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Green–Kubo expressions for transport coefficients
from dissipative particle dynamics
simulations revisited

D. C. Malaspina,a M. Lı́sal, bc J. P. Larentzos,d J. K. Brennan,d A. D. Mackie a

and J. Bonet Avalos *a

This article addresses the debate about the correct application of Green–Kubo expressions for transport

coefficients from dissipative particle dynamics simulations. We demonstrate that the Green–Kubo expres-

sions are valid provided that (i) the dynamic model conserves the physical property, whose transport is stu-

died, and (ii) the fluctuations satisfy detailed balance. As a result, the traditional expressions used in

molecular dynamics can also be applied to dissipative particle dynamics simulations. However, taking the

calculation of the shear viscosity as a paradigmatic example, a random contribution, whose strength scales

as 1/dt1/2, with dt the time-step, can cause difficulties if the stress tensor is not separated into the different

contributions. We compare our expression to that of Ernst and Brito (M. H. Ernst and R. Brito, Europhys.

Lett., 2006, 73, 183–189), which arises from a diametrically different perspective. We demonstrate that the

two expressions are completely equivalent and find exactly the same result both analytically and numeri-

cally. We show that the differences are not due to the lack of time-reversibility but instead from a pre-

averaging of the random contributions. Despite the overall validity of Green–Kubo expressions, we find

that the Einstein–Helfand relations (D. C. Malaspina et al. Phys. Chem. Chem. Phys., 2023, 25, 12025–

12040) do not suffer from the need to decompose the stress tensor and can readily be used with a high

degree of accuracy. Consequently, Einstein–Helfand relations should be seen as the preferred method to

calculate transport coefficients from dissipative particle dynamics simulations.

1 Introduction

Green–Kubo (GK) and Einstein–Helfand (EH) formulas1,2 have
been widely used to calculate the macroscopic transport coeffi-
cients of molecular systems from molecular dynamics simula-
tions. Their use allows transport properties such as diffusion
coefficients, shear viscosities, or thermal conductivities, to be
obtained from the dynamics of the microscopic constituents
simulated by a computer. Transport coefficients are defined
from phenomenological relations between property fluxes and
the so-called thermodynamic forces, related to gradients of
state properties. An example is the thermal conductivity, l,
defined from Fourier’s law as,

Jq = �lrT (1)

where Jq is the heat flux density and T is the system tempera-
ture. Non-equilibrium simulations reproduce the experimental
setup in which external gradients (e.g., temperature) are estab-
lished giving rise to conjugate fluxes (e.g., heat) or conversely,
fluxes are imposed that result in a conjugate gradient.3–5

Assuming a linear response, the associated transport coeffi-
cient is then obtained from the ratio l C Jx

q/(dT/dx), if the
gradient is in the x-direction. In contrast, equilibrium methods,
such as GK and EH, rely on the measurement of the decay of
the spontaneous thermal fluctuations of the corresponding
physical property, and they do not require any special simula-
tion setup to create the externally imposed gradients. As a
consequence, a single equilibrium simulation with periodic
boundary conditions can provide a plethora of transport coeffi-
cients for different properties as commonly found in molecular
dynamics codes (e.g. LAMMPS6). Another advantage of equilibrium
methods is found in simulations of microstructured systems, such
as micellar suspensions, in which non-equilibrium methods can
substantially deform these microstructures, even at very small
gradients.
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Despite the fact that GK and EH expressions are commonly
used for Hamiltonian systems, doubts have been cast on their
straightforward application to systems with dissipative and
random forces. Dissipative Particle Dynamics (DPD)
methods7–9 lie in this category, together with its extensions.
These include many-body potentials (MB-DPD),10–12 energy-
conserving DPD (DPDE)13,14 and variations that include different
ensembles,.15–18 In ref. 19 a dependence of the DPD parameters
on the overall system temperature has been introduced. More
recently, a thermodynamically consistent method with density-
and temperature-dependent potentials (GenDPDE), which are
defined on particle state variables only, has been presented.20,21

Within GenDPDE, temperature-dependent strong non-equili-
brium processes can be simulated.22 A more complete list of DPD
methods can be found in several reviews.23–25 Due to the
aforementioned theoretical concerns, different attempts to
obtain what was thought to be the appropriate expressions for
GK formulas appeared in the literature.26,27 These expressions
differ from the standard GK formulas used for conservative
systems and required further testing against non-equilibrium
simulations to assess their validity. In ref. 28, such a compara-
tive analysis is conducted for shear and bulk viscosities.
According to those numerical calculations, the expression due
to Ernst and Brito (EB)27 is the only formula that accurately
reproduces the non-equilibrium results. However, the EB
expression may look exotic for common practitioners of mole-
cular dynamic simulations of conservative systems. On the one
hand, the random contribution is not explicitly present,
although one would intuitively expect that all forces should
contribute to the total value of the viscosity. On the other hand,
the signs of the various contributions involving the dissipative
terms differ from the usual ones. Such an unusual structure of
the EB formula hinders its generalisation to properties other
than the shear and bulk viscosity, and may lead to inaccurate
EH expressions29 when taken as the starting point.

In a previous article,30 nevertheless, we demonstrated the
validity of the standard EH relations for all the DPD methods
mentioned above, including the EH formula for the shear viscos-
ity, which we have chosen as a benchmark for the discussion in
this article. We proved that if the appropriate expression of the
stress tensor for the model under study is derived, the EH formula
can be straightforwardly applied. After an extensive simulation
analysis, we verified that the standard EH relations provided shear
viscosities as well as thermal conductivities in excellent agreement
with the non-equilibrium simulations. Our theoretical approach
is based on only two conditions that need to be satisfied by the
dynamic algorithm. Namely, (i) the models preserve the conserva-
tion of the physical property whose transport is studied (e.g.,
particle number, momentum or energy, among others), and (ii)
the transition probabilities generated by the dynamic algorithm
satisfy Detailed Balance (DB). It is well known that DB stems
precisely from the time-reversibility of the microscopic equations
of motion (EoM), but no time-reversibility of the actual DPD
trajectories is needed to derive the suitable EH expressions.

In this article, we extend our analysis to the GK formulas
as they can be directly compared to the EB expressions.

We demonstrate that the standard expressions for the GK
formulas are in fact valid for DPD algorithms if the appropriate
forms of the mesoscopic property fluxes (the stress tensor for
the case considered) are used. These forms are exactly the same
as those derived for the EH formulas in ref. 30. Moreover, we
also demonstrate that remarkably our more physically intuitive
formulation of the GK formulas can be cast under the EB form,
proving the exact equivalence between both formulas, which is
the main result of this article. While the standard expressions
that include dissipative and random terms have already been
successfully applied for DPD methods,31,32 we believe that
the main reason this straightforward procedure has not been
more frequently used is the difficulty in obtaining statistically
significant data with a reasonable simulation time, as
demonstrated below.

In the following section, a general derivation of the GK
expressions for transport coefficients is given. This is followed
by a summary of the standard DPD algorithm and the deriva-
tion of the corresponding GK expression for the shear viscosity.
In the Simulation methods section, we give the details of both,
the equilibrium and non-equilibrium simulations, including all
of the parameters employed. We then present the results of our
simulations and provide a detailed analysis of the different
contributions to the stress tensor. We show that the EB
expression is equivalent to ours, despite their formal differ-
ences. Finally, we highlight the advantages of EH over GK
expressions and argue why the former should be preferred
when calculating transport properties. We end the article with
the main conclusions from our work.

2 Theoretical analysis

DPD algorithms are categorised as mesoscopic methods since
they describe the dynamics of a collection of resolved degrees of
freedom (DoF), singled out from the total number of DoF of a
given underlying physical system. Hence, dissipative as well as
random interactions arise due to the coupling of the resolved
DoFs with the unresolved (coarse-grained) DoFs. However, the
physical properties of these mesoscopic models are inherited
from the Hamiltonian microscopic system, whose dynamics is
time-reversible. Consequences of this fact are first, that an
equilibrium probability distribution for the resolved DoF can
be defined, and second, that the transition probabilities
induced by the dynamic algorithm need to satisfy DB when in
thermal equilibrium.

2.1 General derivation of Green–Kubo expressions

To derive the GK relation for a given transport coefficient, let us
first consider that the DPD algorithm conserves a given prop-
erty a transported by the mesoparticles. Examples of property
conservation include the number of particles in Langevin
equations to study Brownian motion, particle number and
momentum in standard DPD, together with the extension to
include the energy in DPDE, among others. Due to this dynamic
conservation of a, a macroscopic conserved field A exists, and is
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given as

Aðr; tÞ ¼
XN
i¼1

aiðtÞd r� riðtÞð Þ (2)

where r is a field point and ri(t) is the position of the meso-
particle i at time t. We also introduce Fourier’s representation
of A as

AkðtÞ ¼
XN
i¼1

aiðtÞe�ik�riðtÞ (3)

where k is the wavevector. Hence, A satisfies the balance
equation

@A

@t
¼ �r � JA (4)

where JA is the flux density of A. Since a is conserved,Ð
drAðr; tÞ ¼ Ak!0ðtÞ ¼

PN
i¼1

aiðtÞ ¼ constant. Eqn (4) is not a

closed equation as long as JA remains undefined. Phenomen-
ological equations, analogous to eqn (1) for the energy trans-
port, are required to provide a closure that will produce a well
posed equation for the evolution of A. In the framework of
Onsager’s theory of linear irreversible thermodynamics,33,34 the
closure is given in the form of a linear relation between the flux
and the thermodynamic forces. For the simple case analysed
here as a proof of concept, we consider that the thermodynamic
force can be written as a gradient of A, in analogy with Fourier’s
law for the heat transport or Newton’s law for the shear
viscosity.† Hence, the flux density becomes,

JA = �arA + JA,R (5)

Advective contributions expressed as vA (v is the velocity field)
are neglected in eqn (5) as they are outside the linear response
theory. The first term on the right-hand side of eqn (5) intro-
duces the transport coefficient a that needs to be determined.
This term contains the dissipative effects leading to the decay
of the perturbations in A. The second term contains the effect of
the thermal fluctuations, which arise from the interaction
between the macroscopic and mesoscopic behaviour alongside
with the dissipation. Here, for simplicity, we have only con-
sidered a single field with no coupling with other fields, in
contrast to, e.g., the Ludwig–Soret effect34 (see ref. 35 for more
details).

Therefore, the relaxation of the fluctuations of Ak in thermal
equilibrium satisfies

@Ak

@t
¼ �ik � JAk (6)

where from eqn (5), we get

�ik�JA
k = �ak2Ak � ik�JA,R

k (7)

Alternatively, from eqn (3), we can also write the balance
equation in terms of the mesoscopic variables as

@Ak

@t
¼
XN
i¼1

_aiðtÞ � ik � uiaið Þe�ik�riðtÞ (8)

where ui = :ri. Since the stochastic algorithm is formulated in
discrete form, we have to interpret ui = (ri(t + dt) � ri(t))/dt with
no loss of generality. As a consequence, a dependence on the
timestep dt is possible as the trajectories generated depend on
it. In addition, if a is exchanged between mesoparticles, which
occurs when a is the energy content of the particle in DPDE,
then an additional dynamics for the evolution of a is necessary.
Thus, it is crucial to realise that eqn (6) with eqn (7), is actually
the same as eqn (8).

Following the derivation in ref. 30, the properties of JA,R
k are

determined by DB. On the one hand, we obtain

hJA,R
k i = 0, (9)

while, on the other hand, the corresponding Fluctuation–Dis-
sipation Theorem (FDT) is

kk: J
A;R
k ðtÞJ

�A;R
k ðt 0Þ

D E
¼ 2ak2 AkðtÞA�kðtÞ

� �
d t� t 0ð Þ (10)

In eqn (10), the superscript * denotes the complex-conjugate,
which is needed to enforce spatial translational invariance of
the correlation function. Moreover, the equilibrium equal-time
correlation function is time-translational invariant and hence,
AkðtÞA�kðtÞ
� �

¼ Akð0ÞA�kð0Þ
� �

� AkA
�
k

� �
eq

.

We start by deriving the formal solution of eqn (6) with
eqn (7):

AkðtÞ ¼ Akð0Þe�ak
2t � ik �

ðt
0

dt 0e�ak
2 t�t 0ð ÞJA;Rk ðt

0Þ (11)

Next, we consider the correlation function AkðtÞ � Akð0Þð Þ _A�kð0Þ
� �

in terms of the dynamics of the fields, i.e.,

AkðtÞ � Akð0Þð Þ _A�kð0Þ
� �
¼ Akð0Þ e�ak

2t � 1
� �

� ik �
ðt
0

dt 0e�ak
2ðt�t 0ÞJA;Rk ðt

0Þ
� ��

� �ak2A�kð0Þ þ ik � J�A;Rk ð0Þ
� �E

(12)

First, from eqn (12) one needs to realise that odd terms in JA,R
k

vanish by symmetry. Moreover in the hydrodynamic limit, k2t - 0

and thus, e�ak
2t � 1

� �
� O k2t

	 

. As a consequence, the product

of the initial conditions is Oðk4Þ and can be neglected. Therefore,
the leading contribution in the hydrodynamic limit becomes,

AkðtÞ � Akð0Þð Þ _A�kð0Þ
� �
’
ðt
0

dt 0e�ak
2ðt�t 0Þkk: J

A;R
k ðt

0ÞJ�A;Rk ð0Þ
D E

’ ak2 AkA
�
k

� �
eq
e�ak

2t ! ak2 AkA
�
k

� �
eq

(13)

† More general cases exist, where fluxes and thermodynamic forces are coupled;
see ref. 34 and35 for details.
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which is Oðk2Þ. In deriving the last equality, we used eqn (10). In
addition, we considered that the integration of the correlation

JA;R
k ðtÞJ�A;Rk ð0Þ

D E
over time with t0 Z 0 introduces a factor of 1/2

due to causality applied on the even Dirac’s d-function.36 Using
eqn (6) for

:
Ak(0) and the formal solution, eqn (11), with k2t -

0, we get

AkðtÞ � Akð0Þð Þ _A�kð0Þ
� �

’ kk:

ðt
0

dt 0 JAk ðtÞJ�Ak ð0Þ
� �

(14)

and therefore

a ¼ lim
t!1

lim
k!0

1

AkA
�
k

� �
eq

k̂k̂:

ðt
0

dt 0 JAk ðt 0ÞJ�Ak ð0Þ
� �

(15)

which is the standard form of the GK expressions.

2.2 Standard DPD algorithm

In this section, we summarise the standard DPD algorithm7,8 as
we use only this method in the subsequent discussion of our
theoretical approach. Pairwise, many-body or any other type of
potential forces are included because our results are indepen-
dent of their explicit form. Furthermore, the analysis of
the stress tensor used for demonstration in this work also
applies to DPDE methods,13,14,37,38 as well as to GenDPDE
methods,20,21 and their variants, including the inter-particle
mass transfer (GenDPDE-M),39,40 since the dynamics of the
momentum is represented by the same equation and is inde-
pendent of other properties exchanged by the mesoparticles.

DPD is a particulate Lagrangian method developed to simu-
late hydrodynamic behaviour at the mesoscopic level. The
particle–particle interaction satisfies particle-number conserva-
tion, as in Brownian dynamics, but additionally momentum is
also conserved. The latter guarantees hydrodynamic behaviour
of the resulting velocity field at long wavelengths and long
times, and therefore, the existence of a Navier–Stokes equation
with the corresponding viscosity coefficients. Fig. 1 outlines the
relevant variables present in DPD.

The dynamics of the mechanical DoF, i.e., particle positions,
ri, and momenta, pi, is given by the following EoM:

r
0
i ¼ ri þ

pi

mi
dt (16)

p
0
i ¼ pi þ fCi þ fDi

	 

dtþ

X
jai

dpRij (17)

where prime and non-prime variables refer to times t + dt and t,
respectively, mi is the mass of mesoparticle i, fC

i and fD
i are the

conservative and dissipative forces, respectively, and dpR
ij is the

random contribution to the momentum, proportional to a
Wiener process, exchanged between particles i and j. Therefore,
the random force is given by

fRij ¼
dpRij
dt
� O

1

dt1=2

� �
(18)

For the dissipative force, we consider the traditional pairwise

additive form

fDij ¼ �go rij
	 


eijeij �
pi

mi
�

pj

mj

� �
(19)

where g is the friction coefficient and o(rij) is the weighting
function, which is a smooth positive-definite function of the
interparticle distance with a cut-off range rc. The random
contribution to the momentum, dpR

ij, satisfies the FDT8

dpRij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTgijo rij

	 
q
xijeijdt

1=2 (20)

where dpR
ij = �dpR

ji, kB is the Boltzmann constant, eij = (ri � rj)/|ri

� rj|, and T is the system temperature, considered to be fixed by
an external reservoir. The normalised Gaussian random num-
bers xij satisfy

hxiji = 0 (21)

xijxkl
� �

¼ dikdjl � dildjk
	 


dtt 0 (22)

where the average is taken over the probability distribution of
xij and dij is the Kronecker delta symbol, which is 1 if i = j and 0
otherwise. Note that here dtt0 is 1 if t and t0 are inside the same
time interval of width dt, and zero otherwise.

2.3 Green–Kubo formula for the shear viscosity in DPD
methods

The derivation of the mesoscopic form of the stress tensor
requires the analysis of the dynamics of the momentum
density, represented here by the observable,

AkðtÞ � jkðtÞ ¼
X
i

piðtÞe�ik�ri (23)

From eqn (8) in discrete form, we evaluate the time-derivative of
the observable as

djk
dt
¼
X
i

X
jai

fCij þ fDij þ fRij

� �
� ik � uipi

" #
e�ik�ri (24)

Note that, in view of eqn (6), the term �ik�uipi in eqn (24)
already has the form of a divergence of a flux in the Fourier
space. However, the term involving the forces needs further

Fig. 1 Schematic of the DPD simulation method governed by EoM (16)
and (17).
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development. Effectively, introducing fij � fC
ij + fD

ij + fR
ij, to

simplify the notation, we can write,X
i

X
jai

f ije
�ik�ri ¼

X
i

X
jo i

f ije
�ik�ri þ

X
i

X
j4 i

f ije
�ik�ri (25)

The order of summation in the last term on the right-hand side
of eqn (25) can be inverted to get,X

i

X
jai

f ije
�ik�ri ¼

X
i

X
jo i

f ije
�ik�ri þ

X
j

X
io j

f ije
�ik�ri (26)

Then, we exchange i 2 j in the last term on the right-hand side
of eqn (26) and use fji = �fij to obtainX

i

X
jai

f ije
�ik�ri ¼

X
i

X
jo i

f ije
�ik�ri �

X
i

X
jo i

f ije
�ik�rj

¼
X
i

X
jo i

f ije
�ik�ri 1� eik�rij

	 
 (27)

Since the interaction range for all the forces is limited to rc,
k�rji { 1 in the long-wavelength limit, and the second expo-
nential in eqn (27) can be expanded to the lowest non-zero
order to get,X

i

X
jai

f ije
�ik�ri ’ �ik �

X
i

X
jo i

rijf ije
�ik�ri (28)

After gathering all the contributions, we obtain,

@jk
@t
¼ �ik �

X
i

pipi

mi
þ
X
jo i

rij fCij þ fDij þ fRij

� �" #
e�ik�ri (29)

To study shear waves, the velocity field needs to be orthogonal to
the wavevector k̂. We thus arbitrarily choose the x-component of
the momentum, the z-component of k in eqn (29), and obtain

Pzx ¼
X
i

pzi p
x
i

mi
þ
X
jo i

zij f xCij þ f xDij þ f xRij

� �" #
(30)

In eqn (30), we observe that both, the dissipative and random
forces, should be incorporated in the calculation of the correla-
tion since they contribute to the global momentum balance,
along with the conservative forces. However, it is very important
to realise that while fC

i and fD
i depend only on the state variables

of the system ri and pi, fR
ij also depends on timestep dt since fRij �

OðdtÞ�1=2 (see eqn (18) and (20)). Hence, unlike in conservative
systems, DPD trajectories strongly depend on the size of dt.

Following the same approach as in ref. 30, we recall that the
linearised Navier–Stokes equation for the x-component at the
macroscopic level is

@jxk
@t
¼ �Zk2 jxk

r
� ikzPR

zx (31)

Comparing eqn (31) with eqn (6), using eqn (7), and taking into
account that here Ak(t) � jk(t), cf. eqn (23), then it follows that
a �n = Z/r. Moreover, since A0A

�
0

� �
eq
¼ NmkBT ¼ rVkBT , from

eqn (15) we finally obtain,

Z ¼ 1

VkBT

ð1
0

dt PzxðtÞPzxð0Þh i (32)

which is the traditional GK expression for the shear viscosity
found in the literature.35 Hence, we can conclude that (i) the
traditional GK formula is valid for the DPD algorithm, and (ii)
the stress tensor must contain all of the DPD forces, including
the dissipative and random ones.

3 Simulation methods
3.1 Equilibrium simulation details

We used our in-house DPD code with a velocity-Verlet integra-
tion scheme, which is implemented in Fortran with OpenMP
parallelisation (see e.g. ref. 41 for further discussion on DPD
integration algorithms). All simulations were performed in
reduced units, where rc is the unit of length, m is the unit of
mass, and kBT is the unit of energy. Therefore, the unit of time

becomes t ¼ rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=kBT

p
. The DPD systems contained N = 20 000

mesoparticles in a volume V and the simulation box was cubic
with periodic boundary conditions in all three directions. Values
of V were changed in each simulation to obtain the required
system particle densities, %n = N/V. In Table 1, we summarise the
parameters employed in the simulations.

In all of the simulations, the weighting function is given by

oðrÞ ¼ 1� r

rc

� �2
for r � rc (33)

where o(r) = 0 for r 4 rc. To directly compare our simulations
with shear viscosity data existing in the literature, we did not
consider conservative forces between mesoparticles, i.e., only
dissipative and random forces were considered. However, no
conceptual limitation exists regarding the addition of conser-
vative forces when the GK expression eqn (32) is employed.

The conditions of systems 1, 2, 3, 4, and 5 in Table 1
correspond to the ones in ref. 28. The length ts of the time-
series Pzx(t), used as samples in the relevant averages of the
correlation functions, was ts = 20, 15, 10, 8, and 5 for %n = 3, 4, 5,
6, and 7, respectively. A new sample was created from the
system’s trajectory every 20 timesteps with a total simulation
length of 107 timesteps. For completion, we have also per-
formed simulations for higher densities %n = 8, 16, and 32,
which correspond to systems 6, 7, and 8 in Table 1.

Table 1 Equilibrium simulation parameters for the calculation of the
viscosity by the GK formula, eqn (32); %n is the system particle number
density, g is the dissipative coefficient, and dt is the timestep

System %n g dt Samples (�103)

1 3 5 0.01 500
1b 3 5 0.001 500
2 4 5 0.01 500
3 5 5 0.01 500
4 6 5 0.01 500
5 7 5 0.01 500
6 8 5 0.005 500
7 16 5 0.002 5
8 32 5 0.001 5
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3.2 Viscosity obtained from non-equilibrium simulations

To test the validity of the GK expression eqn (32), with the stress
tensor given in eqn (30), we calculated the viscosity indepen-
dently from a series of non-equilibrium DPD simulations. For
the latter, the box length in the x-direction, Lx, was twice as
large as in the other two directions, i.e., Ly = Lz = Lx/2, and
periodic boundary conditions were applied in all directions.
The shear rate was induced using a modified PeX method,4,5 in
which we defined two narrow slabs of width Dx = Lx/10, in
specific locations along the x-axis. Then, at a given rate, we
exchanged the largest momentum in the positive z-direction of
a mesoparticle within the slab located at x = Lx/4, with the
momentum of the particle with the largest momentum in the
negative z-direction of the slab located at x = 3Lx/4. The time-
step for the simulations is the same as in the corresponding
equilibrium simulations as given in Table 1. The viscosity Z by
the PeX method follows from the constitutive equation,

Pxz ¼ Z
dvz

dx
(34)

where dvz/dx is the induced velocity gradient between the slabs,
and Pxz is the shear stress imposed due to the momentum
exchange between slabs. On the one hand, we measured the
actual shear rate from a linear regression of the velocity profile
in the central region of the system (see Fig. 2). On the other
hand, Pxz is obtained as,

Pxz ¼
Dpz

2LzLynexcDt
(35)

where Dpz is the accumulated momentum exchanged between
the slabs in a sufficiently long time-interval Dt, starting after the
system reaches steady state, nexc is the frequency of the momenta
exchange, which is the effective control parameter of Pxz, and
LzLy is the cross-sectional area of the x-side of the box.

4 Results and discussion
4.1 Application of the standard Green–Kubo formula

The direct application of the standard GK approach, eqn (32),
to the stochastic trajectories is possible and it gives the correct
values of the transport coefficients. In Fig. 3a, we show the
stress-correlation function C(t) = hPzx(t)Pzx(0)i for System 1, cf.
Table 1. To obtain a reliable (independent of arbitrary choices)
estimate of C(t)’s time-integral, due to the presence of a spike at
t = 0, we proceeded by numerically integrating the first few s
timesteps using the trapezoidal rule. The remaining correlation
for C(t 4 sdt) was fitted to a stretched exponential of the form,

Cfit(t) = B exp(�ctd) (36)

able to capture the hydrodynamic behaviour and tending to
zero at long time. The parameters B, c and d are positive
constants, and the error was calculated from the error in the
integral due to the calculated uncertainties in fitting these
parameters. Since the stretched exponential tends to zero at
t - N, the numerical integration of the fit Cfit(t) produces an

Fig. 2 Average velocity profile for a DPD system at the system number
density 3 (red line). The profile is obtained from velocities in z-direction vs.
positions in the x-direction in the non-equilibrium simulation set-up. From
this data, a linear regression is applied in the central part of the simulation
box (dashed black line) to obtain the corresponding value of dvz/dx in
eqn (34).

Fig. 3 Stress tensor correlation as a function of time along with the
regression curve eqn (36). (a) System 1: decay of the correlation C(t 4
sdt) for s = 2. The value of the viscosity obtained from the GK expression
eqn (32) is Z = 1.28 	 0.01 which can be compared to Z = 1.2773 obtained
from non-equilibrium simulations. (b) System 1b: decay of the correlation
C(t 4 sdt) for s = 20, so that the regression curve covers the same time
span as for the System 1, but with a timestep ten times smaller. Despite the
large dispersion, a reasonable value of Z = 1.36 	 0.09 was still obtained.
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accurate prediction of the time-integral. Our results are inde-
pendent of the choice of s and the total length of the correla-
tion, provided that the final time was sufficiently large such
that the fitted function decayed to zero. After choosing s = 2, the
obtained estimate of the viscosity using the standard GK
formula eqn (32), Z = 1.28 	 0.01, is in very good agreement
with the non-equilibrium value, Zne = 1.2773. We observed that
the main difficulty in obtaining the value of Z from the stress
tensor correlation data is the dispersion of the values as shown
in Fig. 3a. This is due to the effect of the random components
of the stress tensor PR

zx for a given number of sample trajec-
tories, which give rise to the spike at the first timestep, but is
also responsible for the dispersion of the data at longer times.
The EB formula, with no explicit contribution of PR

zx, provides a
narrower confidence range. To illustrate the inherent difficulty
in obtaining reliable numerical estimates of the viscosity from
the direct application of the GK formula eqn (32), we show in
Fig. 3b the same correlation function as for System 1, but with a
ten times smaller dt = 0.001, referred to as System 1b. In this
case, the dispersion of the data significantly increased for the
same number of sample trajectories yielding a less reliable
numerical analysis. For a comparison with System 1 for the
same time-range, we set the numerical integration of the initial
steps to s = 20, since the timestep was reduced by a factor of 10.
Despite the dispersion in the data, the numerical fit still
provides a reasonable value of Z, although with a much lower
precision, i.e., Z = 1.36 	 0.09. Despite the intrinsic difficulties
associated with the straighforward application of the GK for-
mula (32), there are studies for low-density DPD systems
reporting accurate results for Z.31,32 However, when the dis-
sipative interactions increase and the timestep is reduced, to
correctly integrate the EoM of DPD, the GK approach may
become unreliable.

Therefore, considerable computational effort may be required
to obtain reliable results under certain conditions. While this is
not a conceptual flaw in the application of the standard GK
expression to DPD algorithms, the equivalent EH formula does
not suffer from such drawbacks, and should be the preferred
method in this case.

4.2 Analysis of the different contributions to the stress tensor
and comparison with the EB formula.

According to eqn (30), the stress tensor can be separated into
three terms, based on the conservative, dissipative and random
interactions as,

Pzx ¼
X
i

pzi p
x
i

mi
þ
X
jo i

zij f
xC
ij

 !
þ
X
i; jo i

zij f
xD
ij

� �
þ
X
i; jo i

zij f
xR
ij

� �

¼ PC
zx þPD

zx þPR
zx

(37)

each defined by the corresponding term between brackets on
the right-hand side of this equation. Note that we gathered the
kinetic and conservative-force terms into the conservative con-
tribution to the stress tensor, PC

zx.

When these stress-tensor contributions are inserted into the
correlation function, hPzx(t)Pzx(0)i, the decomposition leads to
nine different contributions. Rather than separately analysing
each contribution, we focus only on the aspects that are relevant
for the objectives of this work. First, one should realise that
hPR

zx(t)PR
zx(0)i is by construction only non-zero at the first time

step, which allows one to calculate the correlation analytically as

PR
zxðtÞPR

zxð0Þ
� �

¼ 2kBTg
dt

X
i; jo i

zijxij

rij

� �2
o rij
	 
* +

eq

dt0 (38)

Note that the magnitude of this contribution is proportional to
1/dt as a result of the fact that the strength of the random force
depends on 1/dt1/2, cf. eqn (18). This fact may be surprising since
it is not present in simulations of purely conservative systems,
where the use of GK formulas is extensive. Moreover, such a
dependence on the timestep may be concealed if a continuum
time is considered.

The time integration of eqn (38) using the trapezoidal rule
gives a constant value and naturally introduces a factor of 1/2
compatible with the integration of half the Dirac’s d(t) due to
causality,36 as discussed after eqn (13). This constant contribu-
tion to Z was already identified by Ernst and Brito27 and
denoted as ZN. For our model, it is expressed as,

Z1 ¼
1

VkBT
PR

zxðtÞPR
zxð0Þ

� �dt
2

¼ g
V

X
i; jo i

zijxij

rij

� �2
o rij
	 
* +

eq

(39)

It is important to realise that, although the correlation in
eqn (38) depends on the time-step, its contribution to the
viscosity coefficient eqn (39) is independent, as it corresponds
to a material property of a dynamic system that conserves
momentum. Therefore, although the choice of the size of the
time-step affects the trajectories of the system, its statistical
properties are not affected, due to the FD, and the overall
hydrodynamic behaviour is insensitive to dt, provided that it
is kept sufficiently small. From a numerical point of view, the
dispersion in the data observed in Fig. 3 is caused by the
contribution hPR

zx(t)Pzx(0)i, which averages to zero after the
first timestep. However, in the straightforward application of
the GK formula, such a correlation is numerically estimated as
a mean over a finite number of samples r = 1,. . .,N, i.e., as

PR
zxðtÞPzxð0Þ ¼

1

N

P
r

PR;r
zx ðtÞPr

zxð0Þ, where PR,r
zx (t)Pr

zx is the

value of the product along one particular system trajectory r.
Then according to elementary statistical inference theory

PR
zxðtÞPzxð0Þ

� �
¼ PR

zxðtÞPzxð0Þ 	
D

dt
ffiffiffiffiffiffi
N
p (40)

where D is given in terms of constant parameters of the system
and can be estimated as D B kBTgrc

2N2/V, from eqn (38).
Therefore, the direct use of eqn (15) to obtain Z is affected by
an uncertainty that depends on the timestep as 1/dt for a
correlation that could actually be set to zero except at the first
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timestep. For further illustration, consider a DPD simulation
with dt involving N samples, and then another DPD simulation
with a smaller timestep dt0 o dt. To have the same precision as
in the former, the latter requires a larger number of samples,

i.e. N0 ¼ dt
dt 0

� �2
N4N. This fact impairs a practical use of

the standard formula eqn (15) to obtain the viscosity, as the size
of the sampling required may become computationally unaf-
fordable. Therefore, although the viscosity coefficient for the
DPD model exists and is well defined as an overall dynamic
coefficient, independent of the time-step, its determination
from the statistical methods underlying the Green–Kubo
expression can be strongly impaired by data dispersion, which
crucially depends upon the size of the time-step. Such inherent
difficulty can be strongly reduced by singling out the contribu-
tion eqn (39) from the rest of the correlation, which does not
suffer from such statistical impairment.

So far we have shown that the direct application of the
standard GK expression for DPD systems, although physically
correct, may present statistical difficulties. Nevertheless, we
continue with the objective of finding an expression that can
be more tractable than eqn (32), with the stress tensor given in
eqn (30). This can be done by first separating the contribution
due to the first timestep, as given by eqn (39) and, second, by
setting hPR

zx(t)PC,D
zx (0)i = 0, since the random term is not

correlated with the state of the system in the past, by construc-
tion. Then, eqn (32) becomes,

Z ¼ Z1 þ
1

VkBT

ð1
0

dt PzxðtÞ �PR
zxðtÞ

	 

Pzxð0Þ

� �

¼ Z1 þ
1

VkBT

ð1
0

dt PC
zxðtÞ þPD

zxðtÞ
	 
�

� PC
zxð0Þ þPD

zxð0Þ þPR
zxð0Þ

	 
�
� Z1 þ ZCC þ ZCD þ ZDC þ ZDD þ Zres

(41)

where ZAB ¼ 1

VkBT

Ð1
0
dt PA

zxðtÞPB
zxð0Þ

� �
and

Zres ¼ 1

VkBT

ð1
0

dt PC
zxðtÞ þPD

zxðtÞ
	 


PR
zxð0Þ

� �
(42)

This expression is in stark contrast with that given by Ernst
and Brito in eqn (13) of ref. 27, which reads instead,

Z ¼ Z1 þ
1

VkBT

ð1
0

dt PC
zxðtÞ þPD

zxðtÞ
	 


PC
zxð0Þ �PD

zxð0Þ
	 
� �

¼ Z1 þ ZCC � ZCD þ ZDC � ZDD

(43)

However, although eqn (41) and (43) may appear irreconcilable,
they are actually the same due to the fact that, when averaging
over the random terms, Zres = �2(ZCD + ZDD), because

PC
zxðtÞPR

zxð0Þ
� �

x

D E
¼ � 2 PC

zxðtÞPD
zxð0Þ

� �
PD

zxðtÞPR
zxð0Þ

� �
x

D E
¼ � 2 PD

zxðtÞPD
zxð0Þ

� � (44)

In eqn (44), the inner averages h�ix on the left-hand side are
included to emphasise that the equality occurs after averaging
with respect to the random terms. In Fig. 4, we numerically
show that the correlation functions C(t) = h(Pzx(t) � PR

zx

(t))Pzx(0)i and CEB(t) = h(PC
zx(t) +PD

zx(t))(PC
zx(0) � PC

zx(0))i, whose
time-integral yields Z � ZN, are equal within simulation uncer-
tainties. Additionally, in Appendix A we outline the derivation
of the equalities eqn (44). Moreover, we compared our results
for Z with those obtained by non-equilibrium simulations28 and
the EB formula eqn (43), and found excellent agreement, as can
be seen in Fig. 5.

Therefore, the equality

Z ¼ Z1 þ
1

VkBT

ð1
0

dt PzxðtÞ �PR
zxðtÞ

	 

Pzxð0Þ

� �

¼ Z1 þ
1

VkBT

ð1
0

dt PC
zxðtÞ þPD

zxðtÞ
	 


PC
zxð0Þ �PD

zxð0Þ
	 
� �

(45)

is another important result of this work as it resolves the
controversy regarding the use of the traditional GK formulas
in DPD simulations due to the lack of time reversibility of
stochastic trajectories. Hence, we conclude that, when the
conditions of momentum conservation and DB are satisfied,
mesoscopic systems with dissipative and random forces follow
the same dynamic principles as conservative systems for deter-
mining transport coefficients. Therefore, difficulties associated
with the use of the GK formulas are of a technical nature, and
not due to any fundamental flaw in eqn (32).

4.3 Preference for Einstein–Helfand over Green–Kubo
formulas in DPD systems

In the previous subsection, we demonstrated that it is possible
to use the standard GK formula eqn (32) in DPD simulations,
although its use may be impractical. By extracting the zero-time
correlation and eliminating the zero-average contributions
involving the random stress tensor, we obtain a more practical
GK formula eqn (41). We further demonstrated that the latter
is equivalent to the EB formula eqn (43). However in both

Fig. 4 Comparison between the correlation functions C(t) = h(Pzx(t)�PR
zx

(t))Pzx(0)i and CEB(t) = h(PC
zx(t) + PD

zx(t))(P
C
zx(0) � PD

zx(0))i for System 5.
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approaches, the tail contribution of the correlation functions
needs to be fitted to a function that decays to zero. Otherwise,
the value of the time-integral is sensitive to the final time
chosen, due to the statistical fluctuations. The form of the
fitting function has to be carefully chosen as the decay of the
correlation functions may not be monotonous. The chosen
form given in eqn (36) is monotonous and can only be used
in sections of the correlation function with no change of sign in
the derivative. For instance, for large densities such as in
System 8, negative values of the correlation eqn (41) occur. In
this case, we have used the same fitting function, but starting
after the minimum of the correlation from which the decay is
monotonous, and obtained again accurate results.

In contrast, in our previous article,30 we demonstrated that
the EH expressions can be straightforwardly used to determine
transport coefficients from DPD simulations. We found the
traditional expression,

Z ¼ 1

kBTV
lim
t!1

1

2t

ðt
0

dt 0Pzxðt 0Þ
� � ðt

0

dt 0Pzxðt 0Þ
� �� �

(46)

where Pzx is also given by eqn (37) and includes both random
and dissipative contributions. The application of the EH for-
mula eqn (46) is neither hampered by the statistical problems

of the GK counterpart nor does it require any fitting function for
the tail of the correlation. The standard procedure is to obtain
the coefficient from a simple linear regression in the diffusive
regime. The reason for its superior statistical precision is due to
the additional time-integral present in the EH formula. Effec-
tively, interpreting the integration as a Riemann sum over the
timesteps, e.g. we get for the random contribution PR

zx

ðt
0

dt 0PR
zxðt 0Þ ’

Xk
s¼1

X
i; jo i

zijðsÞf xRij ðsÞ
 !

dt (47)

where t = kdt. According to eqn (18) and (20), every element in the

Riemann sum scales with the timestep as f xRij ðsÞdt � O dt1=2
	 


and therefore, every element of the sum tends to zero as dt - 0.
In contrast, in the standard GK formula the elements interven-

ing in the correlation function are O dt�1=2
	 


. Therefore, their
dispersion increased as dt decreased, causing the evaluation of
the correlation to become more difficult (see Fig. 3). The use of
the EH formula requires no decomposition to reduce the statis-
tical noise,30 and there is no need for a specific combination of
stress–tensor contributions to be introduced, which differs from
the approach in ref. 27.

Since the EH formula eqn (46) follows from first principles,
it can be used for any system provided that the flux of the
conserved property (the stress tensor here) is properly derived
from the dynamic algorithm. This derivation follows an analo-
gous procedure as in Section 2.3, and it includes the random
term explicitly as an input together with the conservative and
dissipative terms. Table 2 presents the predictions of Z using
the GK and EH equilibrium methods, and their comparison
with the non-equilibrium simulations, used as a reference.
Errors in the non-equilibrium simulations are entirely due to
the linear regression used to determine the linear velocity
gradient in the box. Errors in the EH approach are evaluated
from the slope of the linear regression, while in the GK analyses
errors are obtained from the confidence range of the para-
meters A, b and c used for the fitting of the hydrodynamic part
of the correlation to the function y = Ae�btc

. In Table 2 excellent
agreement between the equilibrium and non-equilibrium simu-
lations is exhibited in all cases.

From our study, we find that the splitting of the stress tensor
into the different contributions, as in eqn (41) or eqn (43), is
not required in the EH approach. Thus, simulation codes can

Fig. 5 Shear viscosity as a function of the system density comparing non-
equilibrium simulations28 (red squares) with different GK expressions (blue
dots are for the GK formula (41) while green triangles are for the GK
formula (43)). Both GK shear viscosity values were calculated with our
simulation data. The error bars are smaller than the size of the symbols.

Table 2 Comparison of the shear viscosity, Z, obtained from equilibrium and non-equilibrium approaches. Non-equilibrium values for system densities
%n = 3, 4, 5, 6, and 7 are from ref. 28, while %n = 8, 16, and 32 are from our non-equilibrium simulations

System

Density Z

%n Non-equ. EH (eqn (46)) GK(a) (eqn (41)) GK(b) (eqn (43))

1 3 1.28 	 0.01 1.2790 	 0.0002 1.272 	 0.006 1.286 	 0.002
2 4 1.40 	 0.01 1.4110 	 0.0003 1.416 	 0.007 1.418 	 0.002
3 5 1.56 	 0.01 1.5733 	 0.0003 1.565 	 0.009 1.543 	 0.002
4 6 1.74 	 0.01 1.7337 	 0.0002 1.757 	 0.009 1.731 	 0.003
5 7 1.96 	 0.01 1.9613 	 0.0003 1.97 	 0.01 1.989 	 0.003
6 8 2.17 	 0.01 2.1860 	 0.0002 2.17 	 0.01 2.169 	 0.004
7 16 5.45 	 0.02 5.4749 	 0.0005 5.43 	 0.15 5.434 	 0.008
8 32 20.0 	 0.2 19.479 	 0.003 19.88 	 0.15 19.74 	 0.03
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incorporate the standard method, as applied in molecular
dynamics, with the appropriate form of the stress tensor, as
given in eqn (30). Unlike the GK approach, the EH analysis
requires only a standard linear regression to obtain the viscosity
from the slope, rather than the use of a sophisticated procedure
to evaluate the time-integral in eqn (41) from a non-linear curve
fit, yielding a significantly lower error in the estimate.

5 Conclusions

The Green–Kubo (GK) relation for a given physical property in
dissipative particle dynamics (DPD) systems requires only two
fundamental physical principles to hold, namely, (i) the dynamic
model conserves the physical property whose transport is
studied, and (ii) the fluctuations satisfy Detailed Balance. The
theoretical discussion presented here completes our analysis of
the transport properties in DPD systems initiated in our previous
work30 on the study of the Einstein–Helfand (EH) relations.

Specific GK expressions already exist for DPD systems,27 but
its distinctive form, when compared to the standard GK
formulas used in conservative systems, caused uncertainty
within the scientific community. The key question addressed
in this work is whether the lack of time-reversibility in the
stochastic DPD trajectories impairs the use of the standard GK
expressions employed in the conservative systems, and specific
equations should be derived instead.

First, as illustrated through the calculation of the viscosity in
this work, we can conclude from the derivation of the GK
formula that the traditional GK expression, used for conserva-
tive systems (see, e.g., ref. 35), can be applied to DPD systems as
well. This is true provided that the contribution to the stress
tensor due to the random forces is included, as in eqn (30).
Interestingly, this latter equation was obtained following the
standard procedure.35

Second, we showed that despite the correctness of the GK
formula eqn (32) in the DPD systems, its application presents
important limitations due to statistical uncertainties caused by
the random contribution, whose strength scales as 1/dt1/2,
where dt is the timestep. To remedy these limitations, a
separation of the stress tensor in the different contributions
is introduced, leading to a more suitable formula, eqn (41).
A similar decomposition was introduced by Ernst and Brito
(EB),27 although their derivation leads to a different GK for-
mula, eqn (43). One of the most important results of our work is
the demonstration that eqn (41) and (43) are equivalent, and
that the differences between these formulas do not stem from
the lack of time-reversal invariance in the DPD trajectories, but
rather from the pre-averaging of the correlations with respect to
the random contributions, which was implicitly assumed in the
derivation of eqn (43). We further showed analytically, as well
as numerically, that our and the EB GK formulas are equivalent.
Therefore, our findings settles the controversy within the com-
munity, i.e., that the standard GK formulas need no revision
when used in DPD systems, and only care is needed to consider
all the contributions to the stress tensor, including the random

terms, together with the statistical relevance of the simulated
data. In this sense, a convenient separation of the a priori
known contributions, as we have done in passing from
eqn (32)–(41), is shown to be crucial.

Finally, we highlight that EH relations can be straightfor-
wardly and safely used with a high degree of accuracy, instead
of GK formulas. No decomposition of the stress tensor to
reduce the uncertainty due to the noise is required, nor any
modified form for the correlation function needs to be invoked.
This makes the EH formulas preferable to any form of the GK
expressions for DPD systems.

The analysis presented in this work can be straightforwardly
generalised to other transport coefficients without caveats
except for the implicit difficulty that the derivation of the flux
expressions (e.g., the stress tensor for the viscosity or the heat
flux density for the thermal conductivity30) from the dynamic
model may entrain. The perspective of this work, as well as in
ref. 30, is general and can be used in other cases where
stochastic dynamic equations are present, which include gen-
eralised DPD methods, e.g., a recent extension of generalised
energy-conserving DPD with inter-particle mass transfer.39,40

These cases will be addressed elsewhere.
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Appendices

A Derivation of eqn (44)

Rather than proceed with the complete derivation, we outline
the analysis for a simpler system. Consider a simple Langevin
equation for the momentum of an individual particle given by

pðkþ 1Þ ¼ pðkÞ � g
m
pðkÞdtþ dpRðkÞ (A1)

where the time at the time-interval k is t = kdt. Detailed Balance
(DB) is the signature of the underlying microscopic reversibility
of the Hamiltonian dynamics of the microscopic constituents of
the underlying physical system.42 For the random term, we use

dpR(k) = Gxkdt1/2 (A2)

where xk is a normalised Gaussian random number for the time
interval k. A consequence of DB is the Fluctuation Dissipation
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Theorem (FDT) for the random contributions

dpRðkÞdpRðk0Þ
� �

¼ G2dt ¼ 2kBTgdtdkk0 (A3)

which is crucial for our demonstration as it relates the strength
of the random terms with the dissipative contribution in the
dynamic equation, eqn (1).

The stochastic process given in eqn (A1) generates a Markov
chain which allows us to write the form of the conditional
probability distribution

P p0; t 0jp; 0ð Þ ¼
ð
dpn�1 . . . dpk . . . dp1

�
Yn
k¼0

d pk � pðk� 1Þ � g
m
pðk� 1Þ

�hD

� dtþ dpRðk� 1Þ

��

xk

(A4)

where pk=n = p0 and pk=0 = p, and the subindex xk indicates that
the average is taken with respect to the random number at each
interval, which is independent. Note that we used p(k) for a
particle variable and pk for a field variable. The particle vari-
ables are time-dependent functions given by the dynamic
algorithm, eqn (A1).

It is convenient to introduce the random force as

f RðkÞ ¼ dpRðkÞ
dt

(A5)

since the random stress tensor is defined from the random
force applied on the particle, cf. eqn (30). The terms of interest
are thus correlation functions of the form,

hA(k) f R(0)i (A6)

where A(t) is an arbitrary phase space function A(p(t)). eqn (A6)
can be expressed in more detail as,

ð
dpn . . . dpk . . . dp0A pnð Þ

Yn
k¼1

d pk � pðkÞ½ 
h ixk

 !

� d p1 � pð1Þ½ 
dp
Rð0Þ
dt

� �
x0

Peq p0ð Þ

(A7)

In eqn (7), we isolated the first timestep to indicate that the
random force is correlated to itself through p(1) in view of
eqn (A1). Integrating over the intermediate momenta except p1

in view of eqn (A4), we get

AðkÞf Rð0Þ
� �

¼
ð
dpndp1dp0 A pnð ÞP pn; tjp1; dtð Þ

� d p1 � p0 �
g
m
p0dtþ dpRð0Þ

� �h idpRð0Þ
dt

� �
x0

� Peq p0ð Þ
(A8)

Next, we expand the d-function around p0 and average over x0 to

get

d p1 � p0 �
g
m
p0dtþ dpRð0Þ

� �h idpRð0Þ
dt

� �
x0

Peq p0ð Þ

¼ dpRð0Þ
dt

1� � g
m
p0dtþ dpRð0Þ

� � @

@p1

� �
d p1 � p0ð Þ

� �
x0

Peq p0ð Þ

¼ �2kBTgPeq p0ð Þ
@

@p1
d p1 � p0ð Þ ¼ 2kBTgPeq p0ð Þ

@

@p0
d p1 � p0ð Þ

¼ �2kBTgd p1 � p0ð Þ @
@p0

Peq p0ð Þ

(A9)

where we used eqn (A3). Linear terms in dpR(0) vanish as
hdpR(0)ix0 = 0. Since the equilibrium distribution is Maxwellian,
i.e., Peq p exp[�p2/(2mkBT)], therefore we have,

�2kBTg
@

@p0
Peq p0ð Þ ¼ 2

g
m
p0Peq p0ð Þ ¼ �2fD p0ð ÞPeq p0ð Þ (A10)

The integration over p1 can then be readily performed to get

AðtÞf Rð0Þ
� �

¼ � 2

ð
dpndp0 A pnð ÞfD p0ð ÞP pn; tjp0; dtð ÞPeq p0ð Þ

¼ � 2 AðtÞfDðdtÞ
� �

�!
dt!0
�2 AðtÞfDð0Þ
� �

(A11)

q.e.d. Note the small shift in dt between the correlations, which
cannot be seen if a continuous time is taken. However, for a
discrete algorithm, the shift can be appreciated in the initial
stages of the decay shown in Fig. 4.

Although the example considered here is specific, its gen-
erality can be seen if we recall that, by virtue of the FDT, the
random contribution is related to the dissipative contribution.
Thus, in our example it holds that

fDðpÞPeqðpÞ ¼ �
g
m
pPeqðpÞ ¼ kBTg

@PeqðpÞ
@p

(A12)

but it is equally true for any type of Langevin equation where
the dissipative interaction is given by Onsager’s linear theory.
In fact, within the previous expressions conceived as distribu-
tions, we can formally equate

f R t0ð ÞPeq p;t0ð Þ
� �

x¼ �2kBTg
@

@p
lnPeq p;t0ð Þ

� �
Peq p;t0ð Þ (A13)

where the stochastic term within its average can be replaced by
the gradient of an appropriate thermodynamic potential, which
eventually gives rise to the diffusive term in the associated
Fokker–Plank equation. Thus taking the Fokker–Plank equa-
tion for the standard DPD algorithm to easily identify the
equivalent potential and for the stress tensor correlation
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function, we can establish

X
i

X
jo i

zij f
R
ij

 !
PðGÞ

* +
x

¼
X
i

X
joi

zij �2kBTgo rij
	 


eijeij �
@

@pi
� @

@pj

 !" #
lnPðGÞ

( )
PðGÞ

(A14)

which, used in the expression hPC,D
zx (t)PR

zxi produces eqn (44);
here G denotes the phase space state point of the system.
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