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Single atom, low valent transition metals are important for hetero-

geneous catalysis but are challenging to generate and stabilize in a

well-defined manner. Herein, we explored the functionalization of

silica with well-defined N-heterocyclic phosphenium (NHP) ions to

heterogenize low-valent metals. The surface electrostatically

bound [NHP]+ ions coordinate to Pt(0) precursors, resulting in

well-defined, chemisorbed [(NHP)Pt(0)Ln]
+ sites. The resulting

materials catalyze the hydrosilylation of alkynes and exhibit activi-

ties and selectivities that rival the current industry standard homo-

geneous catalysts. The catalysts leach Pt, limiting their recyclabil-

ity; however, recycling studies support that the high regio-

selectivities arise from heterogeneous sites and Pt particles do not

form on the surface. We suspect that this phosphenium-based

immobilization strategy will result in stable, tunable, low valent

heterogeneous transition metal catalysts in a wider array of cata-

lytic reactions.

Introduction

Platinum group-containing heterogeneous catalysts are impor-
tant for hydrogenation, alkane dehydrogenation, oxidation,
and other reactions.1–5 Stabilizing low-valent platinum group
metals using oxide supports, however, remains a challenge.
For instance, traditional nanoparticle-based catalysts are prone
to sintering, which leads to a decrease in activity over time.
These catalysts also show poor metal utilization, with only a
small percentage of the precious metal often being catalytically
active. Single atom catalysts (SACs) have shown promise in
improving the homogeneity of active site structures and
activity; however, they often suffer from poor stability and tun-

ability and require low metal loadings to reduce sintering.6–12

Surface organometallic chemistry (SOMC) is a related field13

that utilizes molecular and solid-state techniques to anchor
molecular species onto solid supports with well-defined
structures.14–20 Traditionally, the metal is chemisorbed onto
the surface of an oxide via protonolysis, requiring reactive
metal-X species (X = alkyl, amide, alkoxide), with a metal oxi-
dation state greater than zero (Fig. 1A). Pt group metals in the
+2 oxidation state have been chemisorbed onto oxide surfaces
for applications such as cross-coupling,21 hydrogenation,22 copo-
lymerization of acrylate monomers and ethylene,23–25 and olefin
isomerization.26 Well-defined surface organometallic Pt(II/IV)

Fig. 1 (A) Traditional SOMC chemisorption reaction. (B) NHC tethered
to silica for the support of a metal. (C) This work: support of metal cata-
lysts via surface bound phosphenium ions.
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species, however, decompose to form low valent nanoparticles
under reducing conditions for heterogeneous alkane dehydro-
genation,27 polyolefin upcycling,28 and others.29 To date, no
reports have been disclosed regarding the stabilization of well-
defined, formally Pt(0), monometallic surface species.

There is a long history of the use of dative ligands, such as
N-heterocyclic carbenes (NHCs), for supporting low valent
metals for catalysis in molecular systems.30,31 In hetero-
geneous systems, NHCs have been applied as a tether to co-
valently affix metals to solid supports such as graphene, poly-
mers, and silica (Fig. 1B).21,32,33 The syntheses of these
materials are often challenging and require many steps,
adding barriers to their adoption in industrial processes.
Complexity is further increased by the fact that NHCs are often
unstable and require in situ formation with a base in the pres-
ence of the metal precursor.

N-heterocyclic phosphenium ([NHP]+) ions are isolobal with
NHCs and coordinate to transition metals in low oxidation
states,34–40 including Pt(0).41–43 In this work, an [NHP]+ ion
was formed on the surface of an oxide and utilized as a ligand
to immobilize Pt(0) complexes (Fig. 1C). The well-defined
(NHP)+–Pt(0) complexes were applied to heterogeneous alkyne
hydrosilylation catalysis and compared to other leading cata-
lysts, including the current industrial standard.

Results and discussion

Conley and co-workers reported that iPr3Si
+ and Al(OC(CF3)3)3

functionalized SiO2-700 ([iPr3Si][ASO])
44 and a related material

([iPr3Si][SZO]) abstracted chloride ions from metal chloride
salts to generate well-defined Pd(II) and Ir(I) catalysts, and
chlorosilanes as by-products.25,45 Similarly, molecular phos-
phenium ions have been synthesized by abstraction of halides
from NHPX precursors with Me3SiOTf and related silicon-
based electrophiles.40 We thus decided to adapt Conley’s graft-
ing strategy to generate electrostatically bound surface [NHP]+

ligands. To this end, we reacted DippNHPCl (Dipp = 2,6-diiso-
propylphenyl) with [iPr3Si][ASO] to produce the surface bound
phosphenium ion [DippNHP][ASO] (1) and iPr3SiCl (Fig. 2A).

To determine whether the phosphenium ion was indeed
generated in 1 as expected, we utilized solid-state 31P NMR
spectroscopy. The 31P NMR chemical shift is known to be sen-
sitive to the formation of phosphenium ions.35,36,46–48 The 31P
solid-state NMR (SSNMR) spectrum of 1 (Fig. 2B) contains an
isotropic chemical shift at 273 ppm, which is comparable to
the chemical shift of analogous [MesNHP][BarF4] (

31P chemical
shift = 257 ppm) reported by Baker and co-workers, and dis-
tinctly different from the value of 154 ppm measured for the
DippNHPCl precursor, supporting the structural assignment.49

The 31P SSNMR spectrum of 1 contains a number of spinning
sidebands due to the large chemical shift anisotropy (CSA, see
the ESI for details†) that results from the low coordinate P
cation. In solution, [NHP]+ ions are known to coordinate Pt(0);
therefore, we hypothesized that 1 will support Pt(0) and effec-
tively chemisorb Pt(0) single atoms onto the surface of silica.

1 reacts with (Ph3P)2Pt(C2H4) to generate [(DippNHP)Pt
(PPh3)2][ASO] (2) and ethylene (Fig. 2A). The 31P SSNMR spec-
trum (Fig. 2C and D) of 2 contains signals at 294 (1JPt–P = 6400
Hz) and 45 (1JPt–P = 4200 Hz) ppm, assigned to the [DippNHP]+

and PPh3 ligands bound to Pt, respectively. The 31P chemical
shifts and 1JPt–P couplings are similar to the molecular ana-
logue [(MesNHP)Pt(PPh3)2][OTf] (31P chemical shift = 289.0
(1JPt–P = 6498 Hz) and 43.9 (1JPt–P = 4237 Hz) ppm), supporting
the structural assignment.41 1 also reacts with Karstedt’s cata-
lyst (Pt(dvtms)n, dvtms = 1,3-divinyltetramethyldisiloxane) to
produce [(DippNHP)Pt(dvtms)][ASO] (3) (Fig. 2E), which is ana-
logous to the highly active and selective (NHC)Pt(dvtms) hydro-
silylation catalysts reported by Markó and co-workers.30,50 The
31P SSNMR spectrum of 3 exhibits overlapping signals of
unreacted [DippNHP]+ and [(DippNHP)Pt(dvtms)]+ at 277 ppm,
close to the value of 272 ppm measured for a triflate analogue
(see the ESI†). All attempts at acquiring 195Pt NMR spectra
either directly or via indirect detection through 31P,51 were
unsuccessful due to short relaxation times. Accordingly, even
attempts at performing 31P CPMAS NMR were also unsuccess-
ful. Pt and P ICP-OES measurements of 3 indicate that 84% of
the [DippNHP]+ ligands react with Pt, supporting the presence
of unreacted [DippNHP]+ (see Table S3 for details†). Solution
NMR analyses of the reaction of 2 with PMe3 and 3 with PPh3

resulted in the desorption of 1.9 (±2) equivalents of PPh3 and
1.07 (±7) equivalents of dvtms per Pt, respectively, further sup-
porting the assigned Pt coordination environments for 2 and 3
as (dippNHP)Pt(PPh3)2 and (dippNHP)Pt(dvtms), respectively.

One of the most important applications of low valent Pt is
catalytic hydrosilylation of olefins and alkynes.52–56 Pt cata-
lyzed hydrosilylation is challenging to perform with hetero-
geneous catalysts due to poor reactivities, selectivities, and
metal leaching into the solution.53,55,57–59 There are limited
examples of well-defined heterogeneous Pt,60–63 Rh,64–66 and
other67 hydrosilylation catalysts generated using SOMC tech-
niques; moreover, most reported systems have poor activity,
selectivity, or stability.

Catalysts 2 and 3 were subjected to standard 1-octyne hydro-
silylation conditions (Table 1)30,52–55 and compared to homo-
geneous catalysts for activity and product regioselectivity.68

Catalyst 2 is modestly active but highly regioselective for the
β-(E) isomer (β-(E) : α = 11) at 0.4 mol% loading of Pt when
compared to Markó and co-workers’ (IPr)Pt(dvtms) (Pt =
0.005%, 22 h, β-(E) : α = 11.5) catalyst69 and the (PPh3)2Pt
(C2H4) precursor (β-(E) : α = 4.8, see the ESI†), while selectivity
and reactivity are considerably reduced at a lower Pt loading of
0.04%. The modest catalytic activity of 2 is likely due to the
inhibition of the catalyst by PPh3.

Catalyst 3 exhibits comparable activities and selectivities to
(NHC)Pt catalysts in solution.30,69–71 This makes 3 more active
than most other heterogeneous alkyne and alkene hydrosilyl-
ation catalysts synthesized using SOMC techniques62,64–66,72 or
nanoparticles73,74 under similar conditions. The regio-
selectivity of 3 is nevertheless lower than that reported for ana-
logous (IPr)Pt(dvtms), suggesting that the regioselectivity may
not be entirely controlled by the steric bulk of the NHP ligand,
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as was reported in the case of NHCs. Further studies are being
conducted to determine the root cause for the reduced
selectivity.

DippNHPCl reacts with ∼50% of the [iPr3Si][ASO] sites
(based on Al loading)44 in the synthesis of 1; therefore, it is
feasible that the unreacted [iPr3Si]

+ reacts with Pt(0) to form
Pt → Si Lewis pairs or formally oxidize the Pt(0) to [Pt(II)(Si
(iPr)3)]

+ sites that may catalyze the hydrosilylation reaction. To
assess these possibilities, (Ph3P)2Pt(C2H4) and Karstedt’s cata-
lyst were absorbed onto [iPr3Si][ASO] (without the [NHP]+

ligand) utilizing the same conditions for the synthesis of 2 and
3, yielding 4 and 5, respectively. SSNMR and ICP analyses indi-

cate that both precursors absorb onto the surface, albeit in
∼5× lower concentrations than 2 and 3. 4 and 5 both catalyze
the hydrosilylation of 1-octyne with dimethylphenylsilane
under similar conditions to 2 and 3 with slightly lower product
yields, which may be attributed to the reduced Pt loadings;
however, both catalysts produce silanes with lower regio-
selectivities that are comparable to the molecular precursors,
indicating that the surface species are most likely physisorbed
precursor molecules that desorb during catalysis.

A significant benefit of stable heterogeneous catalysts is
their recyclability. Owing to the chemisorption of Pt in 2 and
3, we hypothesized that they will be more recyclable than 4

Fig. 2 (A) Scheme for the synthesis of 1, 2, and 3. Experimental 31P SSNMR spectra (black) and simulations (red) of 1 (B), 2 (C and D), and 3 (E). The
inset in (C) shows an expansion of the [(DippNHP)Pt]+ signal. δiso = isotropic chemical shift. The spectra in (B), (C), and (E) were acquired while spin-
ning at 10 kHz. D is the [(DippNHP)Pt]+ signal in the 31P SSNMR spinning at 30 kHz and # denotes a small quantity of unreacted 1.
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and 5. To verify this, we subjected catalysts 2, 3, 4 and 5 to re-
cycling experiments. These experiments involved recovering
the solid catalyst after the reaction reached partial conversion
(∼40–70%). The catalysts were recovered by simple filtration,
washed with toluene and used in additional reactions with
fresh substrates. A summary of normalized recycling data is
provided in Fig. 3 (see the ESI for full details†).

2 (0.58% Pt) was run for 2 hours and showed a steady loss
in activity over 5 reactions, with an initial drop of 40% of the
initial activity. 3 (0.058% Pt) showed better recyclability than 2
with only a 16% drop in the first recycling of the catalyst;
however, the activity of 3 further declined for subsequent re-
cycling attempts. Although the activities of 2 and 3 decrease
with recycling, the regioselectivities remain similar throughout
the 5 runs and the catalysts do not turn dark in color, support-

ing that the major active site is the heterogeneous [(DippNHP)
Pt]+ species and that particles do not form during the reaction.

Utilizing 4 and 5, we observed initial drops in activity of 38
and 60%, respectively, after the first recycling of the catalysts.
Subsequent recycling of 4 only resulted in a slow decline in
activity of approximately 5%, suggesting that a stable or
rebounding surface Pt species may form. In contrast to this,
the activity of 5 declined by ∼50% after each recycling step,
making it the poorest recycling catalyst in the study. Pt leach-
ing may lead to active homogeneous catalyst species that may
contribute to the catalytic activities and attribute to the poor
recyclability. Indeed, hot filtrations of the catalytic reactions
revealed that active species do form in solution (see the ESI for
details†). The leaching was highest for 2 and 4. In 3 and 5, the
reductions in activity slowed in subsequent recycling steps,

Table 1 Summary of the 1-octyne hydrosilylation catalysis resultsa

Material
Pt loading
(mol %)

Timeb

(h)
1-octyne
conv. (%)

PhMe2SiH
conv. (%)

Combined
yieldc (%)

Product
TONc

Product
TOFc β-(E) : αc,d

2 0.43 (4) 20 >99.9 90.4 (6) 88 (1) 205 (2) 10 11 (1)
2 0.043 (4) 48 23 (1) 21 (2) 22 (3) 510 (60) 11 6.6 (2)
3 0.058 (2) 0.17 >99.9 91.5 (2) 84 (1) 1460 (10) 8600 6.96 (4)
3 0.0058 (2) 2 97 (3) 99.5 (5) 86 (2) 14 900 (300) 7450 6.20 (3)
4 0.12 (1)e 20 >99.9 89.2 (1) 80 (1) 646 (5) 32 4.6 (2)
5 0.011 (2) f 0.5 94.3 (1) 98.3 (2) 85.3 (4) 7920 (40) 15 840 5.30 (1)

a Typical catalysis conditions: catalyst + 0.5 M 1-octyne/PhMe2SiH in toluene at 80 °C (see the ESI for more details†). Average of 2 runs. Errors are
provided in parentheses. b Time to achieve the indicated conversions of 1-octyne or PhMe2SiH. c Combined yield, TON (mol products mol Pt−1),
and TOF (mol products mol Pt−1 h−1) of the β-(E) and α-hydrosilylation products as determined by GC-FID with an internal standard of cyclooc-
tane. The TOF was determined at the time indicated in the table and should be considered a minimum. d Ratio of the β-(E) : α product isomers.
e Same relative mass of the catalyst utilized for 2 at 0.43% Pt. f Same mass of the catalyst used for 3 at 0.058% Pt. NR = no reaction and NA = not
applicable.

Fig. 3 Normalized recyclability of the catalysts in this study. The bars represent the relative yield of the combined β-(E) and α-hydrosilylation pro-
ducts compared to the initial run (run 1). The scatter plot indicates the β-(E) : α isomer ratio in each run.
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suggesting a reduction in Pt leaching. The limited recyclability
and hot filtration study of 3 suggest that the catalyst is primar-
ily heterogeneous.

Conclusions

In summary, silica was functionalized with well-defined phos-
phenium ions. The phosphenium ions coordinate to Pt(0),
resulting in chemisorbed Pt(0) sites with well-defined struc-
tures analogous to molecular complexes. The chemisorbed Pt
(0) sites heterogeneously catalyze the hydrosilylation of
alkynes with activities and selectivities comparable to those of
molecular catalysts. Stable solid catalysts can be further
recycled and reused for a number of independent reactions
due to their heterogeneous nature. Further investigation utiliz-
ing similar strategies from this study is underway and antici-
pated to discover more stable catalysts for hydrosilylation and
other catalytic reactions.
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