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The resolution of the weak-exchange limit made
rigorous, simple and general in binuclear
complexes†

Dumitru-Claudiu Sergentu, abc Boris Le Guennic a and Rémi Maurice *a

The correct interpretation of magnetic properties in the weak-exchange regime has remained a

challenging task for several decades. In this regime, the effective exchange interaction between local

spins is quite weak, of the same order of magnitude or smaller than the various anisotropic terms, which

generates a complex set of levels characterized by spin mixing. Although the model multispin

Hamiltonian in the absence of local orbital momentum, ĤMS ¼ JŜaŜb þ ŜaDaŜa þ ŜbDbŜb þ ŜaDabŜb, is

considered good enough to map the experimental energies at zero field and in the strong-exchange

limit, theoretical works pointed out limitations of this simple model. This work revives the use of ĤMS

from a new theoretical perspective, detailing point-by-point a strategy to correctly map the

computational energies and wave functions onto ĤMS, thus validating it regardless of the exchange limit.

We will distinguish two cases, based on experimentally characterized dicobalt(II) complexes from the

literature. If centrosymmetry imposes alignment of the various rank-2 tensors constitutive of ĤMS in the

first case, the absence of any symmetry element prevents such alignment in the second case. In such a

context, the strategy provided herein becomes a powerful tool to rationalize the experimental magnetic

data, since it is capable of fully and rigorously extracting the multispin model without any assumption on

the orientation of its constitutive tensors. Furthermore, the strategy allows to question the use of the

spin Hamiltonian approach by explicitly controlling the projection norms on the model space, which is

showcased in the second complex where local orbital momentum could have occurred (distorted

octahedra). Finally, previous theoretical data related to a known dinickel(II) complex is reinterpreted,

clarifying initial wanderings regarding the weak exchange limit.

1 Introduction

Recent decades witnessed significant advancements in the engi-
neering of single-molecule magnets (SMMs) with compelling
magnetic properties closer and closer to room temperature.1–4

At stake may be the future of storage devices and quantum
information systems,5–7 but these SMMs also provide a play-
ground to explore complex electronic structures, and new
quantum-mechanical phenomena,8–10 and develop novel strate-
gies for evaluating them.

SMMs typically exhibit magnetic anisotropy through the
intertwined effect of spin–orbit coupling (SOC) and anisotropic
crystal fields (CFs) and retain magnetic bistability with an energy
barrier for magnetization reversal below a certain blocking
temperature.6 To go beyond the blocking temperatures observed
in d-element polynuclear complexes, research shifted to the field
of f-element single ion magnets after the discovery of the proper-
ties of the bis(phthalocyaninato)terbium anion.11 Although
f-element molecules make the current state-of-the-art SMM
prototypes,3,4,12–14 with well-known recipes designed to improve
their magnetic properties,15,16 potential d- and mixed f/d-element
SMMs are also investigated at a pace faster than before.17–20

In the laboratory, information on magnetic anisotropy is
commonly evidenced through electron paramagnetic resonance
(EPR) and magnetic susceptibility (w) studies. The outcome is
interpreted through the language of model Hamiltonians,21–23

dressed with parameters quantifying the physics of the electronic
structure, e.g. magnetic exchange, zero-field splitting (ZFS), Zee-
man interaction, etc. Optimal values for these parameters are
obtained by fitting measured data,24,25 such as the temperature
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variation of wT, and concluding on a certain set of uniquely
defined values from good grounds may require input from first
principles calculations.

With simplistic formulations, model Hamiltonians are
appealing in experimental contexts and serve as a bridge
between experiments and overly complicated theoretical
approaches. In the case of model spin Hamiltonians, only spin
operators are at play, with the assumption that the orbital
part(s) of the wave function(s) is(are) factored out. In mono-
nuclear complexes, the model Hamiltonian applies to the
|S,MSi components of the ground spin state. In binuclear
complexes and beyond, the model space may include more
than one spin state. For instance, it may be constituted of the
spin components of all the spin states that are triggered by the
Heisenberg-Dirac-van Vleck (HDVV) Hamiltonian.26–28 Yet,
these types of models reproduce faithfully magnetic data at
low temperatures, in the absence of local orbital degeneracy, as
soon as the interaction space encodes the effective physics of
the studied system.

In polynuclear systems, two main types of models apply. The
giant-spin model, ĤGS, only aims at describing the ZFS of the
ground spin state and it is used in a fashion similar to that of
mononuclear systems. The multispin model, ĤMS, aims to
describe the splitting and mixing of the spin components of
the HDVV spectrum. With both model Hamiltonians, the
theoretical extraction of relevant parameters is based on an
explicit mapping onto an effective Hamiltonian (Ĥeff) that is
built on top of the ab initio calculations.29–33 Alternatively, one
may skip the explicit projection of the wave functions and work
within the pseudospin framework.34 Since ĤGS targets only the
ground spin state it is quite clear that it is not fully relevant in
the weak-exchange limit.29,35 ĤMS is better suited in such cases;
it is naturally built up in the |Si,MSi

,. . .i basis (the uncoupled
basis, the i’s denoting the active magnetic centers) and may be
further expressed in the |S,MSi basis (the coupled one).36

Calculations based on the complete active space self-
consistent field (CASSCF) approach37 are appealing in the
context of magnetochemistry.38 This approach can describe
correctly dn and fn near-degenerate configurations and allows
for a systematic improvement of the electron correlation in
post-CASSCF multireference treatments. Subsequently, the SOC

can be introduced by diagonalization of an electronic energy
plus spin–orbit operator matrix, on the basis of the spin
components of the previous spin-free CASSCF states, with the
electronic energies potentially replaced by dynamically corre-
lated ones. This is the spirit of (dressed) spin–orbit configu-
ration interaction (SOCI).39

Many seminal studies show the use of configuration inter-
action schemes to calculate magnetic properties.40–47 It is worth
noting that density functional theory (DFT) is equally involved
in rationalizing magnetic data,48–54 as well as single-reference
spin-flip approaches,55–57 and more recently coupled-cluster
methods.58–60 In principle, the low-energy ab initio spectrum
offers sufficient detail for calculating anisotropy parameters
and spin–orbit correction to the exchange interaction if a SOCI
is performed,22,33 as well as EPR parameters and wT profiles
provided that the Zeeman interaction is treated.46,61–64 This is
the starting point of our work.

Extraction of magnetic parameters from ĤMS may be
straightforward in centrosymmetric binuclear complexes. In
such cases, all rank-2 tensors involved in ĤMS (vide infra) have
the same principal axes, or principal axis frames (PAFs). Such a
frame, which may be derived from ĤGS if not directly from
symmetry arguments,29,30,65 not only simplifies the model
construction but also helps in shortcutting the parameter
extraction through the effective Hamiltonian theory. In prac-
tice, cases were identified in which matrix elements are nil in
the model but non-nil in Ĥeff.65 Such inequalities were
proposed to arise from the lack of a rank-4, biquadratic
anisotropy exchange tensor in ĤMS. The case of low-symmetry
binuclear complexes is even more complicated. Although the
molecular orientation may correspond to a molecular PAF,
derived somehow from ĤGS or from the diagonalization of the
EPR g-matrix in the case of pseudospin Hamiltonians,34 this xyz
frame may not correspond at all to the local or specific PAFs of
all the rank-2 tensors of ĤMS. This must lead to nonzero off-
diagonal elements of these tensors if expressed in the molecu-
lar frame, which is almost always neglected in experimental
studies. Hence, the use of ĤMS in current magnetochemistry
applications still appears problematic.

This article aims to revive the utilization of ĤMS for interpreting
the low-temperature magnetic properties of binuclear complexes;
it forwards a simple, rigorous, and versatile strategy to resolve the
model, irrespective of the coordination symmetry or the regime
(weak- or strong-exchange). The technique is showcased using
dicobalt(II) complexes, a centrosymmetric one, [Co2Cl6]2� (1),66,67

and an unsymmetrical one, [Co2(L)2(acac)2(H2O)]‡ (2).68 The mole-
cular structures are shown in Fig. 1. Dicobalt(II) systems were
chosen simply to show that, by using the proposed strategy, full
extraction of magnetic parameters can be easily performed even in
challenging cases (here, the HDVV matrix being 16 � 16 and the
local magnetic centers intrinsically displaying Kramers degenera-
cies). The article concludes that achieving a strong agreement
between the matrix elements of ĤMS and Ĥeff, necessary for the

Fig. 1 Molecular geometries of the binuclear complexes 1 and 2, and of
the respective a and b models obtained by substituting one Co atom by a
Zn one. H atoms are omitted for clarity. Red, green, and blue correspond
to O, Cl, and N atoms, respectively. ‡ L = (4-methyl-2-formyl-6-(((2-trifluoromethyl)phenyl)methyliminomethyl)phenol).
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validation and resolution of the former, is possible in any case,
and, in practice, easily achievable by

(i) building a first effective Hamiltonian in the coupled basis,
(ii) determining the molecular PAF, which is identified by

resolution of the anisotropic model Hamiltonian Ĥmod ¼
ŜDS¼3Ŝ effectively at play only in the |S = 3,MSi block of the
full model space of ĤMS,

(iii) recomputing the effective Hamiltonian in the molecular
PAF and consistently revising the � signs of the cross-blocks
matrix elements, coupling MS components belonging to differ-
ent S-blocks in Ĥeff, and

(iv) expressing all rank-2 tensors of ĤMS in the molecular
PAF to finally determine the missing quantities by minimizing
the mismatch between ĤMS and Ĥeff.

A recent erratum to ref. 4 also raised the issue of conflicting
signs mentioned at point (iii). In order to properly project Ĥeff

onto ĤMS, it is essential to use correct prefactors. In fact, the
revision of such conflicting signs practically eliminates the
need to introduce tensors of rank superior to 2 to achieve
agreement between each and every matrix element of ĤMS and
Ĥeff, regardless of the coordination symmetry. Thus, the pre-
sent article concludes that the resolution of ĤMS for
[Ni2(en)4Cl2]2+, en = ethylendiamine, was in fact straightfor-
ward, and already properly done in the seminal publication.65

The subsequent sections commence with a brief overview of
the standard ĤMS and its validation by effective Hamiltonians.
This is followed by an outline of the proposed strategy for
utilizing these two concepts in deriving magnetic properties for
binuclear complexes. The results and discussion extend over
two major sections showcasing the resolution of ĤMS, and the
subsequent calculation of the wT profile, for the centrosymmetric
complex 1 firstly, and for the unsymmetrical complex 2, sec-
ondly. The article concludes that, when constructed appropri-
ately, the standard multispin Hamiltonian correctly describes
the effective magnetic interactions even in the weak-exchange
limit, thus justifying its general relevance in the experimental
design of SMMs based on d-elements. Finally, a series of take-
home messages will be delivered to the attention of the experi-
mental community involved in molecular magnetism, emphasiz-
ing once more the strong need for good, independent,
computational input to consistently interpret the data.

2 Theory and computational strategy
2.1 The multispin model Hamiltonian for binuclear
complexes

In the absence local orbital momentum, the model multispin
Hamiltonian expression reads:33,36,69

ĤMS ¼ JŜaŜb þ ŜaDaŜa þ ŜbDbŜb þ ŜaDabŜb þ �dŜa � Ŝb

(1)

where a and b label the two magnetic centers, Ŝa and Ŝb are spin
operators, J is the Heisenberg exchange magnetic coupling,

Da and Db are rank-2 tensors describing the local anisotropies,

Dab is a rank-2 tensor describing the symmetric anisotropic
exchange, and %d is a pseudovector describing the anti-
symmetric component of the anisotropic exchange. In centro-
symmetric complexes, the latter term of eqn (1), also referred to
as the Dzyaloshinskii–Moriya interaction (DMI),70–75 vanishes,
and otherwise, may be less important than the other terms
unless specific situations are encountered (exotic coordination
environment and/or orbital near-degeneracy). In fact, this work
does not specifically focus in the DMI, which will be later
justified by comparing Ĥeff and ĤMS.

In order to describe interaction with an applied magnetic

field,
-

B, eqn (1) is completed by the Zeeman Hamiltonian:

ĤZee ¼ mB~BgaŜa þ mB~BgbŜb (2)

where mB is the Bohr magneton and ga and gb are the local
Zeeman splitting tensors. The rank-2 tensors of eqn (1) and (2)
are represented as 3 � 3 matrices consisting of up to nine non-
zero components in arbitrary xyz frames. The tensors are of
course diagonal in their respective PAFs. Though the axial (Da,
Db, Dab) and rhombic (Ea, Eb, Eab) local and exchange aniso-
tropic parameters depend only on the diagonal elements of the

respective tensors Da;Db;Dab

� �
, following D = 3

2
Dzz and

E = 1
2(Dxx � Dyy),§ it should be noted that the PAFs of

Da;Db and Dab may not coincide with each other in the general
case, nor with those of ga and gb. Thus, symmetry is key to
understanding how to practically deal with so many tensors.

If centrosymmetry is present, one may expect that all the
tensors of eqn (1) and (2) are diagonal in the same coordinate
frame, which effectively corresponds to the molecular PAF. This
facilitates the straightforward construction of ĤMS and the
extraction of relevant axial and rhombic parameters using the
effective Hamiltonian theory. However, if centrosymmetry is
not present, two additional challenges arise. Firstly, one must
determine the molecular PAF. Secondly, one must express all
the rank-2 tensors in this coordinate frame. In this scenario,
the rank-2 tensors may no longer be diagonal, although sym-
metry may still impose some of the off-diagonal elements to be
zero in specific situations.

ĤMS and ĤZee are both constructed in the uncoupled spin-
basis, |Sa,MSa

;Sb,MSb
i, or shortly |MSa

,MSb
i. Since we deal with

d7 Co(II) centers, Sa = Sb = 3
2

and MSa
,MSb

A {�3
2
,�1

2}, resulting in a
16 � 16 model space. Thus, the matrices of all terms in eqn (1)
and (2) must be expressed in this same 16 � 16 basis. ĤMS is
designed here to reproduce the energy levels generated by the
coupling of the local spin-quartets, i.e., the septet (S = 3),
quintet (S = 2), triplet (S = 1) and singlet (S = 0) coupled-spin
states. Translation of ĤMS from the uncoupled-spin basis,
|MSa

,MSb
i, to the coupled-spin basis, |S,MSi (S = 0,1,2,3, MS =

+S,. . ., �S), is achieved via the transformation matrix U based
on Clebsch–Gordan (CG) coefficients:36

ĤMS(coupled) = UT�ĤMS(uncoupled)�U (3)

§ The standard conventions are applied here: the tensor is traceless, |D| 4 3E

and E 4 0.
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where UT is the transposed of U. The 16 � 16 matrix U of CG
coefficients used in this work is provided in Table S1 of the
ESI.†

2.2 Construction of the effective Hamiltonian

Ĥeff spans the same model space as ĤMS and it is initially
constructed in the coupled-spin basis, in accord with the
expressions of the underlying SOCI wavefunctions, by means
of the des Cloizeaux formalism:76

Ĥeff ¼
X
K

EK fijcL
K

� �
cL
K jfj

D E
(4)

where fi, fj are model-space |S,MSi spin functions, cL
K are

Löwdin-orthonormalized projections of the SOCI wavefunc-
tions onto the model interaction space, and the EK’s are the
lowest SOCI energies (4 in the case of a mononuclear cobalt(II)
complex and 16 in the case of a binuclear one). Note that
eqn (3) may also be used to transform Ĥeff from the coupled-
spin basis to the uncoupled-spin one.

2.3 Proposed step-by-step strategy for extracting the multispin
Hamiltonian

Step 1. The first step involves determining the molecular PAF.
Note that, unlike the energies, the composition of the SOCI
wavefunctions varies with the molecular orientation such that
their interpretation may become needlessly complex in the
event that the cartesian z-axis does not coincide with the one
of the molecular PAF. For both the studied complexes (1 and 2),
the molecular PAF was determined from the resolution of

Ĥmod ¼ ŜDS¼3Ŝ, describing only the ground S = 3 state. A
similar strategy was employed for determining the anisotropy
axes of [Ni2(en)4Cl2]2+.65 The procedure consists in:

(i) perform a first reference SOCI calculation with an arbi-
trary xyz frame, construct the 16 � 16 matrix of Ĥeff according
to Section 2.2 and focus only on the S = 3 block. This procedure
is in essence different from simply following the giant spin
approach: in the case of spin mixing, it ensures that we properly
extract the actual PAF of the S = 3 block.

(ii) derive the analytical matrix representation of Ĥmod ¼
ŜDS¼3Ŝ in the |S = 3,MSi space and extract DS¼3 by best
equating Ĥeff from point (i) to Ĥmod. Since this matrix is
uncommon in the transition metal literature (an S = 3 state is
impossible to reach within a dn manifold), we provide it in
Table 1.

(iii) rotate the molecular coordinates from the arbitrary xyz
frame to the molecular PAF: xyzMPAF

i = V�1�xyzarb
i , where

xyzarb
i are the coordinates of all the i atoms in the arbitrary

frame and V is the eigenvector matrix of DS¼3 (convention may
apply for the respective labeling of the x, y and z axes).

With the molecular geometry rotated in the molecular PAF,
the SOCI calculations of Step 1 are repeated and the 16 � 16
representative matrix of Ĥeff is re-built. This is the Ĥeff that will
be essentially used for the validation and resolution of ĤMS.
However, note that the exact same conclusions can be reached T
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Ĥ

m
o
d
¼

Ŝ
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by extracting it all in an arbitrary axis frame (in a more
tedious way!).

Step 2. SOCI calculations are conducted with two model,
monomeric, structures defined by the substitution of a magnetic
center with a diamagnetic one. In the present cases, models 1a,
1b and 2a, 2b (Fig. 1) are obtained by replacing one Co with one
Zn in the dimeric structures 1 and 2 respectively. The goal here is

to extract independently the local anisotropy tensors, Da and Db,
for the magnetic centers, determine their respective PAFs, and
calculate the corresponding axial and rhombic parameters Da, Ea,

Db, Eb. For each magnetic center, the eigenvectors of D, leading to

Ddiag, provide with the V rotation matrix that can be used to
express them back in the molecular PAF, through:

Dðmolecular PAFÞ ¼ VDdiagV�1 (5)

Step 3. The 16 � 16 model analytical matrix of ĤMS in the
uncoupled-spin basis is derived with the leading terms of it, i.e.,
the Heisenberg and the local anisotropy terms, by applying
simple spin-operator algebra. This matrix is subsequently
transformed in the coupled-spin basis using eqn (3).

Afterwards, the quality of the model matrix can be evaluated
by expressing it numerically and comparing it to Ĥeff. The less
deviation, the better the model. To shortcut the extraction, one
may directly use the spin-free J value and the local anisotropy
tensors calculated independently at Step 2 (of course, expressed
in the molecular PAF for consistency). In principle, this
approach should already provide a good representation of Ĥeff

since (i) the effect of the SOC on J is usually small30,65 and (ii)
the symmetric anisotropy exchange tensor may be of lesser
importance than the local ones. Finally, we may also refine the J
value and the components of the local anisotropy tensors as
well as introduce the symmetric exchange tensor in the model
to further improve it. Refinement is carried out through a least-
squares fitting of the model parameters, aiming to minimize
the root mean square deviation (RMSD) between ĤMS and Ĥeff.

Here, we have deliberately chosen to make use of momoner
calculations to (i) validate and provide additional support for
this route, which is one of the most commonly employed in
current literature when modeling magnetic properties, for
instance followed by the POLY_ANISO program,77,78 and (ii)
avoid the extraction of too many parameters simultaneously in
unsymmetrical cases, such as that of complex 2, thus prevent-
ing the occurrence of unnoticed human mistakes by allowing a
cross-validation of the extraction procedure based on the much
simpler extracted parameters of the monomer calculations.
Note that we would be now confident in performing a complete
extraction based on a dimer calculation on a new system, or
alternatively in performing only monomer calculations if the
dimer calculations would prove to be too demanding.

2.4 Computational details

Electronic structure calculations were performed with the ORCA
package, v5.0.3.79,80 Scalar relativistic effects were introduced by
using the Douglas–Kroll–Hess (DKH) Hamiltonian.81–84 The Co,
N, O, and Cl electrons were treated with the all-electron, triple-

zeta DKH-def2-TZVP basis sets whereas the C, F, and H elec-
trons were treated with the smaller, double-zeta DKH-def2-SVP
ones. These bases were derived from the original def2 variants
by recontraction within the DKH framework.85 To speed off the
calculation of electron repulsion integrals, the RIJCOSX ‘‘chain-
of-spheres’’ density-fitting86 was applied together with large,
automatically-generated auxiliary basis sets.87 The geometries of
1 and 2 were extracted from published crystal information
data.66,68 Concerning 2, the H coordinates were optimized
within the DFT framework, using the Perdew–Burke–Ernzerhof
generalized gradient approximation,88 and otherwise the same
details as above hold. The xyz coordinates in the initial, arbi-
trary, coordinate frames are provided in the ESI.†

The zero-order wavefunctions were converged within the
state-averaged (SA) CASSCF framework, with the active space
spanned by the Co(II) d7 shell(s). I.e., CASSCF(14, 10) and
CASSCF(7, 5) calculations were performed for the dimeric
species 1 and 2 and for the monomeric species 1a, 1b, 2a and
2b, respectively. The production-level SA schemes included 49
states per S = 3, 2, 1 and 0 block for 1, seven S = 3

2
states for 1a

and 1b, 9 states per S = 3, 2, 1 and 0 block for 2, three S = 3
2

states
for 2a and 2b. Regarding complex 2 and its monomers, addi-
tional SA schemes were explored for validation purposes, which
will be discussed in the Results sections. The 49-root per spin-
block SA scheme employed for 1 was validated in ref. 67, 49
being the total number of roots generated from the product of
the two local (crystal-field split) 4F Co(II) terms. Concerning
complex 2, the 9-root per spin-block SA scheme has been
validated in this work, 9 corresponding to the number of roots
generated from the product of two local 4T1 Co(II) terms.

State energies including dynamic correlation effects were
calculated with the strongly-contracted, n-electron valence state
perturbation theory at second order (NEVPT2).89,90 For 2 in
particular, the relative correlated energies for the lowest S = 3,
2, 1 and 0 states were additionally recorrected by difference
dedicated CI (DDCI2) and iterative DDCI2 calculations,91,92

with an orbital-energy cutoff between �10 and 1000 Hartree
and the Tsel and Tpre thresholds set to 1 � 10�10 and 1 � 10�6,
respectively. In this way, a better J value was obtained, or in
other words, a better separation of the spin blocks. In the
iterative DDCI2 calculation, a limit of ten iterations was
employed.

Finally, the production SOCI calculations were performed
for all the dimeric and monomeric species. In these calcula-
tions, the spin–orbit operator matrix was constructed in the
basis of the spin components of the CASSCF states. The SOCI
matrix is constituted of off-diagonal elements, triggered by the
spin–orbit coupling, and also of diagonal ones, the electronic
spin-free energies. The diagonal was dressed with dynamically-
correlated energies and the resulting matrix was diagonalized
to generate the spin–orbit coupled wavefunctions and energies.
Hereafter, SOCI calculations based on NEVPT2 and DDCI2
correlated energies will be referred to as SO-NEVPT2 and SO-
DDCI2 respectively. We point out additionally that, in the SO-
DDCI2 calculations, only the relative energies of the lowest S =
3, 2, 1, 0 CASSCF states were adjusted by the DDCI2 energy
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spacings, whereas the NEVPT2 relative energies were retained
for the remaining 192 CASSCF states. The intention here was to
characterize as best as possible the spin–orbit states that may
be populated in the temperature range employed in experi-
mental magnetic susceptibility studies. Since other excited
states appear at much higher energies, above 2800 cm�1, they
do not contribute much to the observed properties.

Finally, powder-averaged ab initio wT curves were generated
for complexes 1 and 2 directly from the outcomes of the SOCI
calculations. Note that, in ORCA, w is calculated by finite
differentiation of the partition function by using the (field-
corrected) spin–orbit states.46 Furthermore, by using the same
approach, we have modeled the wT curves based on the pre-
validated ĤMS + ĤZee models, through the usual approximation,

wa �
M

B
¼ kBT

mB

@ lnZ

@Ba

1

Ba
(6)

as well as by computing the full w tensor,

wa;b ¼
NAkBT

10

@2 lnZ

@Ba@Bb
(7)

where M is the magnetization, B = 0.2 T is the applied magnetic

field, a and b are two field directions, Z ¼
P16
i

e
� Ei
kBT is the

partition function, and NA and kB are the Avogadro and Boltz-
mann constants, respectively. For the present dicobalt(II) cases,
eqn (6) and (7) led to practically identical wT = f (T) model
curves.

3 Results and discussion
3.1 [Co2Cl6]2�, a centrosymmetric complex

3.1.1 Introduction and spin-free spectrum. Magnetic prop-
erties in this edge-sharing, bitetrahedral ion were measured by
Su et al.66 Each Co(II) center adopts an orbitally non-degenerate
ground state (GS), 4A2, correlating with the 4F ground term of
the isolated ion. The wT profile was fitted by an anisotropic
model with a relatively large antiferromagnetic Heisenberg
exchange coupling, J = 23.2 cm�1 (JŜaŜb formalism), a large
local anisotropy D = 29 cm�1 parameter, and an isotropic g-
factor of 2.25. With first-principles calculations, de Graaf and
Sousa noted that the anisotropy parameter is well approxi-
mated by that of a [CoCl4]2� structural model.67 However, the
calculated J value, 34.3 cm�1 with second-order CAS perturba-
tion theory (CASPT2),93 overreached the fitted J. Furthermore,
SOCI delivered a low-energy spin–orbit spectrum plagued by a
large admixture of septet (S = 3), quintet (S = 2), triplet (S = 1),
and singlet (S = 0) spin components. The authors concluded the
impossibility of calculating J and D with ĤMS of eqn (1) and
reiterated the difficulties of describing magnetic properties in
the weak-exchange regime.21

Our first-principles calculations support the previous theo-
retical data. Namely, complex 1 adopts a spin-singlet GS with a
Landé ordering for the triplet, quintet, and septet spin-states
with antiferromagnetic J of 7.5 (CASSCF)/11.2 cm�1 (NEVPT2).
The J value matches that of ref. 67 within 1 cm�1 at the CASSCF

level, but it is three times smaller when the dynamic correlation
is included. Although the discrepancy may originate from the
choice of the PT2 flavor, here NEVPT2 vs. CASPT2 in ref. 67,
both these methods deliver similar accuracy when evaluated
against the fitted J value of 23.2 cm�1; i.e. if CASPT2 over-
estimates it by 11.1 cm�1, NEVPT2 underestimates it by
12 cm�1. In this context, DDCI2 calculations led to J = 21.3 cm�1,
within B2 cm�1 of the fitted value. Iterative DDCI2 calculations did
not converge well on a particular value and delivered J within the
B18–21.5 cm�1 range in 10 iterations, with the mean J = 20.9 cm�1

still in excellent agreement with the fitted J.
3.1.2 Spin–orbit spectrum and determination of the

molecular PAF. SOCI calculations were initially performed
with complex 1 oriented in the arbitrarily-chosen coordinate
frame shown in Fig. 2, i.e. with z and y collinear with the Co2

and m-Cl2 internuclear axis, respectively, and x perpendicular to
the Co-(mCl2)-Co plane. The SOC splits and intercalates the
|S,MSi components of the spin-free states, resulting in 16 low-
lying levels stretching up to 123 cm�1 (see Table S2, ESI†) and a
continuum of excited levels above B2700 cm�1. The low-energy
spectrum originates almost entirely from SOC admixture of the
16 MS components of the ground S = 3, 2, 1, and 0 spin-free
states. The SO-NEVPT2 wavefunctions listed in Table S3 (ESI†)
support this statement and demonstrate that each of these
states contains more than 90% summed contributions from
such |S,MSi components. This indicates that the majority of the
physics is captured by the low-energy ab initio spectrum, which
therefore is adequate for the construction of Ĥeff and validation
of ĤMS.

Following the strategy presented in Section 2, the first step
toward the resolution of ĤMS involves the identification of the
molecular PAF. Here, the SOCI wavefunctions of Table S3 (ESI†)
already show little spin-mixing due to misalignment of the z-
axis with the principal magnetic anisotropy axis of the complex,
meaning that the arbitrarily-chosen input frame is not very
different from the molecular PAF. The numerical matrix ele-
ments of the |S = 3,MSi block within Ĥeff are shown in Table 2.

Comparison with the analytical Ĥmod ¼ ŜDS¼3Ŝ matrix of
Table 1 concludes with the perfect one-to-one correspondence
of the respective matrix elements showing the validity of the
model Hamiltonian. Moreover, it is clear that the matrix
elements in Ĥeff that should vanish in the molecular PAF are
very close to zero, e.g. h3,2|Ĥmod|3,3i, h3,0|Ĥmod|3,1i, etc.,

Fig. 2 Arbitrarily-chosen coordinate frame and calculated PAFs for
complex 1 (from ��DS¼3) and for the model structure 1a (from ��Da). Axes
color code: z = red, x = blue, y = green.
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meaning that the arbitrary axis frame is indeed not far from the

molecular PAF. Indeed, extraction and diagonalization of DS¼3
led to the molecular PAF shown in Fig. 2, which essentially
differs from the arbitrary frame by axis relabeling, i.e. z - x,
x - y and y - z. SOCI performed with complex 1 oriented in
the molecular PAF led to the wavefunctions printed in Table S4
(ESI†); these are slightly cleaner than the previous ones and
show large spin-mixings between S = 0 and S = 2 spin-
components, and between the S = 1 and S = 3 ones.

3.1.3 Extraction and validation of the multispin Hamilto-
nian. In order to assemble the model matrix of ĤMS (eqn (1)), we

must determine at first the local anisotropy tensors, Da and Db,
associated with the two Co centers, and thereof the axial (Da and
Db) and rhombic (Ea and Eb) local ZFS parameters (which are
here respectively equal by symmetry). To this end, SO-NEVPT2
calculations were performed on the monomeric model struc-
tures 1a and 1b shown in Fig. 1, both oriented in the molecular
PAF determined above. Because of symmetry, one may here skip
the computation of 1b. However, doing it has two advantages, (i) it
allows one to validate spreadsheets and (ii) it is generally applicable
also in cases with no symmetry. Resolution of the anisotropic

Hamiltonians, ŜaDaŜa and ŜbDbŜb, was achieved following the
effective Hamiltonian workflow for mononuclear complexes.45

Da and Db are found identical here, as expected due to the
centrosymmetry. Moreover, they are diagonal in the molecular PAF:

Da ¼ Db ¼

�2:1 0 0

0 �9:5 0

0 0 11:6

2
6664

3
7775 (8)

which shows that Da; ŜbDbŜb and DS¼3 share the same PAF. The
ZFS parameters derived from matrix (8) are Da = Db = 17.4 cm�1 and
Ea = Eb = 3.7 cm�1.

The 16 � 16 analytical matrix of ĤMS was initially derived in
the uncoupled-spin basis, |MSa

,MSb
i. Subsequently, the matrix

was translated into the coupled-spin basis, |S,MSi, and it is
listed in Tables S5–S7 (ESI†). In the molecular PAF, the ĤMS

matrix simplifies greatly to that shown in Table 4, where all
elements depend only on the axial and rhombic parameters of
the local anisotropies, Da and Ea (due to centrosymmetry, Db

and Eb can be replaced by Da and Ea respectively), and of the
symmetric exchange anisotropy, Dab and Eab. The 16 � 16 Ĥeff

matrix derived from the SO-NEVPT2 calculation in the

molecular PAF is given in Tables S8 and S9 (ESI†) for the
coupled- and uncoupled-spin basis respectively.

In a first approximation, one may assume vanishing sym-
metric anisotropy, i.e. neglect the contribution of Dab and Eab to
Table 4, and use the calculated J = 11.2, Da = 17.4 and Ea = 3.7
cm�1 to evaluate ĤMS. The ĤMS numerical matrix expressed in
the coupled- and uncoupled-spin bases is shown in Tables S10
and S11 (ESI†), respectively. Concerning the coupled-spin basis,
the correspondence between ĤMS and Ĥeff matrices is out-
standing at first glance. A closer look reveals, however, that
the h0,0|Ĥeff|2,MSi and h1,MS|Ĥeff|3,MSi elements, as well as
their complex-conjugates, have opposite sign compared to
counterparts in ĤMS. The sign discrepancy reported and clar-
ified in the erratum to ref. 4, occurs since the |S,MSi spin
functions enter with arbitrary phases in the ab initio spin–orbit
eigenvectors, and may show up with random �1 prefactors
between different ab initio runs or runs on different computers.
The sign arbitrariness becomes problematic when Ĥeff is trans-
lated in the uncoupled-spin basis using tabulated CG coeffi-
cients that follow a specific sign convention. The ones used in
this work, shown in Table S1 (ESI†), follow the Condon and
Shortley convention.94,95 Indeed, comparison between the ĤMS

and Ĥeff numerical matrices in the uncoupled-spin basis, S11
vs. S9 (ESI†), is rather poor, generating misleading conclusions.
In order to obey sign conventions, one may express the spin-
free wavefunctions in a basis of localized orbitals, pick a phase
convention, and derive analytically the expressions of the spin–
orbit wavefunctions; finally, revise the CG coefficients accord-
ing to the chosen phase convention. This path has been
adopted in ref. 74. Pursuing such a scheme, although rigorous,
is tedious and not appealing in general. Instead, one may
follow the path taken in ref. 4 and revise the conflicting signs
in Ĥeff such that projection onto ĤMS using CG coefficients in
the Condon–Shortley convention gives the smallest deviation.
In this work, it is realized from the onset that, by construction,
the model ĤMS already yields the correct signs that must be
adopted in Ĥeff itself. The sign-revised, coupled-spin basis Ĥeff

is shown in Table S12 (ESI†) and the uncoupled-spin basis
matrix derived thereof is shown in Table S13 (ESI†). Compar-
ison with ĤMS counterparts (Tables S10 and S11, ESI†) reveals
outstanding agreement regardless of basis, with maximum
deviation not larger than 1 and 1.8 cm�1 for the off-diagonal
and diagonal elements respectively (see Tables S14 and S15,
ESI†). Three highly important conclusions are here drawn, (i)
the local anisotropy parameters calculated independently using

Table 2 Matrix elements, in cm�1, of the S = 3 block within the 16 � 16 matrix of Ĥeff, constructed from SO-NEVPT2 calculations on complex 1 oriented
in the arbitrary coordinate frame

Ĥmod |3,3i |3,2i |3,1i |3,0i |3,�1i |3,�2i |3,�3i

h3,3| 79.0 1.0 + 2.0i �15.0 � 6.0i 0 0 0 0
h3,2| 1.0 � 2.0i 87.0 1.0 + 1.0i �21.0 � 9.0i 0 0 0
h3,1| �15.0 + 6.0i 1.0 � 1.0i 92.0 1.0i �23.0 � 10.0i 0 0
h3,0| 0 �21.0 + 9.0i �1.0i 93.0 �1.0i �21.0 � 9.0i 0
h3,�1| 0 0 �23.0 + 10.0i 1.0i 92.0 �1.0 � 1.0i �15.0 � 6.0i
h3,�2| 0 0 0 �21.0 + 9.0i �1.0 + 1.0i 87.0 �1.0 � 2.0i
h3,�3| 0 0 0 0 �15.0 + 6.0i �1.0 + 2.0i 79.0
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monomeric structures 1a and 1b are transferable to calcula-
tions on the dimeric complex 1, (ii) the local anisotropies are
the main contributors to ĤMS and actually bring the model to
very close agreement with Ĥeff, and (iii) the approximate ĤMS,
accounting only for the Heisenberg exchange and local aniso-
tropies, is validated through the effective Hamiltonian theory
and may be already used in modeling magnetic properties such
as the wT curve.

Prior to modeling the wT curve, it may be noted that the
comparison between the analytical matrix of ĤMS (Table 4) and
the numerical matrix of Ĥeff (Table S12, ESI†) provides with
enough equations for a full extraction of all the magnetic
parameters at once. Thus, a more precise extraction can be
performed on 1 in order to obtain J under the effect of SOC and
both the local and the symmetric-exchange anisotropies. Such a
full extraction has been performed by least-squares fitting of
the ĤMS parameters in order to minimize the RMSD with the
Ĥeff matrix elements. The extracted parameters, listed in
Table 3, lead to ĤMS matrices (Tables S16 and S17, ESI† for
the uncoupled- and coupled-spin basis respectively) that agree
with Ĥeff within 1 cm�1 concerning the off-diagonal and
diagonal elements (see Tables S18 and S19, ESI†). Furthermore,
diagonalization of the model ĤMS matrices leads to highly
accurate spin–orbit energies, within 1.2 and 1.8 cm�1 of the
ab initio energies (see Table S2, ESI†), further supporting the
validity of ĤMS and of our extraction scheme.

Several aspects may be noted from Table 3: (i) since J only
appears on the diagonal of ĤMS in Table 4, switching from
NEVPT2 to corrected DDCI2 relative energies affects the J values
themselves but leaves mostly unchanged the remaining para-
meters; the SOC reduces J by 0.7 and 2 cm�1 at the SO-NEVPT2
and SO-DDCI2 levels, respectively, (ii) the re-extracted local
anisotropy parameters at the SO-NEVPT2 level, Da = 17.1 and
Ea = 3.7 cm�1 are in complete agreement with the counterparts
extracted independently with the 1a and 1b monomeric struc-
tures, Da = 17.4 and Ea = 3.7 cm�1, reaffirming the transfer-
ability of these parameters from monomer to dimer
calculations, and (iii) the symmetric exchange anisotropy is
indeed minor compared to local anisotropies and thus neglect-
ing it from the construction of ĤMS is not a bad approximation.
It is worth noting for specialists that re-labeling the axes

describing the PAF of Dab is necessary in order to respect the

conventions Eab 4 0 and |Dab| 4 3Eab. In particular, the easy
axis of magnetization of the symmetric anisotropy, which is
collinear with the Co2 internuclear axis, falls perpendicular to
the molecular easy axis of local anisotropy, which in turn is
almost collinear with the m-Cl2 internuclear axis.

Finally, the fully extracted ĤMS is used to model the wT
curve of complex 1. For this task, one needs to express in matrix
form the Zeeman terms of the two magnetic centers,

mB~BgaŜa and mB~BgbŜb, and add them to ĤMS. Working in the
uncoupled-spin basis, the 16 � 16 analytical matrices of the
Zeeman terms are derived in Tables S20 and S21 (ESI†). These
matrices are evaluated with ga and gb tensors obtained via the
effective Hamiltonian theory from SO-NEVPT2 calculations
performed on structures 1a and 1b in the molecular PAF:

ga ¼ gb ¼

2:40 0 0

0 2:50 0

0 0 2:23

2
6664

3
7775 (9)

The diagonal form of eqn (9) shows, as expected, that the
local PAFs of the g tensors also coincide with the molecular
PAF. The isotropic g-factor of 2.38 is very close to the fitted
value in ref. 66, g = 2.25.

The modeled wT = f (T) curves with magnetic parameters
from Table 3, shown in Fig. 3, highlight primarily the role of the
magnetic coupling J in achieving agreement with the experi-
ment. Since the J = 10.5 cm�1 extracted from the SO-NEVPT2
calculation is too small, the wT curve increases steadily and
diverges from the reference experimental curve. The revised
J = 19.3 cm�1 extracted out of the SO-DDCI2 calculation leads to
wT in a much closer agreement, especially in the low-
temperature range, B0–50 K. Furthermore, with a slightly
adjusted isotropic g-factor of 2.28, which is even closer to the
fitted 2.25 value,66 the modeled wT curve with the SO-DDCI2
parameters fits almost perfectly the experimental curve in the
whole temperature range. The present article does not aim to
delve into higher-level theoretical approaches that could poten-
tially improve the description of g from the onset. Therefore, we
conclude that the successful resolution and utilization of the
standard multispin model Hamiltonian for calculating mag-
netic properties in the centrosymmetric complex 1 have been
here neatly demonstrated.

3.2 [Co2(L)2(acac)2(H2O)], an unsymmetrical complex

3.2.1 Introduction and local, Co(II), electronic structures.
The m-O2(phenoxo)-bridged binuclear complex 2 displays Co(II)
centers coordinated by O and N atoms. The local coordination
around both metals is near-Oh, with bond angles between
85–961 and Co–O and Co–N mean distances of B2.07 and
2.08 Å respectively. Recent work recorded a wT profile consis-
tent with weak ferromagnetic behavior and an interesting
maximum below 10 K.68 Fitting of the wT curve resulted in
J = �3.74 cm�1 (JŜaŜb convention). The study concluded that
overall, the spin alignment is favored by the spin–orbit cou-
pling (SOC) and the local coordination geometry around the

Table 3 Magnetic parameters, in cm�1, obtained from the resolution of
ĤMS based on Ĥeff’s derived from different calculations on complex 1 in the
molecular PAF. The isotropic g-factor per Co center, obtained with models
1a and 1b, is also printed

Method J Da Ea Dab Eab g

SO-NEVPT2 10.5 17.13 3.68 0.25a/�0.64b �0.34a/0.045b 2.38
SO-DDCI2 19.3 17.32 3.70 0.36a/�0.71b �0.35a/0.004b n/a
Fitc 23.2 29 — — — 2.25

a Obtained from a least-squares fitting procedure minimizing the
RMSD between ĤMS and Ĥeff. b Recalculated parameters after relabeling
of the axes such that the convention Eab 4 0 and |Dab| 4 3Eab is
fulfilled: x - z, y - x, z - y with SO-NEVPT2 and x 2 z with SO-
DDCI2. c From ref. 66.
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metals. It is important to note that the local orbital degeneracy
of the 3d t2g orbitals in Oh leads to non-zero orbital momentum
in the Co(II) d7 configuration, thus theoretically invalidating the
use of the spin Hamiltonian approach. However, we will show
here that the local distortions at play in complex 2 are large
enough to make the spin Hamiltonian approach relevant. Note
that it is possible to generalize our approach to account for
orbital momentum, which will be the subject of a dedicated
work. Therefore, we begin detailing the local many-electron
states at the Co(II) centers as provided by NEVPT2 calculations
conducted with the 2a and 2b monomeric structures.

The ground term of the free-ion Co(II), denoted as 4F, splits
in (weak) Oh ligand fields, resulting in a ground 4T1 state and
excited 4T2 and 4A2 states. The threefold degeneracy of the
orbital-triplet states is then lifted by distortions of the local Oh

coordination. According to Table 5, both Co(II) centers exhibit
spin-free energy levels with a 4F parentage that are well isolated
within specific ranges: approximately 0–1100 cm�1 for 4T1,
8600–10 500 cm�1 for 4T2, and above 18 500 cm�1 for 4A2. The
energy variation of these individual levels on the employed SA
scheme is minimal. If the overall degeneracy lift of 4T1 is
similar for both Co centers (around 1100 cm�1), the splitting
of 4T2 is three times larger in 1a (around 1500 cm�1) than in 1b
(around 400 cm�1). Taken together with the fact that the
spectral widths of the states listed in Table 5 is about
750 cm�1 higher in 2a compared to 2b, these data reflect the
slightly more distorted octahedron around the magnetic center
of the former structure. Overall, based on energy gaps alone,
one may conclude that the three levels of 4T1 parentage are the
primary contributors shaping the local spin–orbit electronic
structures. Consequently, performing SOC calculations with a
SA/SI scheme involving these three quartets should be suffi-
cient to address the local ZFS parameters.

Indeed, we found that the lowest-energy Kramers doublets
(KDs) only marginally change when increasing the SA/SI
scheme beyond the first three quartet roots. As listed in
Table 5, each Co(II) center exhibits one KD below approximately
200 cm�1 and the others above 700 cm�1. Evidently, all these
Kramers doublets (KDs) fully arise as admixtures of |S = 3

2
,MSi

components of the spin-free states correlating with 4T1.
Furthermore, the spin-free quartet GS predominantly contri-
butes to the wavefunctions of KD1 (B75%) and KD2 (B90%) in
both 2a and 2b. The next significant contribution to KD1,

Table 5 Spin-free (SF) and spin–orbit (SO) energies and local magnetic
parameters for the Co(II) centers of complex 2, obtained with NEVPT2
calculations and different SA/SI schemesa

2a 2b

10Q + 40D 7Q 3Q 10Q + 40D 7Q 3Q

SF
4T1 0 0 0 0 0 0

622 600 610 460 446 468
1079 1044 1059 1175 1143 1154

4T2 8952 8673 n/a 9189 8895 n/a
9341 9050 n/a 9352 9059 n/a
10 555 10 211 n/a 9583 9280 n/a

4A2 19 969 19 344 n/a 19 190 18 584 n/a
SOb

KD1 0 0 0 0 0 0
KD2 147 157 178 190 194 205
KD3 721 708 733 664 659 688

Local ZFS parameters and isotropic g-factors

Da Ea ga Db Eb gb

86.31 11.91 2.30 93.14 25.02 2.31

a Relative energies and ZFS parameters in cm�1; letters D and Q are
used to denote spin-doublet and spin-quartet states; structures 2a and
2b are shown in Fig. 1. b KD in the labeling of the SO states stands for
Kramers doublet.

Fig. 4 Arbitrarily-chosen coordinate frame and calculated PAFs for
complex 2 (from DS¼3) and for the model structures 2a (from Da) and 2b

(from Db). Axes color code: x = blue, y = green, z = red.

Fig. 3 wT = f (T) experimental curve of complex 1, digitized from ref. 66,
and modeled with the spin Hamiltonian Ĥ = ĤMS + Ĥzee, dressed with
parameters listed in Table 3.
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approximately 20%, comes from the first excited spin-quartet root.
Anyway, one can confidently extract local ZFS parameters from the

usual anisotropic spin Hamiltonians ŜaDaŜa and ŜbDbŜb,
expressed in the |S = 3

2
,MSi basis of the ground quartet state (the

model space thus consisting of the leading contributors to both
KD1 and KD2).

The extracted axial, Da and Db, and rhombic, Ea and Eb, ZFS
parameters are listed at the bottom of Table 5. The PAFs of the

local rank-2 tensors, Da and Db, shown in Fig. 4, are very
distinct this time, with orientations that may not have been
guessed without performing those calculations. In comparison
with complex 1, the axial parameters Da/b C 90 cm�1 are at least
fivefold larger. Furthermore, Eb = 25 cm�1 is twice larger than
Ea = 12 cm�1, and both are at least three times larger than the
local rhombic parameter in complex 1, 3.7 cm�1. On another
hand, the Co centers share similar isotropic g-factor, ga C gb C
2.30, with that of the Co centers in complex 1, ga = gb = 2.35.
Here, however, the spans of ga and gb, 1.86–2.66 and 1.81–2.84
respectively, are much larger than the g-tensor span in complex
2, 2.23–2.40, also highlighting the much larger anisotropy in
complex 2 in terms of the local g’s.

3.2.2 Spin-free and spin–orbit spectra and determination
of the molecular PAF. Calculations for complex 2 were initially
performed in an arbitrary coordinate system (see Fig. 4, the Co2

and m-O2 internuclear axis correspond to the z and y directions,
respectively, and the x axis is perpendicular to the Co-[mO2]-Co
plane). Spin-free NEVPT2 calculations were conducted,
revealing a Landé type spectrum with an S = 3 GS followed by
a first set of S = 2, 1 and 0 excited states, mapped with a
ferromagnetic J (�2.85 cm�1). This value is within 1 cm�1 of the
J = �3.74 cm�1 obtained from fitting the experimental wT
curve.68 When considering the SOC, there are 16 lowest-lying
energy levels within 389 cm�1 (see Table 7 and Table S22, ESI†).
In comparison to complex 1, not only is this energy range three
times larger, but the continuum of excited levels begins at a
much lower energy, 691 cm�1. Importantly, the total contribution
of the lowest-energy S = 3, 2, 1, 0 spin-free states to the
wavefunctions of those 16 spin–orbit levels gradually increases,
from about 50% in C1 to 81% in C16. Although these weights are
lower than what was observed in 1, it should be noted that the
SOCI wave functions are still dominated by the standard model
space (the projection on the model space being more than 50%)
and that in fine will we show that our approach allows us to
reproduce accurately the experimental wT curve.

A quick look at Table S23 (ESI†) reveals that the wavefunc-
tions of the 16 lowest-lying spin–orbit levels are plagued by
spin-mixing, which may be less important if the molecular PAF
is used. We proceeded, therefore, as before to derive the
molecular PAF. The matrix elements of the S = 3 block within
the 16 � 16 Ĥeff, shown in Table 6, perfectly match the Ĥmod

analytical matrix elements listed in Table 1. Unlike in the
previous case of complex 1, matrix elements such as
h3,2|Ĥeff|3,3i or h3,1|Ĥeff|3,2i deviate significantly from zero,
whereas they should be zero if the input xyz frame is the

molecular PAF. Extraction and diagonalization of DS¼3 led to
the molecular PAF depicted in Fig. 4. This frame is not only
distinct from the initial input frame but also distinct from the

local PAFs (of Da and Db). The SO-NEVPT2 calculation was
repeated in the molecular PAF, leading to much cleaner wave-
functions for the 16 lowest-lying energy levels (see Table S24,
ESI†).

3.2.3 Extraction of the multispin Hamiltonian. Fig. 4

clearly highlights that the local anisotropy tensors, Da and Db,
cannot be diagonal in the molecular PAF. Since our procedure
does not require any assumption on the local PAFs, we have re-
computed (rotated) them in the molecular PAF prior to assem-
bling ĤMS according to eqn (1):

Da ¼

�33:1 7:2 �15:9

7:2 �19:4 14:3

�15:9 14:3 52:6

2
6664

3
7775; Db ¼

�1:8 �6:2 16:3

�6:2 �53:8 �14:6

16:3 �14:6 55:7

2
6664

3
7775

(10)

Table 6 Matrix elements, in cm�1, of the S = 3 block within the 16 � 16 matrix of Ĥeff, constructed from SO-NEVPT2 calculations on complex 2 in the
arbitrary coordinate frame

Ĥmod |3,3i |3,2i |3,1i |3,0i |3,�1i |3,�2i |3,�3i

h3,3| 134.0 18.0 + 44.0i 5.0 + 62.0i 0 0 0 0i
h3,2| 18.0 � 44.0i 188.0 14.0 + 34.0i 8.0 + 88.0i 0 0 0
h3,1| 5.0 � 62.0i 14.0 � 34.0i 221.0 5.0 + 13.0i 8.0 + 97.0i 0 0
h3,0| 0 8.0 � 88.0i 5.0 � 13.0i 232.0 �5.0 � 13.0i 8.0 + 88.0i 0
h3,�1| 0 0 8.0 � 97.0i �5.0 + 13.0i 221.0 �14.0 � 34.0i 5.0 + 62.0i
h3,�2| 0 0 0 8.0 � 88.0i �14.0 + 34.0i 188.0 �18.0 � 44.0i
h3,�3| 0 0 0 0 5.0 � 62.0i �18.0 + 44.0i 134.0

Table 7 Low-energy spin–orbit spectrum of complex 2a

SO state DE
P

S;MSj ib SO state DE
P

S;MSj ib

C1 0 0.52 C9 206.4 0.66
C2 1.9 0.51 C10 206.9 0.67
C3 3.6 0.50 C11 209.6 0.65
C4 7.7 0.50 C12 212.2 0.66
C5 177.0 0.62 C13 379.7 0.80
C6 177.7 0.64 C14 380.0 0.80
C7 180.7 0.64 C15 388.4 0.69
C8 182.2 0.61 C16 389.0 0.81

a SO-NEVPT2 calculations, relative energies in cm�1. Other excited
energy levels start at 691 cm�1. b Total contribution from the spin-
components of the lowest-energy S = 3, 2, 1 and 0 spin-free states.
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It should be stressed that no specific relationship appears
between the elements of these tensors, in accord with the C1

symmetry point group of complex 2.
We are now in the position to best equate the 16 � 16 matrix

of ĤMS with the representative matrix of Ĥeff. We first consider
the expressions reported in Tables S5 and S6 (ESI†), meaning
that we neglect the symmetric exchange tensor. By using the

�2.85 cm�1 spin-free J value and the full Da and Da tensors
(eqn (10)), the estimated numerical matrix of ĤMS is given in
Tables S25 and S26 (ESI†) in the uncoupled |MSa

,MSb
i and

coupled |S,MSi spin basis, respectively. These are brought in
correspondence with the effective Hamiltonians shown in
Tables S27 (coupled-spin basis) and S28 (uncoupled-spin basis)
(ESI†). As was the case with complex 1, outstanding agreement
is obtained from the comparison regardless of the spin basis.
Indeed, the difference between Ĥeff and ĤMS is already smaller
than 1 and 2.7 cm�1 concerning the off-diagonal and diagonal
matrix elements, respectively. It is worth emphasizing once
again that the independently calculated local anisotropy ten-

sors, Da and Db, within the framework of the 2a and 2b mono-
meric structures, can be safely transferred to the dimeric
structure 2.

As with complex 1, we proceeded to extract J under the
influence of SOC, as well as the symmetric anisotropy tensor

Dab, without revising the local anisotropies. In other words, we
constructed ĤMS as follows:

ĤMS ¼ JŜaŜb þ ŜaDaŜa þ ŜbDbŜb

h i
mono
þŜaDabŜb (11)

where ‘‘mono’’ refers to the monomer calculations. The con-

tribution of ŜaDabŜb to ĤMS, expressed in an arbitrary axis
frame and in the coupled-spin basis, is displayed in Table S7

(ESI†). The contribution of ŜaDabŜb to ĤMS in its own PAF is
given in Table S31 (ESI†). A careful inspection of all the relevant
tables revealed that in fact the previous deviations between the
estimated ĤMS and Ĥeff can essentially be explained by Table

S31 (ESI†). In other words, the PAF of ŜaDabŜb practically
matches the molecular PAF, and thus we only need to fit the
J, Dab, and Eab parameters to refine ĤMS.

Table 8 summarizes all the key magnetic parameters result-
ing from the resolution of ĤMS for the case of complex 2 (we

recall that the Da and Db tensors are not diagonal in the
molecular PAF). In the coupled-spin basis, the numerical
matrix of ĤMS is shown in Table S32 (ESI†). This model is of
course in even better agreement with the effective Hamiltonian

(Table S27, ESI†). The difference matrix between ĤMS and Ĥeff,
displayed in Table S33 (ESI†), now shows that all the elements
are generally smaller than 1 cm�1. Furthermore, diagonaliza-
tion of our model ĤMS yields highly accurate spin–orbit ener-
gies, with an average deviation of only 1.2 cm�1 and a
maximum deviation of 2.6 cm�1. Consequently, we have suc-
cessfully applied our new procedure to properly extract all the
rank-2 tensors of ĤMS and, ultimately, validated the standard
multispin Hamiltonian for any binuclear complex since the key
step of unsymmetrical dicobalt(II) complexes is now solved.

Finally, we take a step forward and attempt to model the
powder-averaged wT profile of complex 2 using the validated
ĤMS. For this purpose, we use again the analytical expressions
of the Zeeman Hamiltonians, derived in Tables S20 and S21
(ESI†), using the ga and gb tensors obtained with the 2a and 2b
structural models, based on calculations performed in the
molecular PAF:

ga ¼

2:59 �0:10 0:13

�0:09 2:43 �0:11

0:12 �0:08 1:89

2
6664

3
7775; gb ¼

2:23 0:06 �0:11

0:06 2:83 0:13

�0:11 0:12 1:86

2
6664

3
7775

(12)

Fig. 5 Top: Experimental wT = f (T) curve of complex 2, digitized from ref.
68, and generated from ab initio calculations and multispin Hamiltonian
models. Bottom: wT = f (T) curves obtained with SO-NEVPT2 as a function
of the angle a1 = +Co–O–Co. In the crystal structure, a = 971, and the
black curve represents the best approximation of the experimental wT.

Table 8 Magnetic parameters, in cm�1, obtained from the complete
resolution of ĤMS for complex 2 oriented in the molecular PAF

J Dab Eab Da Ea Db Eb

�2.28 �0.07a/0.22b �0.13a/0.03b 86.31 11.91 93.14 25.02

a Generated from a least-squares fitting of the model parameters in
order to minimize the RMSD between ĤMS and Ĥeff. b Recalculated
parameters after relabeling of the MPAF axes such that the convention
Eab 4 0 and |Dab| 4 3Eab is fulfilled: y - z, z - x, x - y.
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Those matrices are not diagonal in the molecular PAF and in
fact, the corresponding local PAFs also do not strictly match

one another (as was observed for Da and Db). Since the off-
diagonal elements are smaller than the diagonal ones in
eqn (12), one can still consider that ga and gb are close to being
diagonal in the molecular PAF, even if a detailed analysis may
reveal an interchange between the respective hard and inter-
mediate axes of magnetization between ga and gb.

Fig. 5, top panel, demonstrates the excellent agreement
between the reference, experimental wT curve68 and the one
obtained directly out of the SO-NEVPT2 calculation. Therefore,
we can be confident in the quality of our ab initio calculations
and now aim at producing good quality model curves, in view of
further supporting the validity of both ĤMS and of our procedure
to extract the magnetic parameters. The model curve, obtained
from ĤMS + ĤZee dressed with quantities from Table 8 and
eqn (12), agrees with the reference data in the low-temperature
region. As the temperature increases, it deviates more and more,
eventually reaching a plateau around 150 K which is quite lower
than the experimental curve. The behavior may be caused by (i)
the lack of excited states in our model that may be populated at
some point and in particular at 300 K and (ii) an underestima-
tion of the isotropic g value for each Co center. Concerning
point (i), the sum of the Boltzmann populations of the first 16
energy levels is 94% at 300 K. We hypothesize that the remain-
ing 6% in terms of population are not mandatory to explain the
discrepancy between this first model curve and the ab initio one.
Furthermore, it appears that the model curve is too low for a
much larger temperature range, in particular from 30 to 300 K.
At 30 K, it is clear that only the first 16 energy levels are
populated, hence the problem may fully lie on the isotropic g
values, as was observed in complex 1 (in this case, the isotropic g
value had to be tempered to a lower value). By following this
hypothesis, we here need to increase the isotropic g value, which
leads to a revised model curve that is more satisfactory for the
whole 30–300 K problematic range, without compromising the
already good 0–30 K range. The fitted g = 2.55 value is not
completely random as it may be justified based on the measured
room-temperature wT value of 6.03 cm3 mol�1 K, or rather
3.015 cm3 mol�1 K per Co center, according to:

g2 ¼ wM � T � 3kB
NA � SðS þ 1Þ � mB2

(13)

This expression leads to g = 2.54 with the Boltzmann
constant, kB = 0.695 cm�1 K�1, mB = 0.467, cm�1 T�1, and NA�
mB = 0.558 cm3 mol�1 T. Note that since our main point here
is to understand the zero-field behavior, we do not aim to delve
deeper into explaining the reasons behind this revision of the
SO-NEVPT2 g value.

Two additional models are displayed in Fig. 5, top panel,
evidencing the shape of wT if one assumes that the local
anisotropy tensors are diagonal in the molecular frame and if
the axial and rhombic parameters displayed in Table 8 are
used, or if J is artificially set to a weakly antiferromagnetic

value. The first scenario artificially pushes up the model curve
in the low-temperature range, meaning that the maximum is
too high. While it is quite intuitive that the mismatch of the
actual PAFs of the local anisotropy tensors should lower the
model curve, we should stress that if one assumes that the
tensors are diagonal in the molecular PAF and if one fits the
local ZFS parameter values, as could be done to fit the experi-
mental data, this should lead to too weak ZFS parameters. In
other words, it is crucial to account for the mismatch of the
local PAFs in the model, otherwise, meaningless parameters
would be obtained. This is exactly where experimental extrac-
tions of ĤMS parameters should not be performed indepen-
dently from computational chemistry data.

We now aim to better explain the occurrence of a local
maximum of wT at low temperatures. From the previous para-
graph, we have learned that the mismatch between the local
PAFs works towards lowering this wT maximum. Such maximum
does not occur if the antiferromagnetic coupling scenario is
retained (see Fig. 5). Thus, one could naively think that J must
be maximized to favor the occurrence of such a maximum. In
practice, to get a local maximum of wT, we believe that it
requires population of a state that is much less magnetic than
the ones before and after it. A close inspection of Table S24
(ESI†) reveals that the fourth spin–orbit level is essentially
derived from the MS = 0 components of the spin-quintet and
spin-singlet states so that this must be the states that are looked
for. For this state to occur in between the components of the S =
3 state, one needs to be in the weak-exchange limit (note that
this also strengthens the spin-mixing with the singlet state,
which also pushes down this state in the model). Additionally,
this state must be well separated in energy from the subsequent
states, otherwise, a continuous enhancement of wT would be
observed. According to Table 7, a gap of about 170 cm�1 occurs
in complex 2, which corroborates our interpretation.

To strengthen the conclusion drawn earlier, the bottom
panel of Fig. 5 illustrates the variation of wT, obtained directly
from SO-NEVPT2 calculations, as a function of the Co–O–Co
angles. At the crystal-structure value of 971, the calculated curve
best approximates the reference data. Angles below 971 pro-
mote stronger ferromagnetic coupling (without getting rid of
the weak exchange regime). Consequently, as the ‘‘less mag-
netic’’ state shifts toward higher energies, the spike in wT is

Table 9 Numerical matrix elements, in cm�1, of ĤMS for the
[Ni2(en)4Cl2]2+ complex in the coupled-spin basisa

ĤMS |2,2i |2,1i |2,0i |2,�1i |2,�2i |1,1i |1,0i |1,�1i |0,0i

h2,2| 1.67 0.00 1.62 0.00 0.00 0.00 0.00 0.00 2.39
h2,1| 0.00 10.74 0.00 1.99 0.00 0.00 0.00 0.00 0.00
h2,0| 1.62 0.00 13.76 0.00 1.62 0.00 0.00 0.00 �9.07
h2,�1| 0.00 1.99 0.00 10.74 0.00 0.00 0.00 0.00 0.00
h2,�2| 0.00 0.00 1.62 0.00 1.67 0.00 0.00 0.00 2.39
h1,1| 0.00 0.00 0.00 0.00 0.00 21.81 0.00 �2.09 0.00
h1,0| 0.00 0.00 0.00 0.00 0.00 0.00 12.01 0.00 0.00
h1,�1| 0.00 0.00 0.00 0.00 0.00 �2.09 0.00 21.81 0.00
h0,0| 2.39 0.00 �9.07 0.00 2.39 0.00 0.00 0.00 23.96

a Obtained by evaluating the analytical expressions reported by ref. 65.
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both enhanced and slightly shifted to higher temperatures. On
the other hand, angles above 1001 promote antiferromagnet-
ism. As a result, the wT curves no longer exhibit local maxima.
The overall structural change, induced when the Co–O–Co
angle is changed from 97 to, for instance, 1011, is characterized
by an RMSD of 0.08 Å, it is thus negligible. Therefore, one can
regard the unfolding of wT in complex 2 as an intermediate
between the ferromagnetic and antiferromagnetic regimes.
This is due to the fact that even a tiny displacement in the
molecular structure promptly alters wT, transitioning between
these two regimes.

3.3 Reinterpretation of the [Ni2(en)4Cl2]2+ case, a
centrosymmetric dinickel(II) complex in the weak-exchange regime

An accurate determination of magnetic parameters in [Ni(en)4-
Cl2]Cl2 has been reported more than a decade ago in the
context of high-field EPR experiments.96 The complex is weakly
ferromagnetic, with J = �9.66, Da = �4.78, and Dab = �0.64 cm�1.
Maurice et al. performed an extraction of these parameters from
the anisotropic multispin Hamiltonian through the effective
Hamiltonian theory.65 The generated parameters, J = �5.415,
Da = �9.437, Ea = 2.042, Dab = 0.367 and Eab = �0.052 cm�1, which
are in reasonable agreement with the experimental counterparts,
allow for the derivation of the ĤMS numerical matrix listed in
Table 9. Comparison with the numerical Ĥeff matrix, reproduced
from ref. 65 in Table 10, shows outstanding agreement down to
only �prefactors for the elements coupling the S = 2 and S = 0
blocks in Ĥeff. Performing a basis-change to the uncoupled basis
using tabulated CG coefficients following the Condon–Shortley
convention, these conflicting signs lead to unexpected matrix
elements, such as h1,�1|Ĥeff|�1,1i = 8.6 cm�1, that should be null
according to the standard ĤMS.65 As discussed in this article, in
ab initio calculations, the conflicting signs arise from arbitrary
phases and must be adjusted based on the model matrix. This
sign adjustment results in a nearly identical model and effective
matrices in both the coupled-spin and uncoupled-spin bases,
thereby fully validating the standard multispin Hamiltonian for
[Ni(en)4Cl2]Cl2. Consequently, in this context, the introduction of a
rank-4, biquadratic exchange tensor, in ĤMS is no longer crucial,
unless high accuracy is sought after. Therefore, it is important to
stress that the weak-exchange limit was correctly solved in the
previous experimental and theoretical works.65,96 However, the
experimental extraction was based on the assumption that

rhombicity is negligible, which is not supported by the calcula-
tions. Therefore, the experimental J = �9.66, Da = �4.78, and Dab =
�0.64 cm�1 values may be the subject of small uncertainties due to
the neglect of rhombicity, though the important features (weak-
exchange limit, local easy-axis anisotropies, |Dab| o |Da|) are now
no doubt.

4 Conclusion

By studying dicobalt(II) complexes, we have confirmed the validity
of the standard ĤMS independent from the weak- or strong-
exchange regime. Using ab initio calculations, we have demon-
strated that it is possible to extract the full tensors that make up
the model, without making any assumptions about their principal
axis frames (PAFs). Furthermore, the analysis, based on model wT
curves, has revealed that assuming the local anisotropy tensors are
diagonal in the molecular PAF should lead to erroneous local
anisotropy parameters in the fitting process. Therefore, concerning
unsymmetrical or low-symmetry binuclear complexes, a rigorous
interpretation of low-temperature magnetic data should retain key
inputs from quantum mechanical calculations similar to those
used in this work, i.e. multiconfigurational and relativistic wave
functions methods. We hope that the present article will trigger
new joint theory/experiment studies based on this renewed per-
spective of explicitly mapping ab initio data onto ĤMS.
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Table 10 Numerical matrix elements of Ĥeff expressed in the coupled-spin basis for the [Ni2(en)4Cl2]2+ complex in the molecular PAFa

ĤMS |2,2i |2,1i |2,0i |2,�1i |2,�2i |1,1i |1,0i |1,�1i |0,0i

h2,2| 1.67 0.00 1.62 0.00 0.00 0.00 0.00 0.00 �2.37 + 0.02i
h2,1| 0.00 10.74 0.00 1.99 0.00 0.00 0.00 0.00 �0.02 � 0.09i
h2,0| 1.62 0.00 13.79 0.00 1.62 0.00 0.00 0.00 9.06
h2,�1| 0.00 1.99 0.00 10.74 0.00 0.00 0.00 0.00 0.02 � 0.09i
h2,�2| 0.00 0.00 1.62 0.00 1.67 0.00 0.00 0.00 �2.37 � 0.02i
h1,1| 0.00 0.00 0.00 0.00 0.00 21.81 0.02 + 0.07i �2.10 + 0.03i 0.00
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a Reproduced from ref. 65.
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21 R. Boča, Zero-field splitting in metal complexes, Coord.
Chem. Rev., 2004, 248, 757–815.

22 R. Maurice, R. Broer, N. Guihéry and C. de Graaf, in Zero-
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