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Theoretical trends in the dynamics simulations of
molecular machines across multiple scales

Weijia Xu, Yuanda Tao, Haoyang Xu and Jin Wen *

Over the past few decades, molecular machines have been extensively studied, since they are composed

of single molecules for functional materials capable of responding to external stimuli, enabling motion at

scales ranging from the microscopic to the macroscopic level within molecular aggregates. This

advancement holds the potential to efficiently transform external resources into mechanical movement,

achieved through precise control of conformational changes in stimuli-responsive materials. However, the

underlying mechanism that links microscopic and macroscopic motions remains unclear, demanding

computational development associated with simulating the construction of molecular machines from

single molecules. This bottleneck has impeded the design of more efficient functional materials.

Advancements in theoretical simulations have successfully been developed in various computational

models to unveil the operational mechanisms of stimulus-responsive molecular machines, which could

help us reduce the costs in experimental trial-and-error procedures. It opens doors to the computer-

aided design of innovative functional materials. In this perspective, we have reviewed theoretical

approaches employed in simulating dynamic processes involving conformational changes in molecular

machines, spanning different scales and environmental conditions. In addition, we have highlighted

current challenges and anticipated future trends in the collective control of aggregates within molecular

machines. Our goal is to provide a comprehensive overview of recent theoretical advancements in the

field of molecular machines, offering valuable insights for the design of novel smart materials.

1 Introduction

Over the preceding four decades, chemists have ingeniously
conceived a wide array of molecular machines, which convert

chemical, electrical, and photonic stimuli into intricate
mechanical responses. Since the prestigious Nobel Prize
was bestowed upon Jean-Pierre Sauvage, Sir J. Fraser
Stoddart, and Bernard L. Feringa in 2016, the realm of
molecular machines has undergone swift advancement.1

Progressing through the range from individual molecules
to the domain of complex systems, molecular machines have
shown immense potential in energy conversion, mechanical
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devices, artificial muscles, drug delivery, and sensing and
detection.2,3

The coupling between molecular machines and external
stimuli, such as light,4 pH,5 or electrical stimulation,6 plays a
crucial role in determining the amplitude and speed of mole-
cular motions. Therefore, optimizing parameters for these sti-
muli is essential for efficiently regulating motion in molecular
machines. While it is possible to regulate the motion of single
molecules, especially in solutions, their collective motion
becomes random when they aggregate.7 To address this issue,
directional motion can be achieved by attaching molecular
machines to solid surfaces, thereby confining their spatial move-
ment. This approach not only improves surface properties but
also amplifies microscopic motion, resulting in greater mechan-
ical work production.7,8 Surface-mounted molecular machines
hold significant promise for functional materials. Additionally,
self-assembled molecular machines can respond reversibly to
external stimuli, functioning as molecular switches.7

Understanding the driving forces behind the response of
molecular machines to external stimuli is essential for improv-
ing and designing new molecular machines. For instance, in
solution, properties of the solvent, such as polarity and viscosity,
and charge distribution on the molecular machine, impact the
rotational movement of molecular machines.9 Controlling the
surface diffusion or motion of molecules on solid surfaces and
their specific moving direction is challenging.2 Theoretical mod-
eling offers valuable insights by simulating the interactions
between molecular machines and their environments along
reaction coordinates.10,11 Computational simulations help deter-
mine the reaction pathways. Activation barriers along the
potential energy surface reflect the likelihood and speed of
motion in molecular machines. Therefore, adjusting the profile
of the potential energy surface can accelerate reactions by
reducing these activation barriers, resulting in a more efficient
process. Increasing the reaction temperature is another option,
but it requires more resources and may not be optimal. There-
fore, a practical strategy for improving the functions of molecu-
lar machines involves revealing and reshaping the potential
energy surfaces through the design of novel chemical structures.

Extensive reviews have comprehensively explored research
related to molecular machines,3,7,12 but our focus is squarely on
highlighting the recent advancements that have emerged in the
past few years. With the advancement of computational chem-
istry techniques and the continuous improvement in computer
performance, we are now capable of investigating reaction
mechanisms within large-scale molecular machines. This
encompasses predicting molecular properties, determining
structures, assessing performance, and aiding in the discovery
and design of new materials. In this perspective, we aim to
provide a concise overview of the current state of research and
the challenges encountered in both computational and experi-
mental settings for molecular machines. Our discussion is
structured into three main sections: beginning with the study
of individual molecules, progressing to surface-mounted and
self-assembled supramolecules, and concluding with the
exploration of the domain of polymers. Accordingly, we will

introduce various computational methods tailored to different
scales of molecular systems to offer a comprehensive theore-
tical and simulation framework. This will empower researchers
to effectively and precisely select suitable computational proto-
cols for various scales of molecular machines.

2 Recent progress in molecular
machines and their applications
2.1 Molecular machine functioning as a solitary molecule

Molecular machines exhibit diverse classifications grounded in
their functional components and mechanical behaviors. In con-
trast to molecular shuttles, in which back-and-forth translation is
utilized by reversible binding sites under chemical and photo-
chemical stimuli (Fig. 1a),13 a molecular motor manifests the
unique capacity to convert external energy into a continuous
circular rotation.14 Pioneered by harnessing the photoisomeriza-
tion of a CQC double bond in a chiral overcrowded alkene, light-
driven molecular motors were facilitated by alternate light and
heat sources to achieve their unidirectional motion. While three
generations of motors have undergone advancements in rota-
tional efficiency, the practical application of molecular motors
remains hindered by the rate-determining step of thermal helix
inversion, governed by ambient temperature. The thermal reac-
tion is significantly behind the photoisomerization step by orders
of magnitude.15 An all-photochemical motor exhibits potential
advantages over the prior generation, due to its temperature
independence. A breakthrough emerged in hemithioindigo- and
alkene-based motors for all-light-driven rotation, which improved
the efficiency of photon conversion.16,17 Illustrated in Fig. 1b,
irradiation on the stable configurations of this novel alkene-based
motor at �50 1C gives rise to the appearance of four isomers
within the photostationary state.17

2.2 Molecular machine operating as a collective of molecules

Beyond the single molecules, characterized by stochastic mole-
cular collisions and vibrations, the collective motion of mole-
cular machines faces challenges imposed by unpredictable
dynamics in molecular assembly owing to Brownian motion.
Therefore, the development of functional molecular machines

Fig. 1 (a) A ‘‘molecular transporter’’ based on a controllable molecular
shuttle and operated by two independent external stimuli (base/acid and
dark/light).13 (b) All-light-driven rotational cycle of the novel alkene-based
molecular motor.17
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with controllable motion becomes imperative for molecular
aggregates.

Surface-mounted molecular machines have emerged as a
viable solution to diminish the impact of random motion
through chemical or physical adsorption onto solid surfaces.
This approach serves a dual purpose. Firstly, it enables the
controlled motion of molecular machines, facilitating the manip-
ulation of surface properties. Secondly, this strategy provides the
potential to capture and amplify nanoscale energy, thereby gen-
erating substantial mechanical work. An innovative approach
presented by Magnussen et al. involved designing an
azobenzene-based photo-reactive switch with its axis aligned
parallel to the metal surface, enabling horizontal rotation
(Fig. 2a).18 In addition to surface-mounted molecular machines,
advanced designs have also explored surface inclusion. For
instance, a unidirectionally rotating molecular motor has been
embedded into nanocrystals, forming two-dimensional ordered
arrays with photo-responsive capabilities on the surface
(Fig. 2b).19 This approach offers a promising strategy for achieving
organized arrays and synchronized rotation of molecular motors
on two-dimensional surfaces.

Beyond the surface-mounted molecular machines, the
manipulation of reversible non-covalent interactions has pro-
ven instrumental in crafting multifunctional materials, which
are composed of macrocyclic hosts and compatible guests.
These materials exhibit mechanical motion enabled by config-
urational changes in guest molecules in response to external
stimuli, altering their positioning relative to the host. The
development of such supramolecular systems with precisely
controllable motion opens new avenues for enhancing the
operational efficiency of molecular machines. For instance,
azobenzene-based polymer chains induce the shrinking of
[c2]daisy chains within cyclodextrin-based hydrogels through
photoisomerization. This leads to subsequent volume

reduction and macroscopic bending deformation (Fig. 2c).20

Furthermore, to achieve more extensive movement, Yang et al.
have synthesized dendritic polymers resembling daisy chains.
In these structures, external stimuli trigger collective motion by
amplifying the movements of individual cyclophanes along the
dendritic polymer chains (Fig. 2d).21 This approach offers a
reversible and controllable means of modifying thin film
deformations.

2.3 Molecular machine operating as a component within
complex systems

Beyond self-assembly, molecular machines exhibit the ability to
construct complex systems, in which mechanical movement
responds functionally to stimuli. These complex systems can be
classified based on the sequence of responsive reactions they
utilize. Some systems achieve their functions within the
domain of their stimulus-responsive unit, while others induce
motion by modifying their structural components through
responsive units, particularly evident in host–guest systems.

For instance, a rotaxane-based metal–organic framework
(MOF) is depicted in Fig. 3a. Here, the capture and release of
guest molecules occur via alternating hydrogen bonding,
enabled by the photoisomerization of guests.22 Another note-
worthy example involves microgels, which are composed of
cyclodextrin aggregates within cross-linked networks. These
microgels exhibit the ability to adjust their swelling capacity,
responding sensitively to variations in pH and thermal
conditions.25 This attribute suggests their potential utility in
drug release applications. In the case of pseudorotaxane-based
MOFs, the photochemical reactions of guest molecules occur
within the host structure, resulting in a reduction of the host’s
diameter.23 Of particular interest is the captivating phenom-
enon of macroscopic deformation that accumulates along a

Fig. 2 (a) Molecular machine parallel to the molecular surface. Adapted
with permission from ref. 18. Copyright 2019 American Chemical Society.
(b) Surface inclusion molecular motor. Adapted with permission from ref.
19. Copyright 2017 American Chemical Society. (c) Photoisomerization of
azobenzene causes shrinking [c2]daisy chains. Adapted with permission
from ref. 20. Copyright 2018 American Chemical Society. (d) Dendritic
cyclophane polymers. Adapted with permission from ref. 21. Copyright
2020 American Chemical Society.

Fig. 3 (a) In a MOF composed of rotane and copper ions photoisome-
rization controls the entry and exit of cargo. Adapted with permission from
ref. 22. Copyright 2020 American Chemical Society. (b) The polymeriza-
tion reaction of the object leads to the contraction of the subject,
ultimately leading to deformation. Adapted with permission from ref. 23.
Copyright 2022 Springer Nature. (c) The rotation of the motors as a cross-
linkers leads to the formation of crystals. Adapted with permission from ref.
24. Copyright 2022 American Chemical Society.
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crystal direction (Fig. 3b). Likewise, molecular-machine-based
liquid crystal polymers (LCPs) exhibit fascinating behavior.24,26–28

The photo-responsive groups within these LCPs induce different
shapes of mesogenic units, which subsequently trigger macro-
scopic deformation (Fig. 3c). In addition, when the molecular
motor is incorporated as cross-linker units within a polyurethane
network, it results in the amplification of macroscopic movement
in light-activated materials, endowing them with shape-memory
functionality.29 These responsive molecular machines have shown
significant potential for advanced applications in areas such as
actuators, artificial muscles, and drug delivery systems.

3 Multiscale modeling in molecular
machines

The dynamics and mechanisms that underlie the intricate
movement of molecular machines remain puzzling, even with
the development of advanced techniques aimed at unveiling
their intermediate configuration. These include achieving pre-
cise control over single molecules and self-assembled com-
plexes, hampered by low energy conversion efficiency, and
understanding the mechanisms governing responsive behavior
to external stimuli. However, a new avenue emerges through
computational simulations, allowing for the exploration of
molecular machine dynamics from single molecular to aggre-
gate and self-assembly at the mesoscale scale. Theoretical
chemists are actively pursuing innovative methodologies for
conducting long-term simulations in the motion of molecular
machines in a cost-effective manner.30 This pursuit extends to
both quantum mechanics (QM) and molecular mechanics
(MM) levels, benefiting from the facilitation provided by
machine learning models. Therefore, theoretical research plays

a crucial role in providing insights into the rational design and
precise control of molecular machines.

3.1 Electronic-structure calculations

3.1.1 Electronic configurations in excited states. It is crucial
to choose an appropriate method in electronic-structure calcula-
tions (Fig. 4a), as the accuracy of these calculations affects the
topology of the potential energy surfaces (PESs), particularly in
the excited state. Moreover, the rotational speed within molecu-
lar machines is determined by the PESs in both ground and
excited states under the influence of light irradiation. Notably,
the conical intersection (CI) plays an important role in a variety
of molecular motors and switches during the photoisomeriza-
tion processes,31–34 which determines the product and the
quantum yield of the photo reactions. To obtain an accurate
topology of the energy profile and electronic configuration
around CI, multiconfigurational methods, such as complete
active space self-consistent field (CASSCF) and multireference
configuration interaction (MRCI) methods are required.35,36

However, the computational demands associated with CASSCF
and MRCI methods render their application to larger systems
impractical due to the computational cost. The single- and
multi-reference approaches were compared to investigate mole-
cular switches and motors in our recent studies,37–39 revealing
that the single-reference method could replicate the experi-
mental absorption spectrum,40 however, it failed to obtain CI
where the nonadiabatic coupling is too large. A spin–flip time-
dependent density functional theory (SF-TDDFT) provides an
efficient and promising solution, by including a higher spin
configuration as a ref. 41, thus it offers a reasonable description
of the crossing region between the electronic states in molecular
machines.31,42

Fig. 4 Theoretical calculation methods based on different time scales.
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3.1.2 Non-adiabatic molecular dynamics simulations. The
direction of motion within molecular machines can be finely
adjusted through the influence of external fields, such as
optical, electric, and magnetic fields. This manipulation could
improve the overall energy conversion efficiency.43–45 To unveil
the photochemical processes within molecular machines, it is
essential to consider the energy profiles along the reaction
pathways in both ground and excited states. This can be
accomplished through non-adiabatic molecular dynamics
(NAMD) simulations. Additionally, the control of vibrational
excitations can be achieved using infrared pulses, which could
be described by the quantum dynamics (QD) approach.
Remarkably, this approach has demonstrated that laser pulses
with far-infrared frequencies can induce directional rotation in
molecular motors.43,46 This is exemplified in Fig. 5b, where the
phase in the superposition of rotational states can be precisely
adjusted by introducing laser fields.

In addition, laser fields offer an exciting avenue for tuning
electronic excitations in molecular motors, with potential
applications in rationally designing the evolution of chemical
reactions within these machines. By precisely adjusting the
delay time of a laser pulse to resonate with a specific excited
state, it becomes possible to control and direct chemical
reactions in molecular machines.47,48 The fewest-switches sur-
face hopping (FSSH) method is a practical approach for hand-
ling large systems that involve laser-induced excitation.49,50

However, performing FSSH simulations, especially with a high
number of trajectories, can be computationally intensive,
which limits their utility in photochemical studies. Previous
simulations relying on electronic structure calculations were
carried out in a short timescale, typically within a few
picoseconds.51–53 However, recent advancements in machine
learning (ML) have revolutionized NAMD simulations.54,55 ML

enables the analytical construction of PESs with electronic
structure-level accuracy, extending NAMD simulations to encom-
pass large-scale photochemical reactions at a low computational
cost.56–59 We have recently developed a machine learning model
combined with force fields, specifically designed to construct
PESs for a large system in photodynamics simulations.39 Nota-
bly, our results align with experimental observations, presenting
the potential for broader applications in this field.

ML-based NAMD simulations have significant success in
accelerating excited-state dynamics simulations. Despite this
progress, several challenges still remain. One of the main
obstacles is the need for extensive computational resources
and precise electronic structure methods to acquire abundant
high-quality training data for constructing high-dimensional
PESs. Additionally, choosing the appropriate ML algorithm and
input features is crucial, as it directly affects the accuracy and
efficiency of the PES. Active learning offers a promising solution
by identifying the most informative data points for
labeling.60,61 This approach not only reduces computational
demands but also enhances the efficiency of the ML algorithm
in simulating photodynamics for molecular machines.

3.2 Molecular-structure calculations

3.2.1 MM and QM/MM simulatioms. In contrast to photo-
dynamics simulations conducted using QM methods on single
molecules, studying configurational transitions in complex
environments for large systems presents a formidable chal-
lenge. This challenge stems from the significant number of
degrees of freedom involved in the reactions, the extensive
computational resources required, and the extended timescales
necessary for simulations. Consequently, the development of
multi-scale simulation methods for complex systems becomes
imperative.

For large systems, classical dynamics simulations based on
molecular mechanics offer a cost-effective and computationally
efficient approach to studying molecular motion. Molecular
mechanics simplifies the representation of molecular struc-
tures by employing a force field at the atomic level (Fig. 4b).
This force field describes intermolecular interactions using a
potential energy function derived from either experimental
data or high-level QM calculations. More than ten force fields
have been developed to suit a wide array of molecular systems
at present. Bao et al., for example, conducted all-atom mole-
cular dynamics simulations to elucidate that light-driven mole-
cular motors can achieve K+ transportation within a lipid
bilayer (Fig. 6a).62 However, it’s important to note that while
molecular mechanics provides a computationally efficient
approach, it may lack precision in describing certain intermo-
lecular interactions due to limitations in experimental data
used for force field parameterization.

The quantum mechanics/molecular mechanics (QM/MM)
method integrates the advantages of both the precision of
quantum chemistry and the efficiency of molecular mechanics,
making it a rapidly evolving approach.65 This method is crucial
for applying quantum mechanics to address the reactive
regions of complex systems, which are of primary interest.

Fig. 5 (a) The nonadiabatic dynamics process from excited state to
ground state via CI. (b) The directional rotation controlled by laser field
in a chiral molecular motors.

PCCP Perspective

Pu
bl

is
he

d 
on

 1
0 

Ja
nu

ar
y 

20
24

. D
ow

nl
oa

de
d 

on
 1

/7
/2

02
6 

4:
20

:1
6 

A
M

. 
View Article Online

https://doi.org/10.1039/D3CP05201J


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 4828–4839 |  4833

Simultaneously, a simplified molecular mechanics model can
be employed to account for the surrounding environment.
When theoretical simulations involve the study of dynamics
in molecular machines in solution, the polarity and viscosity of
the solvents play a significant role in influencing the motions of
molecular machines. Therefore, it is crucial to consider the
interactions between solvents and molecular machines in a
cluster model that explicitly includes the first solvation shell. If
the cluster model proves to be computationally expensive for
quantum mechanics (QM) calculations, a multiscale approach
combining quantum mechanics and molecular mechanics
(QM/MM) can be utilized. This QM/MM model has proven
instrumental in investigating the impact of solvents on the
thermal inversion of molecular motors.66 This research
revealed that solvents can influence the rotation of molecular
motors, particularly those with large dipole moments. Addi-
tionally, Srivastava et al. utilized an MM model to characterize
the metal surface, shedding light on the mechanism governing
the forward motion of molecular motors on metal surfaces
(Fig. 6b).63

The challenge of accuracy and universal applicability still
persists, even with the powerful QM/MM and MM methods for
simulating molecular machine motions. The manual parame-
terization of force fields often requires prior knowledge and can
be nontrivial and relatively cumbersome. Novel methods for
optimizing force field parameters are needed to accelerate
dynamics simulations. An on-the-fly training algorithm has
been introduced to simplify parameter optimization automati-
cally. This approach aims to address inaccuracies in force fields
resulting from inadequate phase space sampling (Fig. 6c) by the
development of machine learning models, which offers an
efficient means to enhance force field accuracy.64,67 This

methodology involves generating initial trajectories using low-
level methods and then employing machine learning to reduce
the discrepancies between low-level and high-level calculations
of energies and gradients. Molecular machines’ conformations
can vary based on the environment, causing charge redistribu-
tion due to environmental polarization effects. Updating
charges, especially in the presence of strong interactions,
considering intermolecular interactions can be exceptionally
time-consuming. Developing a real-time charge updating pro-
tocol is imperative for handling molecular machines in diverse
environments.

3.2.2 Enhanced sampling. Capturing the configuration
adaptation in response to external stimuli through molecular
dynamics (MD) simulations within millisecond timescales can
be challenging due to the vast number of configurations and
the length of simulations involved. Particularly in such complex
systems for molecular machines, utilization of enhanced sam-
pling methods becomes imperative to achieve comprehensive
simulation results within a finite timeframe.

There are two categories of enhanced sampling techniques,
depending on how collective variables (CVs) are defined. In the
first category, CVs are predefined as reaction coordinates, and
an external biasing force is introduced to accelerate the simula-
tion efficiency. This category includes approaches like metady-
namics, umbrella sampling, and ABF adaptive biasing force
techniques (ABF), which require prior knowledge of reaction
pathways. In the ABF method, four CVs were introduced to
elucidate the shuffling process of rotaxane motion by obtaining
its free energy landscape across two transition states (Fig. 7a).68

Additionally, Parrinello and colleagues employed the Gaussian
mixture-based enhanced sampling (GAMBES) method to
explore how solvent impacts the binding affinity of host–guest
complexes, significantly expediting the determination of guest
molecule residence times.68 Several metadynamics techniques,
including well-tempered metadynamics (WT-MetaD), were
employed to achieve extensive sampling of metastable states
during the rotational motion of four macrocycles. This enabled
the reconstruction of the potential energy surface and provided
insights into the shuttle mechanism (Fig. 7b).69 This research
presents a promising and potentially universal approach for

Fig. 6 (a) Light-driven molecular motors capture potassium ions. Adapted
with permission from ref. 62. Copyright 2022 WILEY-VCHGmbH. (b) QM/MM
in a surface-mounted molecular machine. Adapted with permission from
ref. 63. Copyright 2023 American Chemical Society. (c) Schematic diagram of
on-the-fly trained force field.64

Fig. 7 (a) Free-energy landscape of contraction/extension of the
[c2]daisy chain computed by adaptive biasing force techniques calcula-
tions. Adapted with permission from ref. 68. Copyright 2021 American
Chemical Society. (b) Free energy and barriers of each state. Adapted with
permission from ref. 69. Copyright 2023 Royal Society of Chemistry.
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studying the key factors influencing the dynamics of various
host–guest supramolecules.

When dealing with multidimensional motions in molecular
machines that can’t be deduced intuitively, another approach is
needed where CVs are unknown beforehand.30 The replica
exchange molecular dynamics (REMD) method is particularly
suitable for simulating the relative motion within molecular
machines in multidimensional space. In summary, enhanced
sampling methods have been widely applied in the study of
molecular machines to reduce the computational cost for MD
simulations in molecular motions. Especially in simulating rare
events, enhanced sampling not only aids in reconstructing
more accurate PESs in the investigation of thermodynamics
and kinetics of molecular reactions, but also allows for explora-
tion of the influence of the surrounding environment on
molecular machine motions. This provides valuable insights
for the improved design and control of molecular machines.

3.3 Coarse-grained simulations

All-atom molecular dynamics (AAMD) simulations offer a
detailed description of molecular and material evolution at
the atomic level, however, when dealing with complex systems
beyond the microscopic scale during reactions that span nano-
seconds, AAMD simulations become computationally expen-
sive. In such cases, coarse-grained molecular dynamics (CGMD)
and dissipative particle dynamics (DPD) simulations present
viable alternatives for investigating phase transitions, as well as
chemical and physical properties. Employing multi-scale simu-
lations of molecular machines, ranging from microscale to
mesoscale, and even macroscale, provides comprehensive tools
for illustrating the assembly’s evolution and its response to
external fields.

To accurately capture the atomic-level deformation of poly-
mers induced by photo-responsive units, a reactive rotational
potential is applied, transitioning from AAMD to CGMD. This
transition enables the simulation of disordered morphologies

in photo-mechanical response liquid crystal polymers when azo-
benzene sub-units respond to thermal or photo conditions.70,72 As
depicted in Fig. 8a, this model can predict mechanical properties
and macroscopic transitions resulting from photoresponsive
structures. Beyond AAMD, CGMD could be employed to investi-
gate the self-assembly process in polymers, where the atomic
configuration is not critical in determining the morphology. For
instance, macroscopic stress within polymer backbones arises
from the reorientation of azobenzene molecules in the case of
photo-induced stress polymers. Dynamical properties as simu-
lated by CGMD, have effectively illustrated the relationship
between polymer orientation and light intensity and density.73

Furthermore, CGMD simulations have shed light on how
the morphology of self-assembled structures can be tuned. For
example, in peptide-based hydrogels, CGMD investigations have
revealed that the stacking of azobenzene molecules and the
arrangement of peptide units play a crucial role in determining
the self-assembly’s morphology.74 Therefore, CGMD has proven
its capability in simulating phase transitions and dynamical
properties within self-assembled complex systems.

While atomic simulations are indispensable for providing
static information and translation rates within hierarchical
multifunctional systems at the equilibrium stage,75 they may
fall short when addressing phase transitions in self-assembly
that extend beyond equilibrium. In such cases, DPD simula-
tions come to the fore. Consider the example of drug release,
achieved by shifting the chemical environment from neutral
to acidic conditions. This transition has been effectively
demonstrated through DPD simulations in pH-responsive
hydrogels,71,76 as illustrated in Fig. 8b. DPD simulations have
unveiled that drug release occurs due to the repulsive forces
between protonated molecular chains. Moreover, DPD simula-
tions have illuminated how interactions between drugs and
solvents can impact the amount of released drugs in self-
assembled amphiphilic block copolymers and nanoparticles,
providing valuable insights into the kinetics of drug release.77

Fig. 8 (a) Combined coarse-grained molecular dynamics and finite-element study of light-activated deformation of liquid crystal polymer. Adapted with
permission from ref. 70. Copyright 2021 American Physical Society. (b) Dissipative particle dynamics simulations on a pH-responsive drug delivery diblock
copolymer hydrogels. Adapted with permission from ref. 71. Copyright 2017 American Chemical Society.
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While simulating macroscopic motions in molecular
machine-integrated complex systems remains a challenge,
machine learning models offer a potent means to bridge the gap
between microscopic and macroscopic movements. These
ML models have accelerated the prediction of hydrogel pro-
perties, based on the relationships between chemical structure and
properties.78 Moreover, by effectively identifying key para-
meters in the driving forces behind macroscopic transformations,
ML models have demonstrated their ability to accurately predict
properties that respond to external stimuli within these
materials.79,80

The relationship between microscopic responses to stimuli
and macroscopic movements has been investigated through
both computational simulations and experimental measure-
ments. However, designing a practical strategy to precisely tune
the macroscopic movement and responsive behavior of func-
tional groups remains a challenge. Integrating atomic-level
simulations with coarse-grained molecular dynamics shows
promise in revealing the intricate connections between micro-
scopic composition, structure, morphology, and macroscopic
movement. This approach has the potential to significantly
enhance our understanding of complexity and expedite the
development of innovative responsive materials.

3.4 Challenges in collective motion of molecular assemblies

At scales beyond the molecular level, precise control over
collective motion within molecular aggregates is crucial for
optimizing the functionality of molecular machines. Recent
studies have focused on utilizing the driving forces efficiently at
larger length scales to induce macroscopic movements.3,81,82

Investigations have revealed that the dynamic nature of mole-
cular interactions, particularly fluctuations within parts of
molecular aggregates, can impact neighboring components,
potentially disrupting assembled behavior. This poses a
significant challenge when integrating molecular machines
into nano-materials. The main challenges and obstacles are
outlined as follows. Firstly, achieving synchronized movement
among molecular aggregates is crucial but challenging. The
movement of one molecule can disturb the equilibrium state of
surrounding molecules, creating difficulties. Solutions inspired
by nature, such as enzymes capable of triggering coordinated or
cooperative actions, provide insights into overcoming this
challenge. Another difficulty arises from the uncontrollable
motion in collective assembly due to intermolecular interac-
tions in multiple dimensions. While dynamic bonds offer
controllable deformation in supramolecules, tuning para-
meters in the external field is nontrivial. Therefore, optimal
parameters can be obtained through computational simula-
tions when the external field is included in non-equilibrium
dynamics simulations.83

As discussed above, theoretical simulations provide valuable
insights into the formation of dynamic structures and
their interactions with the environment, serving as a solid
foundation for the design of innovative molecular machines.
Exploring the multi-body interactions inherent in molecular
machines, Kapral utilized a coarse-grained model to delineate

the chemical interactions between fluid flow and molecular
machines. This approach acts as a driving force in the for-
mation of clusters, as demonstrated in his work.84 Several
strategies have been employed to effectively control the transi-
tion from the motion of individual molecules to the movement
of the entire assembly.

Firstly, supramolecular arrangements have been success-
fully reported to amplify motions resulting from p–p, hydrogen
bonding, and hydrophobic interactions.81,82 Upon exposure to
external stimuli, supramolecular structures undergo reversible
changes by disrupting their dynamic chemical bonds.84 It’s
noteworthy that the collective motions of supramolecular
aggregates can be influenced by chemical gradients generated
by the surrounding medium. From a microscopic perspective,
the individual motion of a single molecular machine could be
amplified into collective motions, when the interaction
between the molecules and the chemical gradients are manipu-
lated properly.

Secondly, surface-mounted molecular assemblies offer an
effective approach to drive molecular rotation or translation,
resulting in spatially directed collective motion. Physical para-
meters such as conductivity, wettability, and coverage can be
precisely tuned to organize molecules into ordered arrays,
thereby enhancing their collective motion.3,81,82 Following irra-
diation or other stimuli, densely packed arrays can undergo
switching due to fluctuations in neighboring molecules. Even
though conformational changes may lead to unstable isomers,
rapid growth of newly ordered structural domains could be
obtained when spatial adjustments among neighboring mole-
cules decrease.

The introduction of external fields with tunable character-
istics, such as electric fields and polarized light, could effec-
tively regulate the configurational changes of molecular
machines.84,85 Achieving directional motions of molecular
aggregates on the surface could be accomplished by aligning
the external field with the dipole moments of molecular
machines, thereby reducing their rotational energy barriers.
Recently, it has been reported that molecular switches have
been fabricated on surfaces using tip-enhanced Raman
spectroscopy,86 achieving fast configuration transformation.
Computational models could be employed in external field
manipulation, exploring potential energy surfaces along with
the projection of the dipole moment of the rotator of molecular
machines, as shown in our previous work.83 The computational
results provided insight into the direction of the electric field
along the transition, where the dipole moments change
significantly.

While various theoretical approaches have been proposed to
study molecular machines across different scales, research on
the cooperative dynamics of molecular machines at large-
length scales remains limited.84 In complex systems, computa-
tional modeling has primarily focused on the rotational moi-
eties within molecular machines, using accurate methods.
However, accurately describing the propagation of motion at
the same level, as illustrated in Fig. 9, has proven challenging.
The dynamic disorder in self-assembled systems arises from
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non-equilibrium transitions, making it computationally
demanding to capture collective motions. The directional
motion of molecular machines could be finely tuned by inves-
tigating the potential energy surface and projection of dipole
moments of molecular assembly. The orientation of the electric
field could be manipulated to align with the changes of dipole
moments along the potential energy surface, as shown in
Fig. 9(b). Future advancements in computational methods
could enable the modeling of non-equilibrium processes, espe-
cially in the presence of controllable external fields, to facilitate
simulations of long-time-scale dynamics.

4 Conclusions and outlook

Molecular machines have been under development for decades,
however, their potential applications remain constrained to spe-
cific operating conditions. Realizing the full potential of molecu-
lar machines demands a delicate balance between intricate
organic synthesis and precise device manipulation. While experi-
mental advancements have been substantial, theoretical progress
can play a pivotal role in guiding experimental synthesis and
modifications. Progress has been achieved in three aspects of
theoretical simulations. Firstly, electronic structure calculations in
the ground state have successfully extended to large systems.
However, studying the potential energy surfaces in excited states
remains a challenge for light-driven molecular machines. The
complexity arises due to the large number of degrees of freedom
in these systems, resulting in high-dimensional PESs that demand
substantial computational resources for an accurate description
of electronic structures in excited states. Future efforts could focus
on developing cost-effective methods, possibly utilizing machine
learning tools, to obtain precise PESs. This advancement could

significantly accelerate photodynamics simulations for light-
driven molecular machines.

Secondly, simulating the transitions between different equi-
librium states poses challenges not only in terms of time but
also due to the lack of efficient theoretical approaches. In real
systems, non-equilibrium reaction processes occur relatively
slowly, often at the nanosecond level. While coarse-grained
models can effectively capture these non-equilibrium processes
in molecular machines, they often miss out on molecular-level
motions, leading to inaccuracies in describing configurational
changes. Finding the right balance between computational
demand and accuracy is crucial. Hence, there is a need for a
hybrid model that incorporates atomic-level information about
molecular configurations alongside coarse-grained approaches.
This hybrid approach is essential to quantitatively characterize
transitions from equilibrium to non-equilibrium processes
induced by external stimuli.

Thirdly, the selection of collective variables (CVs) for sam-
pling is a critical step, as these variables need to distinguish not
only between the initial and final states but also guide the
reaction path along the lowest free energy profile. Introducing
bias ensures a reasonable transition rather than navigating
through high free energy pathways, leading to faster conver-
gence and a more accurate representation of the free energy
landscape. However, identifying suitable CVs can be challen-
ging and requires prior knowledge. In complex systems, multi-
ple CVs are often employed to assess the system’s reaction
process. Biases can also be introduced to the potential energy
surface in enhanced sampling methods, especially when deal-
ing with rare events, as obtaining accurate rate constants is
nearly impossible due to statistical uncertainties. Recent
approaches have utilized neural networks (NNs) to enhance
the construction of free energy profiles by selecting effective

Fig. 9 Computational simulations, employing multiscale models (a), are utilized to regulate the collective motion of an array of molecular rotors through
external fields. (b) Illustration of the potential energy surfaces (left) and projection of dipole moments (right) of molecular rotors. The rotational direction
(dashed line) is manipulated by regulating the electric field (c). Adapted with permission from ref. 83. Copyright 2019 American Chemical Society.
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CVs. Training data points are sampled from trajectories in
molecular dynamics simulations. While the training set may
not cover the entire configuration space, an iterative active
learning approach can be employed to explore new configura-
tional spaces and improve the potential energy surface auto-
matically. However, this protocol is still limited to small
systems due to the computational resources required to con-
struct accurate potential energy surfaces from multiple trajec-
tories. Consequently, exploring complex molecules remains
challenging, along with the need to improve the transferability
of machine learning models.

In summary, improving the accuracy of electronic structure
calculations for describing excited states and enhancing sam-
pling approaches are crucial steps in simulating the stimuli-
responsive behavior of molecular machines. This progress can
be further supported by the development of accurate molecular
machine models. Furthermore, integrating atomic-level mole-
cular simulations with coarse-grained methods enables simula-
tions on a larger scale, aiding in predicting molecular-level
configurational deformations. This, in turn, facilitates the
rational design of smart materials, ensuring efficient macro-
scopic mechanical movements.
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S. Koseki and Y. Fujimura, J. Phys. Chem. B, 2004, 108,
4916–4921.

48 M. Yamaki, K. Hoki, H. Kono and Y. Fujimura, Chem. Phys.,
2008, 347, 272–278.

49 P. Marquetand, M. Richter, J. González-Vázquez, I. Sola and
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