart,€stop)- Example realizations for a multi-
plicative background relevant for CARS are shown in Fig. 4.

4 Raman and CARS spectrum models

In the preceding two sections we formulated mathematical
procedures to sample synthetic spectrum and background
realizations which are statistically similar to measurement
data. Below, we combine these two approaches for generating
arbitrary amounts of statistically realistic spectral data which
are ultimately used for training our Bayesian neural networks.
We present two forward models which are used to generate data
for Raman measurements with an additive background and
CARS measurements with a multiplicative background.

Raman spectra y(v) with an additive background B(v) are
constructed using

W) ~ rv|AY) + Bv),

where r(v|A,Y) is distributed according to the model defined in
eqn (10). The background B(v) is sampled with eqn (18).

CARS spectra z(v) are generated similarly to the additive
Raman realizations. The CARS model consists of a multiplica-
tive background function &, (v | u,0.) distorting a CARS spec-
trum S(v|Byg,¥) given as

(19)

Z(V) ~ Sm(VIﬂe;Oe)S(VlBNRi'//)’ (20)
where the CARS spectrum S(v|Byg,¥) can be given as
S(V|Bxr, W) ~ [Baw + (ir(v]4, ) = H{r(w|4, )}, (21)

and Byr ~ mo(Bnr) iS @ non-resonant background inherent
to the CARS phenomenon distributed according to a prior
distribution my(Bxg) and H denotes the Hilbert transform.
The model for the CARS spectrum has been previously used
for example in.”*” We show example realizations for the Raman
model in Fig. 5 and the CARS model in Fig. 6. We use the two

y(w)

0.4
03

0.2 0.2
600 500 400 300 200 100 0 600 500 400 300 200 100 0
v v

Fig. 5 Example realizations for the Raman spectrum model defined in
eqn (19). The realizations correspond to the log-Gaussian gamma process
realizations in Fig. 3.
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Fig. 6 Example realizations for the CARS spectrum model defined in
egn (20). The realizations correspond to the log-Gaussian gamma process
realizations in Fig. 3.

models defined in eqn (19) and (20) to generate two synthetic
data sets which are used to train two separate Bayesian neural
networks. In the following section, we discuss the Bayesian
neural network architecture.

5 Bayesian neural network
architecture

Our neural network architecture used in the experiments is
based on the SpecNet architecture.”® The SpecNet architecture
is composed of convolutional layers encoding the input,
the measurement spectrum. The encoded information is then
decoded using fully-connected hidden layers, resulting in
estimates for the underlying true Raman spectrum. We present
our changes to the SpecNet architecture below.

To achieve a partially Bayesian neural network,** we use a
Bayesian layer for the first convolutional layer. Additionally,
we augment the architecture with a probabilistic output layer.
This transforms the neural network estimate into estimates of a
stochastic process instead of directly estimating the Raman
spectrum. We use a gamma distribution as our output layer,
following our formulation of Raman spectra as a log-Gaussian
gamma processes. We also found that L, or L, regularization was
not necessary for the deterministic parts of the network and
therefore only employ Dropout® regularization with the last
dense layer of the network. This in agreement with the documen-
ted robustness of Bayesian neural networks with respect to
overfitting.*® The above results in the following partial posterior
probability distribution, or cost function, used for training the
neural network

n(¥p, Ps|R) x L(R|Yp, Ps)no(Ps), (22)
where R € R/ is a data matrix of I synthetic spectra of length J
generated using either the Raman or CARS forward models in
eqn (19) and (20) and L£(R|¥p, ¥s) denotes the likelihood of the
neural network estimate and mo('¥s) is the prior distribution for
the stochastic parameters of the network. As our outputs are
modeled as gamma-distributed random variables, the likelihood
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L(R|¥p, ¥s) is given as

RS exp (< Ry /B,

i, J/ PNNj

Z(R|¥p, Ps) = J S (23)

gg T (onny) BN

where R;; denotes the jth data point of the jth spectrum, oy and
Pnn, are neural network outputs for the gamma distribution
parameters. For the prior distribution mo(s), we use an indepen-
dent normal distribution A (0, 1) for all the weights and biases of

P
the first layer, mo(¥s) o< [J N (Ws,;0,1) where P is the total
p=1

number of parameters in the first layer and A/ (¥s,; 0, 1) denotes
the evaluation of the probability density at the parameter value
¥sp This particular type of Bayesian neural network is also
known as a deep kernel®® or a manifold Gaussian processes.>®
We illustrate the neural network architecture in Fig. 7.

In the log-Gaussian gamma process section, we estimate
parameters of a doubly-stochastic process via MCMC. The
Bayesian neural network architecture proposed here can be
seen as an estimate of a triply-stochastic process where the
neural network outputs are two stochastic process realizations
ann(v) and fun(v), an extension to the analytical log-Gaussian
gamma process in Section 2 where the log-Gaussian parame-
terization of the scale process fiun(v) is used for mathematical
convenience due to the closed form of the probability density in
eqn (5).

The uncertainty quantification of the Bayesian neural net-
work is achieved in two stages, the Bayesian convolutional layer
and gamma distributed output layer. Numerical samples are
generated for the parameters of the Bayesian convolutional
layer during the training process. These numerical samples are
propagated through the deterministic layers of the network and
ultimately into the output layer. The output layer, modelled as a
gamma process, outputs a gamma distribution for each pre-
diction point which ultimately controls the uncertainty of the
spectrum estimate.

Baysian

Fully-connected Gamma(ann(v), Sax(v))
convolutional layer

hidden layers layer

Deterministic
convolutional layers

Measurement
SI)(?('tl'lll!l
anx(v)

Bran(v)

Fig. 7 A Bayesian neural network architecture for correcting spectral
measurements. The first convolutional layer is modeled as a stochastic
layer. A new representation of the measurement spectrum is produced via
the convolutional layers and then decoded with the fully-connected
hidden layers. The output layer is modeled as a gamma process
Gammal(ann (), fun(r)), parameters of which are the outputs of the fully-
connected hidden layers.
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6 Computational details and prior
distributions

We use 4 experimental Raman spectra and 4 CARS spectra to
generate the synthetic training data sets. We use a wavelet-
based approach'" to obtain point estimates for the underlying
Raman spectra in all 8 cases. Additionally, the method provides
point estimates for the additive and multiplicative background
signal which we use to estimate the parameters of the back-
ground GP model defined in eqn (18). We show the obtained
Raman data point estimates for the Raman spectra and additive
backgrounds in Fig. 8 and CARS point estimates for the Raman
spectra and multiplicative backgrounds in Fig. 9. The four cases
of measurement data are used to train their respective Bayesian
neural network architectures. It should be noted that for cases
with significantly different Raman spectral signatures, such as
where the spectra consists of either significantly sharper or
wider line shapes, the training should be done using experi-
mental data which contain such features.

We run the DRAM algorithm with 5 proposal steps and with
a length of 100000 samples for both the log-Gaussian gamma
process parameters and the GP parameters. We use a burn-in of
50000 samples. The prior distributions for the log-Gaussian
gamma process likelihood and the GP background likelihood
are documented in Table 1. We use TensorFlow and Tensor-
Flow Probability together with Keras to implement the neural
network architecture.’®>® We use the Adam optimizer for
estimating the network parameters ¥ and ¥s.

The aforementioned MCMC sampling runs were done on an
AMD Ryzen 3950X processor. Wall times for the MCMC sam-
pling ranged from a couple of minutes to approximately one
hour, depending on the number of data points in the spectra.
The MCMC samplers can be run embarrassingly parallel for
each measurement spectrum. Training the Bayesian neural
network took approximately two hours on an NVIDIA 1070
graphics card for sets of 500000 spectra. Given the small
computational cost of the MCMC sampling and training the

<10% Raman spectrum and background
3

Raman spectrum point estimate

10000

1 0
1800 1600 1400 1200 1000 800 600 400 1800 1600 1400 1200 1000 800 600 400

0.2

0.1
02— 0
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= 0
1800 1600 1400 1200 1000 800 600 400 1800 1600 1400 1200 1000 800 600 400

x10*

10000

0
1800 1600 1400 1200 1000 800 600 1800 1600 1400 1200 1000 800 600
v v

Fig. 8 On the left, experimental Raman spectra of phthalocyanine blue,
naphthol red, aniline black, and red 264 pigments in blue and point
estimates for their respective additive backgrounds B(v). On the right,
point estimates for the underlying Raman spectra corresponding to the
Raman measurements on their left. The 4 cases are used to estimate
the LGGP and GP parameters defined in the posterior distributions in
egn (10) and (18).
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Fig. 9 On the left, experimental CARS spectra of adenosine phosphate,
fructose, glucose, and sucrose in blue and point estimates for their
respective multiplicative backgrounds &, (v). On the right, point estimates
for the underlying Raman spectra corresponding to the CARS measure-
ments on their left. The 4 cases are used to estimate the LGGP and GP
parameters defined in the posterior distributions in egn (10) and (18).

Table 1 Prior distributions for the log-Gaussian gamma and GP
parameters

Parameter Distribution Parameter Distribution
To(or) (0, 00)

o(cp) (0, ) ) (1, )
o(it5) (0, ) ol ie) (0, )
To(0p,) U0, 00) To(Tey) (0, 00)
mo(lp) (0, 00) To(le U(0,00)
T':O(U/i) %(07 OO) TEO(G-E) 021(07 OO)
To(€start) 2(0.90, 1.10) To(Estop) 2(0.90, 1.10)

neural network, which are offline costs, the main computa-
tional limitation comes from loading data during inference.

7 Results

We apply the two Bayesian neural networks to 4 synthetic
Raman spectra and 4 synthetic CARS spectra generated using

Synthetic Raman data
0.3 0.6

0.2 0.4
o o2 M
0.4 0.3
0.2
0.2
0.1
0.3
0.2
0.1

Esimated Raman spectrum

0.3 0.8
0.6
02 0.4
0.1 0.2
600 500 400 300 200 100 600 500 400 300 200 100

v v

Fig. 10 On the left, synthetic Raman test spectra generated using
egn (19). On the right, corresponding Raman spectrum estimates with
the median estimate shown in solid blue and the 90% confidence interval
in shaded blue. The solid black line shows the ground truth spectrum.
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Fig. 11 On the left, experimental Raman spectra of phthalocyanine blue,
aniline black, naphthol red, and red 264 pigments. On the right, corres-
ponding Raman spectrum estimates with the median estimate shown in
solid blue and the 90% confidence interval in shaded blue. The solid black
line shows the ground truth spectrum.

eqn (19) and (20), respectively. The synthetic spectra were not
part of the training data sets. The synthetic data and the results
for Raman spectra with an additive background are shown in
Fig. 10 and results for experimental Raman spectra of phthalo-
cyanine blue, naphthol red, aniline black, and red 264 pigments
are presented in Fig. 11. The experimental details of the
CARS samples have been described in detail elsewhere, see for
example.’” The Raman spectra are from an online database of
Raman spectra of pigments used in modern and contemporary
art (the standard Pigments Checker v.5).>

Results for synthetic CARS spectra are shown in Fig. 12
and results for experimental CARS spectra of adenosine phos-
phate, fructose, glucose, and sucrose are presented in Fig. 13.
The spectra themselves were not part of the training data set.
The results show the median estimate of the Raman spectrum
obtained from the trained Bayesian neural network along with
the 90% confidence intervals of the Raman spectrum estimate.
We overlay the Raman spectrum estimate with a scaled versions
of the point estimates in Fig. 9. The point estimates are scaled
such that the minima and maxima of the point estimate are
equal to the minima and maxima of the median estimate of the

Synthetic CARS data Esimated Raman spectrum

J\/\/\/‘v‘"””\/\ MW
0.2
0.4

600 500 400 300 200 100 600 500 400 300 200 100

v v

Fig. 12 On the left, synthetic CARS test spectra generated using egn (20).
On the right, corresponding Raman spectrum estimates with the median
estimate shown in solid blue and the 90% confidence interval in shaded
blue. The solid black line shows the ground truth spectrum.
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Fig. 13 On the left, experimental CARS spectra of adenosine phosphate,
fructose, glucose, and sucrose. On the right, corresponding Raman
spectrum estimates with the median estimate shown in solid blue and
the 90% confidence interval in shaded blue. The solid black line shows the
ground truth spectrum.

Raman spectrum. The results coincide with the overall shape of
the point estimates, supporting the validity of the data genera-
tion approach and the Bayesian neural network design.

As additional validation for the synthetic spectrum genera-
tion approach, we compare the cost function values, see eqn (6),
of the fully synthetic training spectra to the cost function values
obtained for partially experimental spectra. We generate the
partially experimental spectra by taking the point estimates of
the experimental CARS spectra in Fig. 9 and generating sets of
CARS spectra with the forward model defined in eqn (20)
combined with the GP realizations. The results are in agree-
ment which implies that our log-Gaussian gamma process is
capable of generating valid Raman spectra for training neural
networks. This approach is similar to approaches used for
approximate Bayesian computation, see for example.®®" The
resulting log cost function distribution of the synthetic spectra
and the partially experimental spectra are provided in the ESL ¥

8 Conclusions

We propose a novel approach utilizing log-Gaussian gamma
processes and Gaussian processes to generate synthetic spectra
and additive or multiplicative backgrounds that are statistically
similar to experimental measurements, even when using a
limited number of experimental spectra. The parameters of
these stochastic processes are learned through Markov chain
Monte Carlo methods, enabling the generation of extensive
training data for neural networks by sampling from Bayesian
posterior distributions of the parameters.

This data generation method is applied to train two Baye-
sian neural networks, specifically designed for correcting spec-
tral measurements. One network is tailored for Raman spectra
with additive backgrounds, while the other is optimized for
coherent anti-Stokes Raman scattering (CARS) spectra with
multiplicative backgrounds. Bayesian neural networks expand
upon prior research involving neural networks for spectral
corrections, offering not only point estimates but also the
critical capability of uncertainty quantification.
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Our approach is validated using synthetic test data gener-
ated from the stochastic processes and experimental Raman
spectra of phthalocyanine blue, aniline black, naphthol red,
and red 264 pigments, along with experimental CARS spectra of
adenosine phosphate, fructose, glucose, and sucrose. The
results demonstrate excellent agreement with deterministically
obtained point estimates of the Raman spectra, while simulta-
neously providing valuable uncertainty estimates for the
Raman spectrum estimates.

As a future avenue of research, our log-Gaussian gamma
process formulation could be extended to a mixture of log-
Gaussian gamma processes, similarly to mixtures of Gaussian
processes.®>®" Such an extension would allow modelling of
nonstationarity and heteroscedasticity, meaning different
signal or noise behaviour at different parts of measurement
spectrum. A more straight-forward modification, if necessary,
would be to include an additional noise term consisting of, for
example, Gaussian white noise process to the log-Gaussian
gamma process formulation.

In addition, log-Gaussian gamma processes might be used to
model other inherently positive measurements such as reflec-
tance, absorbance, fluorescence, or transmittance spectra®®” and
other non-spectroscopic data sets like pollutant or protein con-
centrations or masses of stellar objects, for which Gaussian
processes have been used®®”° Modifications to the log-Gaussian
gamma process and the Bayesian neural network should be
minimal due to the uninformative priors and general purpose
structure of them. The generation of synthetic data sets for other
types of problems requires an appropriate forward model. If the
forward model has non-local behaviour, it might warrant archi-
tectural changes to the Bayesian neural network such as augment-
ing the first layer with a dense layer for modelling the non-local
dependencies in the data.

A comparison study similar to*® would be an interesting
avenue of future research. However, a direct comparison
between non-Bayesian and Bayesian neural networks is not
straight-forward due to the missing uncertainty quantification
of the non-Bayesian neural network estimates. One could possi-
bly use the Dropout regularization as an approximate Bayesian
approach.”’ This could be combined with simulation-based
calibration’? to provide an appropriate one-to-one comparison
between the non-Bayesian and Bayesian neural networks.
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