Yuichi Kitagawa et al.
Effective photosensitized emission of a Tb(III) complex using a β-diketonate photosensitizer and an oxygen barrier system in a thermally populated triplet state
Effective photosensitized emission of a Tb(III) complex using a β-diketone photosensitizer and an oxygen barrier system in a thermally populated triplet state†

Kota Inage,a Mengfei Wang,b,c Yasuchika Hasegawa, and Yuichi Kitagawaab,c

Photosensitizer design of luminescent terbium (Tb(III)) complexes with narrow bandwidths is important for advancing luminescent materials. In this study, we report an effective photosensitizer model in a thermally populated lowest excited triplet (T1) state during Tb(III) emission. The Tb(III) complex comprises a Tb(III) ion (serving as an emission center), hexafluoroacety lacetonates (acting as photosensitizer ligands), and bulky cyclohexyl group-attached phosphine-oxide-type ligands (functioning as an oxygen barrier system). Emission properties including emission and excitation spectra, ligand-excited emission quantum yields, and emission lifetimes were evaluated in the absence and presence of oxygen. Coordination geometry structures were determined through analysing single-crystal structures. The electronic structure based on 4f-orbitals was estimated from radiative rate constants and quantum chemical calculations. The bulky phosphine oxide ligand not only provides an oxygen barrier system but also induces an electronic structural modulation based on 4f-orbitals, allowing for effective photosensitized Tb(III) emission in a thermally populated ligand T1 state in air.

Introduction

Trivalent terbium complexes (Tb(III)) have received considerable attention as green luminescent materials owing to their narrow luminescence bandwidths.1,2 Their enhanced luminescence properties result from a photosensitization effect based on energy transfer (EnT) from organic ligands to Tb(III).3 Designing ligands strategically for achieving effective photosensitized emission from Tb(III) complexes is crucial in advancing applications for luminescent materials, including light-emitting diodes,4–7 sensors,1,8–13 and security inks.14–16

In the photosensitized emission process, the organic ligands undergo intersystem crossing from the lowest excited singlet (S1) state to the lowest excited triplet (T1) state upon excitation. Subsequently, the ligands transfer their electronic energy to the Tb(III) emission level (5D4).2 Intrinsically long-lived 5D4 states (>0.5 ms) often cause emission quenching through back energy transfer (EnT) from 5D4 to T1 states.2 Latva et al. performed photophysical analyses of Tb(III) complexes with amino-carboxylate-type ligands.17 They empirically determined that a sufficiently higher T1 level compared to the Tb(III) emission level (∆E(T1-5D4) > 1850 cm⁻¹) is essential for achieving efficient photosensitized emission. Based on these findings, energy-gap (∆E(T1-SD4)) control has been reported for highly luminescent Tb(III) complexes using benzoate-,18 β-diketonate,-19 and bipyridine20-type ligands. Recently, the importance of the first excited-state (7F5 level: 2050 cm⁻¹) population of Tb(III) for energy transfer has been reported.21,22

On the other hand, further studies revealed the critical importance of the long-lived T1 state for overcoming emission quenching by EnT and achieving efficient photosensitized Tb(III) emission, in situations characterized by a small energy gap (Fig. 1a). The long T1 lifetime allows for efficient Ln(III) emission in the thermally populated T1 state.23 Recently, we demonstrated an effective photosensitization model in the thermally populated T1 state during Tb(III) emission using a typical β-diketonate (hfa: hexafluoroacetylacetonate, T1 ∼ 22 000 cm⁻¹, ∆E(T1-5D4) ∼ 1500 cm⁻¹), with long-lived T1 state controlled by ancillary phosphine oxide ligands.24 The photosensitization model with a low T1 level is beneficial for enhancing the brightness of Tb(III) emission (ESI in ref. 25).25 However, the emission intensity of the Tb(III) luminophores is
diminished by triplet oxygen quenching when using long-lived T1 photosensitizers.10,26-31

In this study, we report a luminescent Tb(iii) complex model using hfa photosensitizer and ancillary ligand with oxygen barrier properties in the solid state (Fig. 1b). A mononuclear Tb(III) complex, \([\text{Tb(hfa)}_3(\text{tcpo})_2]\), was prepared and its photophysical properties were compared to those of \([\text{Tb(hfa)}_3(\text{h2o})_2]\) (Fig. 1c, tcpo: tricyclohexylphosphine oxide). It was found that the bulky cyclohexyl group not only shields the hfa ligand from oxygen but also provides effective modulation of the 4f-orbital-based electronic structure. Gd(III) complexes were also prepared to estimate the dependence of the T1 lifetimes on the oxygen concentration. This system provides new insights into the photosensitizer model with a long-lived excited state for highly luminescent Tb(III) complexes in a thermally populated ligand T1 state in air.

Experimental

Materials

Gadolinium(III) acetate hydrate (99.9%) was purchased from Sigma Aldrich Co., LLC. Terbium(III) acetate tetrahydrate (99.9%) was purchased from FUJIFILM Wako Pure Chemical Corporation. Hexafluoroacetylacetone (>95.0%) and triphenylphosphine oxide (>98.0%) were purchased from Tokyo Chemical Industry Co., Ltd. Tricyclohexylphosphine oxide (>98.0%) was purchased from Kanto Chemical Co., Inc. All other chemicals were reagent grade and used without further purification.

General methods

Electrospray ionization-mass spectrometry (ESI-MS) was performed using a JEOL JMS-T100LP instrument. Elemental analyses were performed using an Exeter Analytical CE440 instrument. Thermogravimetric analyses were performed on a Rigaku Thermo plus EVO2 TG-DTA8122 with Al_2O_3 as a reference. Infrared spectra were measured using a JASCO FT/IR-4600 instrument.

Preparation of \([\text{Ln(hfa)}_3(\text{tcpo})_2]\) (Ln = Gd, Tb)

\([\text{Ln(hfa)}_3(\text{tcpo})_2]\) was synthesized according to a previously reported method.12 The mixture of \([\text{Ln(hfa)}_3(\text{h}_2\text{o})_2]\) (0.90 mmol) and triphenylphosphine oxide (tcpo) (0.5 g, 1.80 mmol) was refluxed at 70 °C in methanol (10 mL) for 3 h. The reaction solution was cooled to approximately 20 °C, and the solvent was distilled using a rotary evaporator. The residue was recrystallized from methanol to produce colorless crystals of the target compounds.

\([\text{Gd(hfa)}_3(\text{tcpo})_2]\): Yield: 0.44 g (37%). MS (ESI) m/z: [M – hfa]+ calcd for C_{48}H_{52}F_{12}O_{8}P_{2} 1128.07; found 1128.06. Anal.: calcd for C_{51}H_{51}F_{18}GdO_{8}P_{2}: C, 45.89; H, 2.49; found: C, 45.69; H, 2.33%.

\([\text{Tb(hfa)}_3(\text{tcpo})_2]\): Yield: 0.53 g (44%). MS (ESI) m/z: [M – hfa]+ calcd for C_{48}H_{52}F_{12}O_{8}P_{2} 1129.07; found 1129.06. Anal.: calcd for C_{51}H_{51}F_{18}GdO_{8}P_{2}: C, 45.89; H, 2.49; found: C, 45.75; H, 2.35%.

Preparation of \([\text{Ln(hfa)}_3(\text{h}_2\text{o})_2]\) (Ln = Gd, Tb)

A mixture of \([\text{Ln(hfa)}_3(\text{h}_2\text{o})_2]\) (0.84 mmol) and tricyclohexylphosphine oxide (tcpo) (0.5 g, 1.69 mmol) was refluxed at 70 °C in methanol (10 mL) for 3 h to form a white precipitate. The reaction solution was cooled to approximately 20 °C, and the solvent was distilled using a rotary evaporator. The residue was recrystallized from methanol to produce colorless crystals of the target compounds.

\([\text{Gd(hfa)}_3(\text{h}_2\text{o})_2]\): Yield: 0.80 g (69%). MS (ESI) m/z: [M + Na]+ calcd for C_{48}H_{52}F_{12}O_{8}P_{2}Na^+ 1394.33; found 1394.34. Anal.: calcd for C_{51}H_{51}F_{18}GdO_{8}P_{2}: C, 44.67; H, 5.07; found C, 44.59; H, 4.98%.

\([\text{Tb(hfa)}_3(\text{h}_2\text{o})_2]\): Yield: 0.68 g (58%). MS (ESI) m/z: [M + Na]+ calcd for C_{48}H_{52}F_{12}O_{8}P_{2}Na^+ 1395.33; found 1395.33. Anal.: calcd for C_{51}H_{51}F_{18}GdO_{8}P_{2}: C, 44.62; H, 5.07; found: C, 44.59; H, 5.02%.

Crystallography

Rigaku MicroMax-007HF with Rigaku HyPix-6000HE and VariMax DW (Mo-Kα radiation (λ = 0.71073 nm)) was used for collecting crystallographic data for Tb(III) and Gd(III) complexes. All calculations were performed using Olex2 except for refinement.33 Non-hydrogen atoms were refined anisotropically using the SHELX system.34 Hydrogen atoms were refined using the riding model. CIF files are available in CCDC 2323896 (for \([\text{Tb(hfa)}_3(\text{tcpo})_2]\), CCDC 2324233 (for Tb...
Tb(III) complexes were recorded on a HORIBA Fluorolog-3 spectrofluorometer with a cryostat (Thermal Block Company, SA-SB1905HA, vacuum ultimate pressure of the vacuum pump: 6.7 × 10⁻² Pa). For emission decay profiles of Tb(III) complexes, a SpectraLED-355 (λex = 356 nm, full width at half maximum (FWHM) = 17 nm) was used as an excitation source. Emission decay profiles of Gd(III) complexes were measured using third-harmonics of a Q-switched Nd:YAG laser (SpectraPhysics, INDI-50, FWHM = 5 ns, λ = 1064 nm) and a photomultiplier (Hamamatsu Photonics, R5108, response time < 1.1 ns). The Nd:YAG laser response was monitored with a digital oscilloscope (Sony Tektronix, TDS3052). Phosphorescence spectra of Tb(III) complexes and emission quantum yields of Tb(III) complexes were measured on a JASCO FP-6300 instrument. A cryostat (Thermal Block Company, SA-SB1905HA) was used for the phosphorescence spectra of Gd(III) complexes. A JASCO ILF-533 integrating sphere unit was used for emission quantum yields of Tb(III) complexes.

Optical measurements

All optical measurements were carried out in the solid state. Emission and excitation spectra and emission decay profiles of Tb(III) complexes were recorded on a HORIBA Fluorolog-3 spectrofluorometer with a cryostat (Thermal Block Company, SA-SB1905HA, vacuum ultimate pressure of the vacuum pump: 6.7 × 10⁻² Pa). For emission decay profiles of Tb(III) complexes, a SpectraLED-355 (λex = 356 nm, full width at half maximum (FWHM) = 17 nm) was used as an excitation source. Emission decay profiles of Gd(III) complexes were measured using third-harmonics of a Q-switched Nd:YAG laser (SpectraPhysics, INDI-50, FWHM = 5 ns, λ = 1064 nm) and a photomultiplier (Hamamatsu Photonics, R5108, response time < 1.1 ns). The Nd:YAG laser response was monitored with a digital oscilloscope (Sony Tektronix, TDS3052). Phosphorescence spectra of Tb(III) complexes and emission quantum yields of Tb(III) complexes were measured on a JASCO FP-6300 instrument. A cryostat (Thermal Block Company, SA-SB1905HA) was used for the phosphorescence spectra of Gd(III) complexes. A JASCO ILF-533 integrating sphere unit was used for emission quantum yields of Tb(III) complexes.

Computational details

All quantum chemical calculations were performed using density functional theory (DFT) using the Gaussian 16 package.²⁵ Energy calculations of Tb(III) complexes were evaluated with the long-range corrected BLYP functional (basis set: Stuttgart RSC 1997 for Tb atoms and cc-pVDZ for C, H, O, F, and P atoms).³⁶⁻³⁸

Results and discussion

Structures of [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂]

[Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂] were synthesized through refluxing the precursor complex [Tb(hfa)₃(H₂O)₂] with the respective phosphate oxide ligand in methanol. Single crystals of Tb(III) complexes were obtained through recrystallization from methanol. The crystal structures of the complexes are shown in Fig. 2 and their corresponding crystal data are presented in Table 1. Both Tb(III) complexes exhibited eight-coordination structures with three hfa ligands and two phosphate oxide ligands. In both [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂], multiple intra- and intermolecular CH/F interactions were observed. The rigid structures are linked to high thermostability (decomposition point >260 °C, Fig. S1†). In [Tb(hfa)₃(tcpo)₂], two phosphate oxide ligands were located on the same side of the mononuclear complex as bidentate ligands (Fig. 2b),³⁹ which is distinct from the crystal structure of [Tb(hfa)₃(tcpo)₂] (Fig. 2a). We performed continuous shape measure (CShM) analysis to elucidate the coordination geometry. Based on CShM analysis, the polyhedral structures of [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂] were classified as square antiprism (SAPR) and bicapped trigonal prism (BTPR) structures, respectively (Fig. 2, Table S1†). Additionally, Gd(III) complexes were prepared using the same procedure as that for the Tb(III) complexes. The crystal structures of [Gd(hfa)₃(tppo)₂] and [Gd(hfa)₃(tcpo)₂] closely resembled those of [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂], respectively (Fig. S2, Table S2†).

General photophysical properties

General photophysical properties of [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂] (solid state) were measured in air. Emission, excitation, and diffuse reflectance spectra of the Tb(III) complexes are shown in Fig. 3. Sharp emission bands were observed at around 490, 550, 580, 620, and 650 nm, which are attributed to the ⁵D₄ → ⁷F₉ (J = 6, 5, 4, 3, 2) transition of Tb(III), respect-
ively. In the excitation spectra, broad excitation bands attributable to hfa ligands were observed in the ultraviolet region. Emission lifetime (τ_{avg}) and ligand-excited emission quantum yield (Φ_{tot}) were evaluated in air (Table 2). To estimate the hfa ligand T_1 levels, we measured the phosphorescence spectra of $[\text{Gd(hfa)}_3(\text{tppo})_2]$ and $[\text{Gd(hfa)}_3(\text{tcpo})_2]$ (Fig. 4). The phosphorescence spectra were deconvoluted into four vibronic bands and the deconvolution results for the four vibronic bands were designated as 0–0, 0–1, 0–2, and 0–3. The hfa ligand T_1 levels (energy gap ΔE_{T_1-5D4}) were determined based on 0–0 vibronic bands using a wavenumber scale of 21 800 cm$^{-1}$ (1300 cm$^{-1}$) for $[\text{Gd(hfa)}_3(\text{tppo})_2]$ and 22 100 cm$^{-1}$ (1600 cm$^{-1}$) for $[\text{Gd(hfa)}_3(\text{tcpo})_2]$.

Back energy transfer (BEnT) under vacuum

We evaluated the value of k_r for $[\text{Tb(hfa)}_3(\text{tppo})_2]$ ($k_r = 1.3 \times 10^3$ s$^{-1}$) and $[\text{Tb(hfa)}_3(\text{tcpo})_2]$ ($k_r = 1.1 \times 10^3$ s$^{-1}$) using the emission lifetime at 90 K using a previously reported approximate method.16,19,43 The variation between k_r values is attributed to the electronic structure differences between $[\text{Tb(hfa)}_3(\text{tppo})_2]$ and $[\text{Tb(hfa)}_3(\text{tcpo})_2]$. The non-radiative rate constants k_{nr} were estimated based on k_r values and emission decay analyses under vacuum (Fig. S5†). The electronic structure changes also induced a significant difference in k_{nr} values of $[\text{Tb(hfa)}_3(\text{tppo})_2]$ ($k_{nr} = 8.8 \times 10^3$ s$^{-1}$) and $[\text{Tb(hfa)}_3(\text{tcpo})_2]$ ($k_{nr} = 1.0 \times 10^5$ s$^{-1}$), indicating that BEnT is inefficient in $[\text{Tb(hfa)}_3(\text{tcpo})_2]$ compared with that in $[\text{Tb(hfa)}_3(\text{tppo})_2]$. This interpretation is consistent with temperature-dependent emission lifetime measurements under vacuum (Fig. 5). The emission lifetime of $[\text{Tb(hfa)}_3(\text{tppo})_2]$ changed significantly in the lower temperature region, suggesting that BEnT from the $^5\text{D}_4$

Table 2 Photophysical parameters of $[\text{Tb(hfa)}_3(\text{tppo})_2]$ and $[\text{Tb(hfa)}_3(\text{tcpo})_2]$

<table>
<thead>
<tr>
<th>Entry</th>
<th>k_r a/s$^{-1}$</th>
<th>k_{nr} b/s$^{-1}$</th>
<th>k_q c/s$^{-1}$</th>
<th>τ_{avg} d/μs</th>
<th>Φ_{tot} e/%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vacuum</td>
<td>Vacuum</td>
<td></td>
<td>Air</td>
<td>Vacuum</td>
</tr>
<tr>
<td>$[\text{Tb(hfa)}_3(\text{tppo})_2]$</td>
<td>1.3 \times 103</td>
<td>8.8 \times 103</td>
<td>3.8 \times 102</td>
<td>101 ± 1</td>
<td>105 ± 0.4</td>
</tr>
<tr>
<td>$[\text{Tb(hfa)}_3(\text{tcpo})_2]$</td>
<td>1.1 \times 103</td>
<td>1.1 \times 103</td>
<td>6.2 \times 102</td>
<td>453 ± 1</td>
<td>466 ± 1</td>
</tr>
</tbody>
</table>

* $k_r = 1/\tau_{90 \text{ K}}$ (vacuum).$^{16,19,43} \quad \lambda_{90 \text{ K}} = 356 \text{ nm}, \lambda_{\text{ex}} = 356 \text{ nm}, \lambda_{\text{em}} = 542 \text{ nm}, 90 \text{ K}. \quad k_{nr} = 1/\tau (\text{air} - 1/\tau (\text{vacuum})). \quad \lambda_{\text{ex}} = 356 \text{ nm}, \tau_{\text{em}} = 542 \text{ nm}, 293 \text{ K}. \quad \lambda_{\text{ex}} = 370 \text{ nm}. \quad \text{The standard deviations were determined by measuring five times.} \quad \lambda_{\text{ex}} = 495 \text{ nm}.$
emitting state is more pronounced compared with that of [Tb(hfa)₃(tcpo)₂]. Under oxygen-free conditions, the ligand-excited emission quantum yield of [Tb(hfa)₃(tcpo)₂] (Φₑtot = 33.3%) was significantly higher than that of [Tb(hfa)₃(tppo)₂] (Φₑtot = 11.2%). This is also ascribed to the suppression of BEnT in [Tb(hfa)₃(tcpo)₂].

To investigate the BEnT mechanism, we evaluated the emission lifetimes of the Gd(III) complexes. The emission lifetimes under vacuum for [Gd(hfa)₃(tppo)₂] and [Gd(hfa)₃(tcpo)₂] were estimated to be 237 and 52 μs, respectively, using emission decay analysis (Fig. S8). The phosphorescence properties imply that, ideally, [Tb(hfa)₃(tppo)₂] should show an effective photosensitized Tb(III) emission due to a long-lived T₁ state. However, [Tb(hfa)₃(tcpo)₂] was found to demonstrate effective photosensitized Tb(III) emission with a larger Φₑtot. To further clarify the origins, we evaluated the photophysical properties of the Tb(III) and Gd(III) complexes in the presence of oxygen.

BEnT mechanism in a thermally populated T₁ state during Tb(III) emission

The energy transfer from the T₁ state of an organic ligand to Tb(III) is reversible when the T₁ state is thermally re-populated from the T₁ state. When the EnT rate between T₁ and ⁵D₄ states is significantly higher than the de-excitation rates of T₁ → S₀ and ⁵D₄ → ⁷Fⱼ transitions, investigating the oxygen concentration dependence of Tb(III) emission lifetimes is useful for examining the population of the T₁ level during Tb(III) emission.¹⁰,²⁶⁻³¹,⁴⁴

This measurement relies on the distinct sensitivity property towards O₂, that is the ligand T₁ state exhibits sensitivity to O₂, while the Tb(III) ⁵D₄ state is insensitive to O₂. The decrease of emission lifetimes with the increase of oxygen concentration was observed both in [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂] (Table 2, Fig. S5), revealing the T₁ state population during Tb(III) emission. As indicated by the photophysical analysis of [Gd(hfa)₃(tcpo)₂] (τₑ = 52 μs), [Tb(hfa)₃(tppo)₂] exhibits a shorter T₁ lifetime. Thus, the crucial factor contributing to the emission quantum yield of [Tb(hfa)₃(tcpo)₂] being higher than that of [Tb(hfa)₃(tppo)₂] is the difference between EnT and BEnT rates between the two Tb(III) complexes. These energy transfer rate differences between the Tb(III) complexes are attributed to the higher T₁ level of [Tb(hfa)₃(tcpo)₂] (T₁ = 22 100 cm⁻¹) compared to that of [Tb(hfa)₃(tppo)₂] (T₁ = 21 800 cm⁻¹). Based on the different 4f–4f radiative rate constant values, the 4f-orbital-based electronic structures of [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂] are also different (Table 2). We consider that the 4f-orbital-based electronic structural differences also affect the energy transfer rates. To investigate the effect of the 4f-orbital-based electronic structure on energy transfer rates, the activation energy Eₐ and frequency factor A in the energy transfer were estimated from an Arrhenius plot using the temperature-dependent emission lifetime (Fig. S7, Table S10).⁴⁵ In particular, the A value, which incorporates electronic frequency, is associated with the electronic coupling of ⁵D₄ with the T₁ state.⁴⁶,⁴⁷ As a consequence, the Eₐ values were calculated to be identical (2000 cm⁻¹) in Tb(III) complexes, whereas the A values were calculated to be 1.2 × 10⁸ s⁻¹ for [Tb(hfa)₃(tppo)₂] and 1.9 × 10⁷ s⁻¹ for [Tb(hfa)₃(tcpo)₂] (Table S10). The consistent Eₐ values stem from a balance between different ΔE₁-5D₄ ([Tb(hfa)₃(tppo)₂] < [Tb(hfa)₃(tcpo)₂]) and contrasting T₁ lifetimes ([Tb(hfa)₃(tppo)₂] > [Tb(hfa)₃(tcpo)₂]). The smaller A value in [Tb(hfa)₃(tcpo)₂] indicates less electronic coupling. As ⁵D₄ weakly interacts with the T₁ state in [Tb(hfa)₃(tcpo)₂], BEnT is passivated, therefore, effective photosensitized Tb(III) emission is observed.

Evaluation of the oxygen barrier ability

Notably, despite the emission quenched by oxygen in the populated T₁ state during Tb(III) emission, [Tb(hfa)₃(tcpo)₂] exhibits excellent emission properties in air and under oxygen. To elucidate the oxygen barrier ability, the indirect emission quenching constant of oxygen (kₒ) was evaluated using the Tb(III) emission lifetimes in air and under vacuum (kₒ = 1/τ (air) − 1/τ (vacuum)). The kₒ value of [Tb(hfa)₃(tcpo)₂] was calculated to be 6.2 × 10⁵ s⁻¹, significantly smaller than that of [Tb(hfa)₃(tppo)₂] (3.8 × 10⁸ s⁻¹) (Table 2). The kₒ is substantially reduced by the presence of bulky tcpo ligands, which is consistent with the calculated kₒ in [Gd(hfa)₃(tcpo)₂] (Table 3). The energy transfer efficiency is expected to be dependent on the oxygen concentration, although the energy transfer efficiency cannot be estimated precisely at present.⁴⁶ It has been reported that quenching of the ligand T₁ state by oxygen originates from orbital overlap between the π-conjugated orbitals of hfa and molecular oxygen.⁴⁰ The bulky tcpo ligands inhibit orbital overlapping, providing an oxygen barrier ability (Fig. 6 and S9). Consequently, we have successfully demonstrated a luminescent Tb(III) complex model in a thermally populated T₁ state with an oxygen barrier system based on ancillary ligands.

Quantum chemical calculations

In photophysical analyses of the Tb(III) complexes, different kₒ values were considered to result from the 4f-orbital-based electronic structure differences between [Tb(hfa)₃(tppo)₂] and [Tb(hfa)₃(tcpo)₂]. However, the smaller value in [Tb(hfa)₃(tcpo)₂] is the difference in the electronic structure of [Tb(hfa)₃(tcpo)₂] and [Tb(hfa)₃(tppo)₂] due to the 4f-orbital-based electronic structure differences. As the ⁵D₄ weakly interacts with the T₁ state in [Tb(hfa)₃(tcpo)₂], the BEnT is passivated, therefore, effective photosensitized Tb(III) emission is observed.
The 4f–4f transition characteristics are affected by ligand polarization\(^{48-53}\) and/or the charge transfer excited state between the \(\pi\)-orbital and the 4f-orbital.\(^{54,55}\) According to the dynamic coupling model, the 4f–5d excited states are mixed with the 4f–4f excited state by the interaction between the induced electronic dipole moment of the ligands and the transition electric quadrupole moment of the lanthanide. Thus, the 4f–4f oscillator strength \(f\) depends on the ligand polarizability, and can be approximately described as follows:\(^{56}\)

\[
f \propto \alpha^2 R^{-8}
\]

where \(\alpha\) and \(R\) are the ligand polarizability and the distance between the coordination atom and lanthanide ion, respectively. To further clarify the Tb(III) 4f-orbital-based electronic structural differences, the quantum chemical calculations were performed for \([\text{Tb(hfa)}_3(tppo)_2]\) and \([\text{Tb(hfa)}_3(tcpo)_2]\) using crystal structures (ULC-BLYP/Stuttgart RSC 1997 for Tb atoms, cc-pVDZ for C, H, O, F, and P atoms).\(^{35-38}\) The summation of the \(\alpha^2 R^{-8}\) value of \([\text{Tb(hfa)}_3(tppo)_2]\) did not differ from that of \([\text{Tb(hfa)}_3(tcpo)_2]\) (Table S13\(^{\dagger}\)). In contrast, Henrie reported an equation for the 4f–4f oscillator strength \(f_{pt}\) borrowed from the charge-transfer (CT) transition between the \(\pi\) and 4f orbitals as follows:\(^{54}\)

\[
f_{pt} \propto E_{CT}^{-3} f_{CT}
\]

where \(E_{CT}\) and \(f_{CT}\) are the excitation energy of the CT state and the oscillator strength of the CT transition, respectively. The lowest energy level in the CT transition originates from the ligand (\(\pi\)-orbital) to metal (4f-orbital) charge transfer (LMCT) transition (Fig. 7, Tables S14 and S15\(^{\dagger}\)). The 4f-orbital shapes depend on the coordination geometry. The average of calculated parameter \((E_{CT}^{-3} f_{CT})\) of \([\text{Tb(hfa)}_3(tppo)_2]\) \((1.05 \times 10^{-16}\ \text{cm}^3)\) is significantly larger than that of \([\text{Tb(hfa)}_3(tcpo)_2]\) \((1.11 \times 10^{-17}\ \text{cm}^3)\) (Table 4). The differences in the \(k_\lambda\) values and \(E_{T_1}\) rate of the Tb(III) complexes might be attributed to the electronic structure difference in the perturbations of the LMCT states to the 4f–4f states, in addition to the difference in the coordination geometry.

Conclusion

In this study, an effective photosensitized emission was demonstrated by fabricating a Tb(III) complex with a typical hexafluoroacetylacetone photosensitizer in the thermally populated \(T_1\) state. The bulky ancillary ligand structure acts as a modulator of the 4f-orbital-based electronic structure and an oxygen barrier to suppress orbital overlap between the

Table 3 Photophysical parameters of [Gd(hfa)\(_3\)tppo\(_2\)] and [Gd(hfa)\(_3\)tcpo\(_2\)]

<table>
<thead>
<tr>
<th>Entry</th>
<th>(\tau_{avg}^{a,b})/(\mu)s</th>
<th>(k_{\lambda}/s^{-1})</th>
<th>(T_1) level(^c)/cm(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Gd(hfa)(_3)tppo(_2)]</td>
<td>64 ± 1</td>
<td>237 ± 1</td>
<td>16 ± 0.2</td>
</tr>
<tr>
<td>[Gd(hfa)(_3)tcpo(_2)]</td>
<td>50 ± 0.3</td>
<td>52 ± 0.5</td>
<td>29 ± 0.2</td>
</tr>
</tbody>
</table>

\(^{a}\) \(\lambda_{ex} = 355\ \text{nm}, \lambda_{em} = 500\ \text{nm}\) (using a 510 nm short-pass filter with a 490 nm long-pass filter), 293 K. \(^{b}\) It was estimated by fitting with a double-exponential function. The standard deviations were determined by ten measurements. \(^{c}\) Estimated from phosphorescence spectra.
The authors declare no conflict of interest.

Acknowledgements

This work was partially supported by a grant-in-aid with JSPS KAKENHI Grant Numbers JP20H02748, JP20H04653, JP20H05197, JP20K21201, JP21K18969, JP22H02152, JP22H04516, and JP23K17925. This work is supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP) from the Japan Science and Technology Agency (JST), Japan Grant Number JPMJTR23T5. This work was also supported by the Institute for Chemical Reaction Design and Discovery (ICReDD), established by the World Premier International Research Center Initiative (WPI) of the MEXT, Japan.

References
