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Elucidation of protein–ligand interactions by
multiple trajectory analysis methods†

Nian Wu, ‡*a Ruotian Zhang,‡a Xingang Peng,a Lincan Fang,b Kai Chenc and
Joakim S. Jestilä b

The identification of interaction between protein and ligand including binding positions and strength

plays a critical role in drug discovery. Molecular docking and molecular dynamics (MD) techniques have

been widely applied to predict binding positions and binding affinity. However, there are few works that

describe the systematic exploration of the MD trajectory evolution in this context, potentially leaving out

important information. To address the problem, we build a framework, Moira (molecular dynamics

trajectory analysis), which enables automating the whole process ranging from docking, MD simulations

and various analyses as well as visualizations. We utilized Moira to analyze 400 MD simulations in terms

of their geometric features (root mean square deviation and protein–ligand interaction profiler) and

energetics (molecular mechanics Poisson–Boltzmann surface area) for these trajectories. Finally, we

demonstrate the performance of different analysis techniques in distinguishing native poses among

four poses.

1 Introduction

Predicting interaction between protein and ligand is an essen-
tial issue in drug discovery, which determines the possibility of
candidates as effective drugs toward specific targets. To accel-
erate drug discovery, many computer-aided drug design
methodologies1,2 have been developed to estimate the binding
affinity as an alternative to experiments to shortlist promising
candidates. These methods range from coarse to fine, including
machine learning,3–6 molecular docking, end-point calcula-
tions like linear interaction energy,7 molecular mechanics/
Poisson–Boltzmann surface area (MM/PBSA) simulations,8–11

and rigorous methods like thermodynamic integration
(TI).12–16

Among these methods, various scoring functions have been
developed to estimate the binding affinity of given 3D
structures.17,18 These scoring functions could be majorly clas-
sified into three types. i.e., (1) physics-based: fitting energies
with a weighted sum of several energy terms based on force
field parameters. (2) Empirical: counting the number of inter-
actions that could be defined based on geometry criteria of
bond length or angles. (3) Knowledge-based: analyzing

intermolecular interactions between certain types of atoms or
functional groups. However, the ability of these models to
predict binding poses and affinities is still limited, which could
predominantly be ascribed to three factors: molecular flexibil-
ity, binding score and computing time.19–22 In terms of the
enormous chemical phase space, the geometrical optimization
of ligands and proteins during the docking tends not to
drastically change the initial structure due to the prohibitive
cost. To some extent, molecular dynamics (MD) may be used to
address the issue of flexibility via relaxing the initial structure
based on Newton’s laws.

Based on the MD trajectories, a series of analytical methods
have been applied to evaluate the conformations in terms of
residence time or binding free energy.23,24 For the former, the
stability of a given conformation is normally indicated by the
structural deviation over time. Parameters could range from
global structure (whole complexes, proteins or ligand) to
selected fragments or pairs (like atom pairs or residue pairs
with hydrophobic interaction,25–27 hydrogen interaction,28

halogen bonds29). Root-mean square deviation (RMSD) is a
typical characteristic capable of estimating the movement of
each atom, Liu and coworkers30 found that about 94% of the
native poses (experimental crystal structures) remain stable
during the simulation, while only 56–62% of decoy poses per-
forms comparable stability. The number and strength of inter-
action pairs28,31 could also be regarded as critical descriptors
of stability. In addition, Sakano and coworkers24 discussed
the impact of simulation time which revealed that MD simula-
tions longer than 100 ns can deal with membrane proteins or
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highly-flexible proteins, whereas MD shorter than 5 ns is
insufficient to accurately predict the stable structure of pro-
tein–protein. For the latter, MM/PBSA or MM/GBSA is one of
the typical methods used to predict binding affinity by treating
the solvent effect implicitly without atomistic detail. Numerous
studies also proved the ability of MM/PBSA or MM/GBSA in
distinguishing between the native structures from decoy poses
through ranking the binding affinity of different ligands bind-
ing to one protein in specific cases.32,33

These previous papers have provided considerable insights
for specific complex systems with few methods of analysis.
However, studies performing comprehensive analysis based on
relatively numerous trajectories is still lacking, and some
corresponding knowledge is not necessarily transferable to
new systems. Therefore, many issues associated with the infor-
mation in trajectories remains elusive. For example, whether
combining these analysis techniques outperforms the use of a
single technique on the performance of distinguishing poses,
whether the decoyed poses deviating from the native pose to
various degrees share some similarity or distinctions, whether
combining various analysis methods could contribute to the
identification of native pose, as well as the impact of the
simulation time of MD, whether the longer time means better
performance.

To address these questions, we developed a framework
named Moira (molecular dynamics trajectory analysis) by inte-
grating molecular docking, molecular dynamics and various
analysis methods with more details shown in the Methods.
Moira not only enabled the automation of the whole process,
but also allowed batch processing for a large number of
systems. All complex samples were collected from the refined
PDBbind repository due to their high quality in crystal struc-
tures. To make a trade off between computational cost and
generalization for either proteins or ligands, we randomly
selected 100 samples. For each complex, based on the extent
of deviation of the ligand structure from those in the corres-
ponding native structures, four conformations (c_native, c_2a,
c_5a, c_10a, representing native structures, while ligand con-
formations are represented by the RMSD values, which are
close to 2 Å, 5 Å, 10 Å relative to the native structures) were
considered. To summarize, we calculated 400 MD trajectories
for these 100 complexes with four initial conformations of each
ligand. Subsequently, multiple perspectives analysis methods
(geometric and energetic) involving RMSD, protein–ligand
interaction profiler (PLIP), MM/PBSA were carried out to ana-
lyze these trajectories. Finally, we evaluated these techniques
for their performance in distinguishing native conformations
from four initial conformations.

1.1 Data analysis

To evaluate the performance of AutoDock Vina on predicting
binding positions, we analyzed 13 450 complexes in the
PDBbind database. For these complexes, we directly generated
ten initial three-dimensional ligand structures using
RDKit34 with SMILES as input. AutoDock Vina was then
employed to generate the top 10 ranked conformations for

the protein–ligand complexes based on the scoring function
from the 10 initial ligand structures, thereby generating 100
docked conformations for each sample. The RMSD of the
conformation referred to the native structure was used to assess
the performance. The various poses with RMSD values ranging
from 2 Å to 8 Å, relative to c_native pose (depicted in grey) are
displayed in Fig. 1(a). In general, the majority of fragments
overlap entirely at 2 Å, except for one or two fragments caused
by few torsion angles. Therefore, they can be considered as the
true native structure. At 6 Å, there are still few overlapping
fragments with more torsion angles, resulting in dramatic
changes. Meanwhile, at an RMSD of 8 Å, the orientations of
most fragments differ completely, highlighting a significant
divergence from the native structure. For the 100 complexes,
less than 50% achieved high accuracy where the RMSD would
be within 1 Å, indicating almost perfect overlap with corres-
ponding c_native poses using the aforementioned conforma-
tion generation method without experimental guidance. When
we loosen the criteria to 2 Å and even 8 Å, the ratio of complexes
satisfying the criteria increase to 72% and near 100%,
respectively.

Further, to compare the performance of various scoring
strategies for ranking different poses, including both static
and dynamic methods, we tested these on a randomly selected
set of 100 complexes. The distribution of experimental binding
affinities �log Kd for these 100 complexes is illustrated in
Fig. 1(b), ranging from 2 M to 11 M, where higher values
indicate strong interactions between ligands and proteins.
For each complex, we considered four poses (c_native, c_2a,
c_5a, c_10a) as shown in Fig. 1(c), with increasing deviation
from the native poses with RMSD near 0 Å, 2 Å, 5 Å, 10 Å. When
ranking c_native or c_2a poses as the stablest structures out of
the aforementioned four poses using the classifical scoring
function in AutoDock Vina (Fig. 1(d)), the probability of failure
could reach up to 30%, thus demonstrating the limited accu-
racy of AutoDock Vina on the evaluation of static poses.

1.2 Molecular dynamics

To investigate the structural evolution of the protein–ligand
complexes, we performed molecular dynamics for 100 com-
plexes with four poses (c_native, c_2a, c_5a, c_10a) over a time
span of 25 ns. The following subsections summarize our
findings based on both geometric and energetic perspectives.

1.2.1 RMSD performance. To describe the conformational
changes of arbitrarily selected fragments in a complex during
25 ns dynamic trajectories, we utilized various metrics for both
global and local structures including root-mean square devia-
tion (RMSD), root-mean square fluctuation (RMSF), radius of
gyration (Rg). For simplicity, we predominantly base our dis-
cussion of the conformational changes on RMSD, as illustrated
in Fig. 2(a). The analyses based on the other metrics are shown
in the ESI.† In the following discussion, we consider two
specific complexes: the complex with pdbid 4xtx (corres-
ponding to the highest experimental binding affinity) in
Fig. 2(a) with the corresponding structure shown in Fig. 2(c)
and complex with pdbid 5fov (corresponding to the lowest
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experimental binding affinity) in Fig. 2(b) with the structure
shown in Fig. 2(d). For the aforementioned, blue, skyblue,
salmon and pink indicate the RMSD evolution of the ligands
with c_native, c_2a, c_5a and c_10a poses as the initial struc-
tures during the 25 ns simulations, respectively.

There are significant conformational variations among the
ligands with the four initial poses. For the complex with pdbid
4xtx, the RMSD values relative to the initial structures for the
c_native and c_2a initial structures remain consistently low at
less than 2 Å, with minimal fluctuations throughout the simu-
lation. In contrast, the RMSD values for the c_5a and c_10a
pose initial structures are not only noticeably larger, but also
exhibit substantial fluctuations, particularly for the c_10a pose
after 8 ns. In contrast, the RMSD rankings of four initial poses
for the complex of pdbid 5fov display different patterns. The
c_2a pose exhibits the highest RMSD value with the largest
fluctuation, followed by the c_10a pose. The c_5a pose and the
c_native pose consistently remain the lowest RMSD values over
the whole simulation period. Overall, while there are no defi-
nitive universal trends regarding the timing of sharp changes
and rankings during the RMSD evolution of the four poses for
both complexes, the results suggest that higher RMSD values
are typically associated with larger fluctuations. Conversely, the
RMSD evolution of the protein (shown in Fig. S1 and S2, ESI†)
demonstrates a similar pattern over time for the four poses,
with minimal deviations in conformation. Given the high
similarity and minimal changes in protein conformation over

time across the four poses, we will focus our discussion on the
results pertaining to the ligand in the following section of the
RMSD analysis.

Firstly, we extracted 2500 snapshots during the 25 ns simu-
lations at 100 ps intervals for each trajectory. This was done
for all 100 complexes with the four initial poses, where the
RMSD describes each respective snapshot in relation to the
initial pose.

To provide a qualitative interpretation of the overall con-
formational changes in the 100 complexes, we depict the
distributions of the averaged RMSD values from the last 5 ns
of the simulations for the four initial poses in Fig. S3 (ESI†).
The analysis revealed that the mean RMSD for the complexes
was the lowest, less than 1 Å, with the c_native initial pose for
the MD simulation. This was closely followed by pose c_2a,
outperforming the mean values associated with c_5a and c_10a.
Furthermore, the boxplots representing each initial pose show
how lower mean values are accompanied by less scattered
distributions. These results indicate that the c_native pose
exhibits a lower RMSD compared to the other three initial
poses across the majority of the complexes.

To further evaluate the structural fluctuations in 100 com-
plexes quantitatively, a comparative analysis was done on
the average RMSD values during the last 5 ns of the trajec-
tories, referred to initial structures for four initial poses. In
Fig. 2(e)–(g), each point represents a comparison between
trajectories from the same ligand but with varying initial

Fig. 1 (a) Performance of docking (AutoDock Vina) for 13,450 complexes in PDBbind bank. (b) Distribution of experimental binding affinity for selected
100 complexes. (c) Example of four conformations c_native, c_2a, c_5a, c_10a (pdbid: 1kpm). (d) Number of ranked first poses from four pose groups for
100 complexes based on scoring function of Vina.
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structures. For clarity, we grouped two pairs together, distin-
guished by different colors (dark turquoise and plum). The
horizontal axis represents the RMSD values from the pose
before underscore, while the vertical axis indicates the RMSD
values from the pose after underscore. For example, in Fig. 2(e),
the dark turquoise points ‘‘native_c_10a: 83/17’’ represent a
comparison between the RMSD of trajectories from c_native
poses (horizontal axis) and c_10a poses (vertical axis) as initial
poses. The value ‘‘83/17’’ signifies that 83 complexes had a
higher RMSD value when c_10a was the initial pose in compar-
ison to the native initial pose. The findings imply that, for the
majority of 100 complexes, the c_native poses exhibit greater
stability than the c_10a poses. Similarly, the distribution of the
plum colored points in Fig. 2(e) reveals that the majority of

points lie above the diagonal line, indicating that the c_native
pose is generally more stable than the c_5a pose, with approxi-
mately 90% of complexes following this trend. However, a few
points (10%) show the opposite trend.

In Fig. 2(f), the c_2a poses exhibit a similar pattern as the
c_native poses when compared to the c_5a and c_10a poses.
This observation is further supported by the relatively even
distribution near the diagonal line in Fig. 2(g). In contrast, the
distribution of points representing the c_10a versus c_5a poses
does not have any apparent bias (dark turquoise points in
Fig. 2(g)).

Subsequently, we accounted for temporal factors by dividing
the 2500 snapshots into 12 parts with 2 ns increments, and
calculating the averaged RMSD for these intervals. Fig. 2(h)

Fig. 2 RMSD performance for four initial conformations (c_native, c_2a, c_5a, c_10a) during 25 ns molecular dynamics. (a) RMSD profile of ligand and
protein with pdbid 4xtx with largest experimental binding affinity �log Kd 10.57 M. (b) RMSD profile of ligand and protein of pdbid 5fov with smallest
experimental binding affinity �log Kd 3.74 M. (c) 3D crystal structure of complexes with pdbid 4xtx. (d) 3D crystal structure of complexes with pdbid 5fov.
(e)–(g) Averaged RMSD during the final 5 ns of the MD simulations between four initial poses. (h) The averaged RMSD relative to the initial structures for all
selected 100 complexes at the interval of 2 ns during 25 ns MD simulations. The shaded section represents the standard deviation.
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displays the RMSD evolution for all 100 complexes across four
poses (native: blue, c_2a: sky blue, c_5a: salmon, c_10a: pink),
where the full line indicates the average RMSD values, while the
shaded section represents the corresponding standard devia-
tion. The figure reveals slightly increasing mean RMSD values
for all four poses over time, with the value at the starting point
consistently higher than that at the ending points, despite
minor fluctuations. Furthermore, similar to patterns observed
in the boxplot analysis (Fig. S3, ESI†), the c_native initial poses
consistently exhibit higher stability compared to c_2a, c_5a and
c_10a during each period across the 100 complexes, having the
lowest mean RMSD and standard deviation values. Addition-
ally, the c_native and c_2a poses display more similar trends,
while c_5a is seen to be closer to c_10a in terms of trends. The
results illustrate that partitioning the MD simulations into
given periods leads to similar tendencies in determining the
stability of conformations across the four poses in general,
despite sample specific deviations.

1.2.2 PLIP. Geometric properties, such as bond lengths
and angles, can be utilized to identify potential interacting
groups. To exemplify this, the interactions between the ligand
and the protein in the 4xtx complex are visualized as a 2D
schematic generated by Ligplot in Fig. 3(a). Here, the red arc
indicates hydrophobic interactions between ligand and specific
residues (Ile83, Trp74, Gly141, Val166 and Ala170) of the
protein. In addition, the ligand forms 15 hydrogen bonds with
9 protein residues. Among these interactions, a trifurcated

hydrogen bond is observed between the nitrogen atom of
residue Lys138 with three oxygen atoms of the ligand. Further-
more, three bifurcated hydrogen interactions exist between the
residue Arg67 and Ser38 with the OAC atom of the ligand,
residue Arg72 with the OAE atom of the ligand, and residue
Ala75 and Asn158 with the N6 atom of the ligand. The remain-
ing hydrogen bonds involve two hydrogen bond centers. More-
over, a water bridge is also observed between residue Asp167
and the N3 atom in the purine ring moiety of the ligand. Apart
from Ligplot, PLIP categorizes interactions into eight types:
hydrophobic contacts, hydrogen bonds, pi–stacking, pi–cation
interactions, salt bridges, water bridges, halogen bonds and
metal complexes. To avoid redundancy, some interactions types
with similar characteristics (e.g. salt bridges and hydrogen
bonds) are regarded only as a single type.

Algorithm 1 Counting the occurrence frequency of interaction
pairs detected by PLIP

Input: S = snapshots I = interactions P = pairs
Output: C = count
Do PLIP for all snapshots, find all pairs and all interactions
Define count = np.zeros((len(P),len(I))
For j = 1, 2,. . ., len(S); j = 1, 2,. . .,len(P); k = 1, 2,. . .,len(I)
If I[k] exists in P[j]; count[j,k] = 1 Else count[j, k] = 0
Return C = count/len(S)

Fig. 3 Examples of interaction analysis. (a) Schematic of ligand–protein interactions determined by ligplot. (b) 4xtx and (d) 5fov: the occurrence
probability of three type interactions (hydrophobic interactions, hydrogen bonds and water bridges) for four trajectories with different initial poses of
ligand. (c) Illustration of three interaction types.
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To analyze the dynamic evolution of the interaction pat-
terns, PLIP was employed to assess the 2500 snapshots from
each trajectory, and subsequently these were compared across
the four poses. Unlike interactions in the static simulations,
certain interaction patterns may appear or disappear during the
process. Consequently, we calculated the occurrence probabil-
ity of each interaction pattern over the 25 ns of simulation time.
In this analysis, we considered the protein residue–ligand pair
only. Note that the entire ligand was treated as a single unit,
although the software may also be used to gain information on
specific atom pairs. In cases where multiple atoms within a
residue could interact with the ligand, the occurrence prob-
ability may exceed 1.0.

Furthermore, we examined the probability of interaction
pair occurrence within the seven interaction groups for 4xtx
(Fig. 3(b)) and 5fov (Fig. 3(d)) over the 25 ns of MD simulation
time (blue, sky blue, salmon, and pink representing native,
c_2a, c_5a, and c_10a, respectively). In the figures, the hor-
izontal axis represents the residue numbers involved in ligand
interactions. In Fig. S2 (ESI†), all seven interaction patterns,
including hydrophobic interactions, hydrogen bonds, and
water bridges (as depicted in the cartoon schematic Fig. 3(c)),
exhibit noticeable frequencies compared to the other patterns.
In the 4xtx case, the c_native pose demonstrates both a higher
number of interactions, as well as their corresponding prob-
abilities, surpassing the other three initial poses. This is
particularly prominent for hydrogen bonds and salt bridges.
Meanwhile, the trend is less pronounced for the 5fov complex.

To ensure a sufficiently large sample size, we examined the
probabilities of all interaction pairs for the four initial poses
across the 100 complexes. As the residue–atom pairs involved
in interactions may completely be different, we opted to com-
pare the probabilities among all types of interactions, indepen-
dent of the residue–atom pairs. Furthermore, the interactions
giving rise to the largest occurrence probabilities tend to
significantly influence the overall interaction dynamics, repre-
senting the dominant interactions for the complex in question.
Therefore, further analysis is mostly based on the interaction

modes with the largest occurrence probability (top one), while
the results based on top two and top five are provided in Fig. S7
and S8 (ESI†).

Fig. 4 illustrates the differences between the largest occur-
rence probabilities of specific interaction types in two poses
(pose1 and pose2). A positive value indicates that the most
stable interaction pair in pose1 has a higher probability than in
pose2, while a negative value suggests the opposite.

As was the case for the number of interactions, hydrophobic
interactions, hydrogen bonds, and water bridges are also seen
to far exceed other types of interactions (pi–stacking, pi–cation
interactions, salt bridges, halogen bonds). These three inter-
action patterns emerge as the most prominent driving forces in
ligand–protein binding. However, due to the limited number of
cases, the latter four interaction patterns cannot be reliably
discussed based on the results depicted in Fig. S9 (ESI†).

As shown in Fig. 5(a), the stablest hydrophobic interaction
pairs in the MD trajectory for the c_native case tend to have
higher occurrence probabilities in comparison to the other
three initial poses for the majority of the 100 complexes.
Furthermore, the positive/negative value ratios increase in the
following order: c_2a, c_5a, and c_10a. The highest ratio, with a
value of 75 : 20, is observed when comparing the c_native and
the c_10a. Meanwhile, the ratio reduces to 59 : 36 for the c_5a
and c_10a case.

Hydrogen bond interactions are dominant contributors to
the electrostatic interactions. Fig. 5(b) exhibits similar patterns
as hydrophobic interactions, albeit with some differences. The
gap between the c_native pose and the c_2a pose narrows down
to 48 : 50, as well as the gap between the c_5a pose and the
c_10a pose with a ratio of 54 : 44. Moreover, the gaps between
the c_native pose (or c_2a pose) and the c_5a pose (or c_10a
pose) are larger, particularly for the second stablest hydrogen
interaction pair, as shown in Fig. S9 (ESI†).

The hydrogen bond network between the ligand and the
protein facilitated by water molecules plays a significant role in
the overall structural stability. In contrast to the aforemen-
tioned interaction patterns, the water bridge interactions

Fig. 4 PLIP performance on 100 complexes for four initial conformations (native, c_2a, c_5a, c_10a) during 25 ns of molecular dynamics. The difference
of the highest occurrence probability for pairwise comparisons in four poses. (a) Hydrophobic interaction type; (b) hydrogen bonds interaction type; (c)
water bridges interaction type.
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(Fig. 5(c)) exhibit different patterns. There is no clear gap
observed in any of the comparisons among the four poses,
and no explicit trend indicating which initial pose is more likely
to possess the water bridge interaction pair with the largest
occurrence probability among complexes.

1.2.3 MM/PBSA. The binding affinities were estimated by
calculating the MM/PBSA binding free energies. The total
interaction energy can be decomposed into its constituent
parts, including both negative (van der Waals and electrostatic
interactions, and non-polar solvation energy) and positive con-
tributions (polar solvation energy). Among the negative con-
tributions, the van der Waals interactions tend to dominate,
followed by electrostatic interactions and non-polar free ener-
gies. The van der Waals energy reflects hydrophobic interac-
tions, while electrostatic interactions arise from interactions
such as hydrogen bonds and pi–stacking.

First, we started by calculating the MM/PBSA binding affi-
nities for the four initial structures (Fig. 5(a)–(f), lime green
points). Similar to the RMSD values, the MM/PBSA binding
affinities for the native structure are significantly lower than
those for the other three poses in most complexes, followed by
the c_2a pose. However, no clear trend was observed for c_5a
and c_10a. Therefore, MM/PBSA can often distinguish the
native structure from the other poses in most complexes,
despite the positive values indicating an imperfect match
between the ligand and protein in static snapshots, which
could mainly be ascribed to different force fields being used
for the docking method and for MM/PBSA. Dll values turned

out to be negative under the specific force fields over times
during molecular dynamics. In comparison, the average MM/
PBSA values from the dynamic trajectories (violet points in
Fig. 5(a)–(f)) are substantially lower than those from the static
snapshots, indicating that the structural relaxation during
molecular dynamics provide more reasonable structures. The
results from the dynamic analysis highlight the differences
between the c_2a and c_5a poses, as well as those between
the c_2a and c_10a, boosting the number of positive samples
from 68 to 84 and 80, respectively. Moreover, the structural
relaxation leads to a much narrower gap between c_native and
c_2a poses, consistent with the drastic increase in Pearson
coefficient from 0.054 to 0.83 as shown in Fig. 6l. In contrast,
relaxation increases the difference between c_5a and c_10a
poses from 49 : 51 to 62 : 38. This difference could result from
the fact that both c_5a and c_10a are metastable structures on
the potential energy surface, which is insufficient to unambigu-
ously determine the energetically favored pose. Additionally, it
is reasonable to assume that two initial conformations differing
remarkably in geometry will either evolve towards similar or
different structures, thus leading to the energetic disparity.
Next, we analyzed the interactions in terms of the decomposed
energy (ELE, VDW, PBSUR, PBSOL, detailed explanations for
these abbreviations is available in mm_pbsa.pl). Fig. 5(g)–(k)
reveals that the dominant contributions for the differences
come from ELE and VDW. Hence, the non-covalent interaction
in vacuum can be inferred from ELE and VDW decomposed
from the MM/PBSA binding affinities.

Fig. 5 MM/PBSA performance on 100 complexes for four initial conformations (c_native, c_2a, c_5a, c_10a) during the 25 ns of molecular dynamics.
(a)–(f) The comparisons of MM/PBSA binding affinities in terms of static poses (initial snapshot) and dynamic poses (last 5 ns) for four poses. (g)–(k) The
comparisons of four decomposed MM/PBSA binding affinity for c_native poses and c_5a poses. (l) The Pearson correlation coefficient of MM/PBSA
binding affinities among four statics poses and dynamics trajectories of last 5 ns plus experimental values.
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Subsequently, considering dynamic factors, we calculated
the MM/PBSA binding affinities of 2500 snapshots from each of
the 25 ns trajectories at 100 ps intervals. Fig. 5l shows the
Pearson correlation coefficients for the binding affinities of
different poses in the initial state and the averaged MM/PBSA
binding affinities for the last 5 ns of the simulation, as well as
the experimental values. The MM/PBSA binding affinity scores
for the static poses generally exhibits a weaker correlation with
the experimental values than the dynamic pose MM/PBSA
binding affinities. For the static states, the highest Pearson
correlation of 0.15 is observed with the c_2a, and similar for the
corresponding dynamic poses, the highest Pearson correlation
of 0.53 is achieved with the c_2a poses, closely followed by 0.45
from the c_native poses. These correlations far exceed the
values obtained from the c_5a and c_10a poses, which are less
than 0.25.

Furthermore, to investigate the evolution of protein and
ligand flexibility over time, we divided the 2500 snapshots into
12 intervals of 2 ns each and calculated the averaged MM/PBSA
scores during these periods. In similar fashion, we analyzed the
trajectories of the 4xtx and 5fov complexes to observe the
changes in MM/PBSA scores over time. From the 4xtx trajec-
tories (Fig. 6(a)), the c_native (blue) and c_2a poses (sky blue)
exhibit higher binding affinities compared to the c_5a (salmon)
and c_10a poses (pink). In contrast, from the 5fov trajectories
(Fig. 6(b)), the binding affinities in c_5a trajectories are stron-
ger than those in the other three initial poses. These results
indicate that even with an analysis employing dynamic trajec-
tories, MM/PBSA does not always accurately distinguish the
correct binding pose. Surprisingly, when considering all 100
complexes (Fig. 6(c)), the c_2a initial pose consistently out-
perform the other three initial poses, including the c_native

pose in terms of Pearson correlation between MM/PBSA and
experimental values (Fig. 6(d)). Although the difference
between the c_native pose and c_2a pose is small, they both
significantly outperform the c_5a and c_10a poses. Addition-
ally, there is little fluctuation in the correlation values during
the simulations. This is also reflected in the number of
complexes where the averaged MM/PBSA binding affinity of
pose1 is higher than that of pose2 among the four initial
poses. These findings suggest that 25 ns of simulation time is
not always sufficient to estimate binding affinities to experi-
mental accuracy.

1.2.4 Screening performance. After discussing the three
methods in this study separately, we further analyzed the level
of consistency or discrepancy of them in selecting promising
binding poses for these complexes. As shown in Fig. 7(a), the
c_native or c_2a pose display lower RMSD values and stronger
MM/PBSA binding energy than c_5a and c_10a in 63 out of the
100 complexes when considering RMSD and MM/PBSA,. Addi-
tionally, the complexes whose c_native pose or c_2a pose can be
distinguished from c_5a and c_10a poses by either the RMSD or
MM/PBSA reaches 86. Conversely, both methods fail to recog-
nize c_native or c_2a poses for 14 complexes. By further
leveraging extra criteria in terms of decomposed interaction
types with hydrophobic, hydrogen bonds, and water bridges (as
shown in Fig. 7(b)), the c_native or c_2a poses can be distin-
guished for almost all complexes except 3 by meeting at least
one of the five criteria, in contrast to the other poses. This
demonstrates that by considering these five perspectives com-
bined, we can more accurately determine the native poses for
these complexes than by using any of the perspectives alone. In
addition, all five method can distinguish c_native or c_2a poses
for 10 out of 81 complexes.

Fig. 6 MM/PBSA performance on trajectories at 2 ns intervals during the full 25 ns MD simulations; (a) the averaged MM/PBSA binding affinities for 4xtx;
(b) the averaged MM/PBSA binding affinities for 5fov; (c) the averaged MM/PBSA binding affinities for all selected 100 complexes; (d) the Pearson
correlation coefficient between experimental (binding affinity) values and MM/PBSA; (e) the number of complexes for which the averaged MM/PBSA
binding affinity of the former trajectories larger than that of the latter for each pair among four initial poses.
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2 Conclusion

In this study, we systematically investigated molecular
dynamics trajectories for 25 ns simulatiom times for 100
different complexes staring from four initial conformations

(c_native, c_2a, c_5a and c_10a) using both geometric and
energetic arguments.

From a geometric point of view, we analyzed the RMSD
relative to the initial structure of the molecular dynamics
simulation, as well as the decomposed interactions using PLIP.
The c_native poses consistently exhibited higher stability com-
pared to c_5a and c_10a. The average RMSD values of all 100
complexes gradually increased over time for all initial poses,
indicating a wider range of configurations deviating from the
initial structures being visited, aligning with the canonical
distribution.

Regarding the energetic aspect, the remarkably high Pear-
son coefficient (0.86) between c_native and c_2a poses in terms
of MM/PBSA binding affinities indicates that initial structures
deviating slightly from one another tend to exhibit similar
molecular dynamics trajectories within the accessible simula-
tion time. Conversely, the low correlation between the c_native
and the c_5a and c_10a poses illustrate the difficulty of initial
structures with significant deviations in overcoming high
energy barriers caused by factors like torsion angles. Moreover,
in terms of binding affinity correlations, the c_2a initial con-
formations exhibits a significant energetic advantage over the
c_5a and c_10a poses, even slightly outperforming the
c_native poses.

Furthermore, simulation time shows similar patterns in the
rankings of the four poses in terms of both RMSD and MM/
PBSA binding affinities, although longer simulation times did
not necessarily improve the results. Overall, the combination of
these techniques improves the accuracy of identification of
native poses compared to relying solely on single static poses.

In conclusion, the Moira workflow provides a comprehen-
sive paradigm for the exploration of ligand-protein interactions
based on classical molecular dynamics, including both the

Fig. 7 Screening evaluation. (a) Screening performance of dynamic analyses combining averaged RMSD and averaged MM/PBSA during last 5 ns
simulations. (b) Screening performance of dynamic analyses combining averaged RMSD and averaged MM/PBSA during last 5 ns simulations plus the
lasting time of the strongest three interaction pairs among hydrophobic interactions, hydrogen bond interactions and water bridge interactions.

Fig. 8 Workflow of our methodology.
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simulations and their analysis. Thereby, the workflow facil-
itates convenient investigation of ligand–protein interactions
on a general basis, important for the further advancement of
drug design methodologies.

3 Methods
3.1 Workflow

The Molecular dynamics trajectory analysis (Moira) package is
comprised of four modules (Dock_suite, Md_suite, MM/PBSA_
suite and PLIP_suite). It integrates several classical software
packages and scripts, including software for simulations (Auto-
Dock Vina v.1.1.2,35 Amber2036), analysis (isoRMSD.py script
from https://github.com/0ut0fcontrol/isoRMSD, mm_pbsa.pl
script in Amber20 and PLIP v.2.1.737) and visualization tools
(pymol v.2.5.2,38 jupyter notebook v.6.0.139). When provided
with an initial 3D complex structure as input, for instance as a
pdb file, the workflow automatically implements all the calcu-
lations to generate the MD trajectories, executes the analysis of
the latter, as well as their visualization (Fig. 8).

As shown in Fig. 1, docked protein–ligand structures were
first generated using RDKit to provide the initial 10 ligand
conformations. Then, by using Vina to make the docked
structures while keeping the best 10 of each initial ligand con-
formation, it demonstrated that these conformations are at least
reasonable as docked ligand structures. Secondly, taking the
deviation from native structures into consideration, c_2a (usually
regarded as the native structure with trivial deviation), c_5a (slight
deviation), c_10a (drastic deviation) structures from molecular
docking plus native structure were selected as the initial struc-
tures for molecular dynamics runs to generate the 25 ns trajec-
tories, which were split into 2 fs intervals. Finally, the resulting
trajectories were comprehensively analysed.

3.2 Data cleaning

All experimental crystal structures are acquired from the
pdbbind-CN database version 2019 (https://www.pdbbind.org.
cn), which gathers X-ray Free Electron Laser (X-ray), Nuclear
magnetic resonance (NMR), or Single-particle electron cryo-
microscopy (cryo-EM) data. Until now, the database has col-
lected 17 679 protein–ligand crystal structures with binding
affinities in terms of the equilibrium dissociation (Kd) and
the inhibition (Ki) constants or the half maximal inhibitory
concentration values (IC50). Among them, 4852 entries are
considered high quality. We analyze the database in terms of
the following aspects: (1) the SMILES of the ligands, (2) the
protein sequence, (3) the uniprot ID of the proteins, (4) the
number of chains, (5) the number of metal ions, and (6) the
number of non-standard amino acids. For multiple chains, we
select one chain. A ligand interacting only with a single chain
without direct contact with other chains will have a negligible
effect on the protein–ligand interactions in total. On the other
hand, if the ligand is surrounded by multiple chains, it will
dramatically influence the interaction pattern between the
ligand and the protein.

Thus, we randomly selected 100 compounds (shown in
Table S1, ESI†) from the high-quality set in the pdbbind-CN
database, which were subsequently filtered on the basis of the
six aspects described above to avoid multiple chains, metal ions
and non-standard amino acids in our complexes. We thereby
simplified our analysis by reducing the influence from the
aforementioned confounding factors.

3.3 Molecular docking

Molecular docking was performed on 17 679 complexes with
Autodock Vina to generate ligand docking poses.

For the receptor, the protein pdb file was pre-processed to
remove solvent molecules, multiple chains and metal ions
using PyMOL. For the ligand, it is known that the number of
possible conformers is exponentially correlated to the number
of rotatable bonds. To obtain multiple highly different con-
formers, we generated 3D conformations from SMILES.

Step 1: convert ligand mol2 file to SMILES with allBondsEx-
plicit and allHsExplicit true as well as sanitize False based on
RDKit package.

Step 2: employ AllChem.EmbedMultipleConfs module to
generate 10 conformations with pruneRmsThresh of 1 and
maxAttempts of 500 from SMILES, which will be taken as initial
conformers in the format of pdb file for docking.

Step 3: convert the receptor and ligand pdb files to the pdbqt
format required by Autodock Vina using the MGLTools pro-
gram of the AutoDockTools package. All rotatable bonds are
allowed to relax during docking, while receptor atoms were all
kept rigid.

Step 4: define the docking parameters. The geometric
center of the native ligand atoms was defined as the
center grid of the docking cubic box, and the box grid was set
as 60 Å � 60 Å � 60 Å with 0.375 Å per grid point. The 10 best
scoring poses were retained each time. The maximum allowed
score difference between the lowest and the highest scores was set
to 10 during docking, and default values were used for other
parameters.

In consideration of some sophisticated situations at differ-
ent stages, we removed complexes which failed to generate
conformers by RDKit, or those that failed during docking or
RMSD calculation in subsequent steps. In the end, 13 424
complexes passed successfully through all of the steps in the
procedure, generating 10 44 819 conformers in total. The iso-
RMSD.py script was used to calculate the RMSDs between the
docked and the native ligand poses without translation and
rotation after aligning the protein. Due to the experimental
uncertainty of the hydrogen positions, only heavy atoms are
considered. The docking and native ligand RMSD values range
from 0 to 20 Å, with a spread approximating a normal
distribution.

3.4 Molecular dynamics

All molecular dynamics simulations were implemented using
the pmemd module of the Amber 20 program. For the prepara-
tion of input files, ligands were parametrized with restrained
electrostatic potential charges generated by AM1-BCC
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methodology, while proteins were described based on the
Amber ff14SB. Then, the complex was solvated in a TIP3P
cuboid water box with a distance of at least 12 Å from any
protein atoms. Na+ or Cl� were used as counter ions to
neutralize the system charges for the simulations. Particle
mesh Ewald (PME) was employed to treat the long-range
electrostatic interactions. The dielectric constant was set to
1.0, and The nonbonded interactions are truncated to within
8.0 Å.

For the simulations, there are four stages: (1) minimization:
a total of 1000 steps of minimization, the box was initially
minimized by 500 steepest descent steps, followed by 500 con-
jugate gradient steps. (2) Heating: the box was then gradually
heated up to 300 K from 0 K and was relaxed within 50 ps by a
simulation in the NVT ensemble (constant number of atoms,
volume, and temperature). (3) Equilibrium: the system was further
relaxed in an NPT ensemble (constant number of atoms, pressure,
and temperature) simulation of 50 ps. For the first three stages
above, weak restrains with 2.0 kcal mol�1 Å�2 was assigned to all
heavy atoms of the complex for first three stages. (4) Production:
the molecular dynamics simulation of 25.5 ns was carried out
under NPT ensemble with all atoms relaxed. Due to the expensive
computational demand, only one single MD runs were performed
for each docking pose, despite the influence of the initial velo-
cities assigned in the simulations.40,41

3.5 RMSD

All RMSD calculations are done considering only heavy atoms.
High RMSD values suggest large deviation from reference
structure, implying a distinct change. If the RMSD of a ligand
was larger than the given threshold (2.0 Å), the docked pose was
considered highly deviant (static) or unstable (dynamic). For
docking, the absolute RMSD measures the distance of a gener-
ated docking pose relative to the experimental native ligand
conformation. For molecular dynamics, an additional align-
ment step of the proteins was carried out initially to avoid
including translation effects. In the MD trajectories, the RMSD
measures the distance of poses relative to the initial ligand
conformations.

3.6 PLIP-interaction analysis

Geometric criteria with default values (distance and angle
thresholds) in PLIP were used to define various interactions,
and the definitions of interaction patterns are as follows (more
details is available in the PLIP website. https://github.com/
pharmai/plip/blob/master/plip/basic/config.py).

3.6.1 Hydrophobic contacts. An atom is classified as
hydrophobic if it is a carbon and has only carbon or hydrogen
atoms as neighbours within the distance (HYDROPH_DIST_
MAX = 4.0 Å).

3.6.2 Hydrogen bonds. A hydrogen bond between a hydro-
gen bond donor and acceptor is found if the distance is
less than HBOND_DIST_MAX (4.1 Å) and the angle at the
donor group (D–H� � �A) above HBOND_DON_ANGLE_MIN
(100 Å).

3.6.3 Water bridges. Water atoms are assigned to a ligand-
binding site complex if their oxygen atoms are within a certain
cutoff to the ligand (WATER_BRIDGE_MINDIST = 2.5 Å, WATER_
BRIDGE_MAXDIST = 4.1 Å, WATER_BRIDGE_OMEGA_MIN =
71 Å, WATER_BRIDGE_OMEGA_MAX = 140 Å, WATER_BRID-
GE_THETA_MIN = 100 Å).

3.6.4 Pi-stacking. Pi-stacking of two aromatic rings is
found whenever their centers are within a distance of PIS-
TACK_DIST_MAX 5.5 Å, the angle deviates no more than
PISTACK_ANG_DEV 30 Å from the optimal angle of 90 Å for
pi-stacking or 180 Å for pi-stacking.

3.6.5 Pi–cation interactions. Pi–cation interactions are
reported for each pairing of a positive charge and an aromatic
ring if the distance between the charge center and the aromatic
ring center is less than PICATION_DIST_MAX 6.0 Å.

3.6.6 Salt bridges. A salt bridge is reported if two centers of
opposite charges come within a distance SALTBRIDGE_DIST_-
MAX 5.5 Å.

3.6.7 Halogen bonds. Halogen bonds are reported for each
pairing of halogen bond acceptor and donor group within
specific ranges of distances HALOGEN_DIST_MAX = 4.0 Å
and angles HALOGEN_ACC_ANGLE = 120 Å.

3.7 MM/PBSA

In MM/PBSA, the binding free energy (DGbind) between a ligand
(L) and a receptor (R) to form a complex RL is calculated as:

DGbind = DH � TDS = DEMM + DGsol � TDS

DEMM = DEinternal + DEelectrostatic � DEvdw

DGsol = DGPB + DGSA

DGSA = g � SASA + b

DGbind = DGcomplex � DGprotein � DGligand

where DEMM, DGsol and �TDS are the changes of the gas phase
MM energy, the solvation free energy, and the conformational
entropy upon binding, respectively. DEMM includes DEinternal

(bond, angle, and dihedral energies), DEelectrostatic (electro-
static), and DEvdw (van der Waals) energies. DGsolv is the sum
of electrostatic solvation energy (polar contribution), DGPB, and
the nonelectrostatic solvation component (nonpolar contribu-
tion), DGSA. The polar contribution is calculated by solving the
finite-difference Possion–Boltzmann equation (PB model),
while the nonpolar energy is estimated by solvent accessible
surface area (SASA). The surface tension parameter g is set as
0.005, and b is 0.0. The conformational entropy change �TDS is
usually computed by normal-mode analysis on a set of con-
formational snapshots taken from MD simulations, in most
cases, which does not obviously improve the performance on
binding affinity, therefore, we ignored the term.
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Data and software availability

All information including 3D structures and binding affinities
of the complexes were downloaded from PDBbind-CN database
version 2019 (https://www.pdbbind.org.cn/). The original poses
and analyses can be obtained on the Zenodo repository at
https://doi.org/10.5281/zenodo.7823237. All calculations and
analysis software or scripts in this work include AutoDock Vina
v.1.1.2,35 Amber20,36 isoRMSD.py script from https://github.
com/0ut0fcontrol/isoRMSD, mm_pbsa.pl script in Amber20
and PLIP v.2.1.737) as well as visualization tools (pymol
v.2.5.2,38 jupyter notebook v.6.0.139).

Code availability

The source codes and examples of Moira are available on the
GitHub repository at https://github.com/Meganwu/moira.
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