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Analysis and interpretation of first passage time
distributions featuring rare events†

Esmae J. Woods ab and David J. Wales *b

In this contribution we consider theory and associated computational tools to treat the kinetics associated

with competing pathways on multifunnel energy landscapes. Multifunnel landscapes are associated with

molecular switches and multifunctional materials, and are expected to exhibit multiple relaxation time

scales and associated thermodynamic signatures in the heat capacity. Our focus here is on the first

passage time distribution, which is encoded in a kinetic transition network containing all the locally stable

states and the pathways between them. This network can be renormalised to reduce the dimensionality,

while exactly conserving the mean first passage time and approximately conserving the full distribution.

The structure of the reduced network can be visualised using disconnectivity graphs. We show how

features in the first passage time distribution can be associated with specific kinetic traps, and how the

appearance of competing relaxation time scales depends on the starting conditions. The theory is tested

for two model landscapes and applied to an atomic cluster and a disordered peptide. Our most important

contribution is probably the reconstruction of the full distribution for long time scales, where numerical

problems prevent direct calculations. Here we combine accurate treatment of the mean first passage time

with the reliable part of the distribution corresponding to faster time scales. Hence we now have a

fundamental understanding of both thermodynamic and kinetic signatures of multifunnel landscapes.

I. Introduction

Molecules or condensed phases that support alternative com-
peting metastable states may exhibit a variety of characteristic
time scales and kinetics corresponding to different pathways.
This information is encoded in the first passage time distribution
for transitions between selected starting configurations (sources)
and product states (sinks). The mean first passage time (MFPT) is
the average over this first passage time (FPT) distribution, and a
rate constant corresponding to the reciprocal of the MFPT is often
reported. However, the full FPT distribution contains far more
information,1–5 and we have recently shown how it reports on the
organisation of the underlying energy landscape, in terms of
kinetic traps and multiple relaxation time scales.6 We showed
that the MFPT can also be used to survey the structure of the
landscape, if it can be obtained as a function of the observation
time scale. Hence it is particularly important to establish what a
given experiment is actually measuring when comparing to calcu-
lations, especially for the multifunnel landscapes7–9 that we expect
to correspond to multifunctional molecules or materials.

In principle, we know how to calculate the full FPT distribu-
tion given a kinetic transition network of local minima and the
transition states that connect them. Here, we assume that
such a network has already been obtained using rare events
techniques, either based on explicit dynamics10–18 or geometry
optimisation in the discrete path sampling approach.19,20 If all
the rates associated with transitions in the network are available,
then we can set up a master equation for the global kinetics.21

The MFPT can be calculated deterministically using the
graph transformation22–26 (GT) approach, which is numerically
robust. Computation of the FPT either requires eigendecompo-
sition of a transition matrix, or direct simulations based on
kinetic Monte Carlo (kMC) methods.27–29 The dimensionality of
the networks obtained in discrete path sampling typically
contain between 104 and 106 local minima, which can be too
large for eigendecomposition. However, we have shown that
graph transformation can produce a renormalised network of
amenable size where the FPT distribution is preserved, so long
as key minima are retained.30 This partial graph transforma-
tion procedure forms the basis of all the calculations for larger
networks in the present report.

Extracting the full FPT is problematical for systems that
feature long time scales because the corresponding transition
network is ill-conditioned. The linear algebra approaches that
underpin eigendecomposition then break down because of
numerical issues,24 while standard kMC methods encounter
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multiple recrossings (‘flickering’3,31) and require unfeasibly
long trajectories. Kinetic path sampling (kPS),3,32 addresses
the flickering problem using graph transformation to analyse
escape from subnetworks, but requires a careful description of
the metastable sets of nodes,31 which may itself be a difficult
problem in practice.33–35 Here we focus instead on schemes to
overcome the numerical problems of eigendecomposition.

We begin with a summary of the theory in Section II, starting
from the underlying master equation. Next, we investigate the
FPT itself in more detail, and show that peaks in the FPT may
be associated with particular local minima in the landscape,
providing an assignment for the specific relaxation modes
(Section IIIA). This assignment uses the right eigenvector of
the transition matrix. The left eigenvector allows us to scan the
number of peaks in the FPT for all the possible sources,
diagnosing starting conditions that would highlight alternative
relaxation time scales (Section IIIB). We test this framework
using a model landscape that features four distinct time scales,
and show how the MFPT as a function of the observation time
scale displays features that correspond to peaks in the FPT. The
peak assignments are verified using direct kinetic Monte Carlo
simulations, which are feasible in this test case if the tempera-
ture is not too low.

We then describe partial graph transformation for producing a
renormalised network that approximately preserves the FPT with
suitable dimensionality for eigendecomposition (Section IV).
The renormalised network can be visualised using free energy
disconnectivity graphs,36–39 which provide direct insight into the
structure of the landscape and the competing relaxation time
scales. The free energies are defined to reproduce the stationary
distribution of the renormalised landscape30 and the transition
rates between the states that are retained. Results are presented
for a double-funnel37,40,41 atomic cluster.

The last two sections describe strategies for calculating the full
FPT in cases where eigendecomposition breaks down. We first
consider fitting individual peaks using results that cover a tem-
perature range where the eigenvalues and eigenvectors are reliable
(Section V). This approach is used to help validate an alternative
hybrid scheme in Section VI. The hybrid approach combines the
strengths of eigendecomposition and graph transformation, using
eigenvalues and eigenvectors at the shorter time scale end of the
spectrum, which remain accurate even when the results for slow
relaxations are incorrect. Assuming that there is one missing slow
relaxation, we can use the accurate MFPT obtained from graph
transformation to deduce the missing part of the FPT.

The hybrid approach appears to be particularly powerful,
and enables us to present results for the atomic cluster bench-
mark over 40 orders of magnitude. In particular, we can probe
temperatures that cover the key change in morphology from
icosahedral to close-packing.

II. First passage time distributions

In this section we summarise key results from previous work.
Details of all the derivations can be found elsewhere.26,30,42

Our results are all based on analysis of a kinetic transition

network43–45 using discrete state Markov chains. In particular,
we focus on databases of local minima and the transition states
that connect them on a molecular potential energy surface,
which we obtain from discrete path sampling.19,20 However,
appropriate networks can be obtained using alternative rare
events methodology, including methods based on explicit
dynamics.10,13,14,17,18 The corresponding kinetics are expressed in
terms of interconversion rates between minima directly connected
by a transition state, which gives a linear master equation:21,46

dPðtÞ
dt
¼ QPðtÞ; (1)

where P(t) is the time-dependent vector of occupation probabilities
for the minima, which define a state space O. Q is the Markov
transition matrix, with elements defined by Q = K � D, where Kij is
the transition rate from state j to i, D is a diagonal matrix with

elements Dij = dij/tj, and tj ¼ 1
�P

gaj Kgj is the mean waiting time

associated with a transition from state j.
We denote the product states by the set A 2 O; and partition

O as O ¼ A [ S with A \ S ¼ 0. We may also specify initial
states, B; as a subset of S. The first passage time distribution to
A can be treated by setting all escape rates from A to zero and
considering the substochastic matrix QS ¼ KS �DS for the
subset of the full transition matrix Q containing the interstate
transition rates within S. DS is the corresponding subset of D
including the escape rates to A. The kinetics up to absorption
are unchanged, so we analyse the master equation

dPSðtÞ=dt ¼ QSPSðtÞ: (2)

PSðtÞ ! 0 as t - N because all trajectories are eventually
absorbed in A for a connected network.

For a reversible Markov process eigendecomposition gives

QS ¼ �
X
‘

l‘wR
‘ � wL

‘ ;

where wL
‘ and wR

‘ are the left and right eigenvectors and # is the
diadic (outer) product; wL

‘ is a row vector. The eigenvalues of QS ;
�l‘o 0, are real and negative for a reversible Markov process on
a connected network. For a non-reversible process a Jordan
normal form might be required. Using the representation in
eqn (3) in the formal solution of eqn (2) enables us to write the
probability distribution for the A  S first passage time y as

pðyÞ ¼
XjSj
‘¼1

l‘e�l‘y1S wR
‘ � wL

‘

� �
PSð0Þ �

X
‘

l‘e�l‘yA‘; (3)

which defines A‘ ¼ 1S wR
‘ � wL

‘

� �
PSð0Þ � 1Sw

R
‘

� �
wL
‘ PSð0Þ

� �
; a

product of dot products. Here, 1S is a row vector of ones and
PSð0Þ is the initial occupation probability in S. The corres-
ponding probability distribution for y = ln y, PðyÞ, is

PðyÞ ¼
XjSj
‘¼1

l‘ey�l‘e
y

1S wR
‘ � wL

‘

� �
PSð0Þ �

X
‘

l‘ey�l‘ expðyÞA‘:

(4)

p(t) and PðyÞ are normalised distributions, and
P

‘ A‘ ¼ 1.
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Moments of the p(t) distribution can be calculated from
eqn (3); in particular, the mean first passage time (MFPT) is

T AS ¼
XjSj
‘¼1

1

l‘
1S wR

‘ � wL
‘

� �
PSð0Þ ¼

XjSj
‘¼1

A‘

l‘

¼ �1SQS�1PSð0Þ � sSGSPSð0Þ;

(5)

where the fundamental matrix, GS ; is defined as

GS ¼ �DSQS�1 ¼ ½IS � BSS��1; (6)

with IS the identity matrix and BSS the branching matrix for S.
sS is the vector of waiting times for states in S.

Our previous investigation showed how kinetic traps in the
energy landscape produce signatures in the MFPT as a function
of the observation timescale, tobs. Integrating yp(y) up to tobs

and including the corresponding normalisation z(tobs) gives:6

T ðtobsÞ ¼
X
‘

A‘

l‘zðtobsÞ
1� e�l‘tobs 1þ l‘tobsð Þ
� �

: (7)

We found well-defined plateau values for T ðtobsÞ when the
slowest relaxation timescales are well separated, and the steps
occur at values that correspond to

X‘max

‘¼1

A‘

l‘

,X‘max

‘¼1
A‘; (8)

where the sum is performed up to ‘max, ordering the eigen-
modes from the fastest to the slowest relaxation. The steps in
ln T ðtobsÞ will occur at successive values of ln l�1

‘ , and hence
match the peak positions in Pðln yÞ; if

X‘max�1

‘¼1
A‘=l‘ � A‘max=l‘max and

X‘max�1

‘¼1
A‘ � A‘max : (9)

III. Features of the Pðln yÞ distribution

We focus on networks that exhibit a clear separation of timescales
for the slowest relaxations, which correspond to physical systems
that exhibit rare events. The observation time scale of an experi-
ment that interrogates the kinetics determines which processes
will be resolved.6 Systems with a hierarchy of slow relaxations are
expected for multifunnel energy landscapes, and the corres-
ponding time scales report on the kinetic traps and hence the
organisation of the landscape. The PðyÞ probability distribution,
written in terms of y = lny, highlights these features,3,31 because
the individual terms in the sum over eigenvalues exhibit a
maximum at lnl�1

‘ , independent of the initial distribution
PSð0Þ. When the eigenvalues are well separated in magnitude,
we find that peaks in PðyÞ correspond closely to the maxima that
arise for individual terms in the sum, as illustrated below.

A. Assignment of first passage time features to local minima
from the right eigenvector

From the mean first passage time expression T AS ¼ sSGSPSð0Þ
we find that the time spent in state s0 for trajectories starting in
state s is ts0Gs0s; where we replace the S subscript with the

specific components for s; s0 2 S for the vector and matrix
components. If all the waiting times are set to zero aside from
ts0, and Pa(0) = das, then T AS becomes the time spent in state s0.
If ts0 is set to one we see that the number of visits to state s0 is Gs0s,
which is known as the dynamical activity.47,48 The time spent in s0

can also be obtained in terms of the s0 components of the right
eigenvectors, wR

‘ ðs0Þ from the occupation probability Ps0(t):

Ps0 ðtÞ ¼
XjSj
‘¼1

e�l‘twR
‘ ðs0Þ wL

‘ PSð0Þ
� �

: (10)

Integrating over all time and setting Pa(0) = das enables us to
identify

XjSj
‘¼1

wR
‘ ðs0ÞwL

‘ ðsÞ
l‘

¼ ts0Gs0s: (11)

Eqn (11) shows that the relative contribution of two states b and a
to T AS from mode ‘ is wR

‘ (b)/wR
‘ (a), independent of the initial

distribution. We therefore investigate the components wR
‘ (s0) to

associate peaks in Pðln yÞ with states that correspond to different
kinetic traps.

The individual terms in the sum over eigenmodes that
defines Pðln yÞ each have a maximum at y = ln l�1

‘ ,
where the peak height is A‘/e, and the curvature (second deriva-
tive) is �A‘/e. Each term can be approximated quite well as
l‘A‘ exp[y � l‘exp(y)] E A‘ exp[�(y + lnl‘)

2/2]/e, where the Gaussian
has an integrated peak area about 8% less than the correct value.

For well separated time scales the positions and peak
heights in Pðln yÞ correspond closely to the values for the
individual terms. Since A‘ ¼ 1Sw

R
‘

� �
wL
‘ PSð0Þ

� �
; the peak height

contains a factor that is the sum of right eigenvector compo-
nents, wR

‘ (s0), with a second factor that depends on the overlap
of wL

‘ and the initial probability distribution.
Hence the relative values of wR

‘ (s0) are related to the time
spent in state s0, while the sum modulates the peak height in
Pðln yÞ at ln y E ln l�1

‘ . The components wR
‘ (s0) are not them-

selves observables, and they can have different signs. However,
we find that the relative magnitudes do indeed correlate with
the time spent in particular states when we break down the
number of visits to each state for the different peaks.

To illustrate this correspondence we return to a model
landscape that features four distinct relaxation time scales.6

The disconnectivity graph36,37 is shown in Fig. 1. The energy
and all other quantities are measured in reduced units for this
example. At a temperature T = 1.5 the longest kinetic Monte
Carlo (kMC) trajectories do not exceed 1010 steps for a standard
rejection-free27–29 scheme. For comparison with the eigende-
composition results 105 kMC trajectories were run, which is
sufficient to converge the first passage time distribution. The
number of visits to each local minimum was retained for each
trajectory, providing a breakdown of the peaks in Pðln yÞ.

Fig. 2 presents the mean first passage time as a function of
the observation time scale, T ðtobsÞ; calculated from eqn (7). The
arrows in this figure correspond to the predicted plateau values
from eqn (8), which correspond to time scales that progres-
sively access deeper kinetic traps in the landscape as tobs
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increases. This figure also shows Pðln yÞ; with the time scales
corresponding to ln l�1

‘ and the plateau values for T ðtobsÞ both
marked. The steps in T ðtobsÞ match the peak positions closely,
except for the slowest relaxation. For this landscape A‘ is
essentially zero for all the modes except the slowest four,
which correspond to A‘/l‘ values of 5.2, 2.0 � 106, 3.9 � 108,
and 3.2 � 109, respectively.

The number of visits to the four sets of minima in Fig. 1 that
constitute kinetic traps for relaxation to A can be separated by
assigning each of the 105 kMC trajectories to one of the four
peaks in Pðln yÞ shown in Fig. 2. The results of this decom-
position are shown in Fig. 3. We find that the four peaks can
indeed be assigned to trajectories that access the traps in order
of increasing depth. The longest trajectories for the peak
centred at ln y = 24 visit the deepest trap; the trajectories
corresponding to the peak centred at ln y = 20 visit all the traps
except the deepest, etc.

Having verified the peak assignment we can now compare
this breakdown with the components of wR

‘ (s0) for the four
eigenmodes associated with the four peaks. The objective is to
determine whether the peaks could be assigned to local

minima, s0, by inspecting the relative values of wR
‘ (s0), instead

of performing kMC runs, which become computationally
unfeasible as the temperature decreases and the relaxation
time scales increase exponentially. For this analysis we scale
the components of wR

‘ so that the largest value is 100. If we start
from the slowest relaxation we find that a systematic assign-
ment scheme appears to emerge. For this slowest mode the
components for the two states in the deepest trap in Fig. 1 are
100, and the next largest magnitude component is less than 1.
Moving to the Pðln yÞ peak at ln y = 20, we find components of
100 for the nine states in the next deepest trap, values of �55
for the two minima we have just associated with the slowest
relaxation, and a next largest value of 2.3. We therefore assign
the third peak in Pðln yÞ to the minima in the third trap.

For the second peak at ln y = 16, the ten minima in the
second set of trap states have wR

‘ coefficients of 100, and the
values for the states assigned to the third and fourth peaks are
�70 and�21, respectively. Finally, for the small peak at ln y = 5, it
is the source state B that has the maximum component of 100
(with 97 for the partner minimum, which is only connected to B),
while the next largest magnitude is �21 for states assigned to the
second peak.

Hence it appears that we can assign the peaks to states using
the largest components of wR

‘ . For the example considered here,
the next largest components in magnitude for wR

‘ have the
opposite sign, and correspond to the states assigned to relaxation
mode ‘ + 1, ordering the relaxation times from fastest to slowest.
If the terms in the sum that contribute to T AS ¼

P
‘ A‘=l‘ can be

treated separately, then the peak height at lnl�1
‘ for Pðln yÞ

depends on the sum 1Sw
R
‘ . The components of wR

‘ can take
opposite signs, but our results suggest that the states making
the largest contribution correspond to the kinetic trap that
determines the time scale in question.

B. Predicting first passage time peaks for different initial
conditions from the left eigenvector

The number of peaks that can be distinguished in Pðln yÞ
depends on the initial conditions. Each amplitude A‘ depends
on the product 1Sw

R
‘

� �
wL
‘ PSð0Þ

� �
. The right eigenvector con-

tribution was used above to guide assignment of relaxation
modes to local minima. For a single source s we have Pa(0) = das

and A‘ ¼ 1Sw
R
‘

� �
wL
‘ ðsÞ; so all the source dependence is con-

tained in the left eigenvector.
Having performed an eigendecomposition we can evaluate all

the A‘ for each source state and identify the eigenmodes that make
a significant contribution to the sum that determines Pðln yÞ.
Restricting the sum to terms above a given threshold provides
an efficient calculation of the distribution (and its moments)
for each source state, since the number of terms required is
usually small. The number of peaks in Pðln yÞ above a chosen
cutoff height can be counted during the calculation of each
distribution, thus identifying sources that produce interesting
structure.

Fig. 4 illustrates first passage time distributions to A;
starting from a selected minimum in each of the four sets

Fig. 1 Disconnectivity graph36,37 for a model energy landscape that
features multiple kinetic traps.6 The scale bar corresponds to ten energy
units and the local minima A (sink) and B (source) are marked.
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constituting kinetic traps. As the system is initialised in pro-
gressively deeper traps, the number of peaks decreases, and

when a peak disappears its probability amplitude is transferred
to the next fastest peak. For example, when the source is

Fig. 2 Results for the model landscape illustrated in Fig. 1 at T = 1.5, left: mean first passage time T ABðtobsÞ as a function of the observation time scale
cutoff, tobs, calculated from the analytical eigendecomposition formulation in eqn (7). The red arrows mark the position of steps in T ABðtobsÞ predicted
from eqn (8). Right: The probability distribution Pðln yÞ. The blue arrows correspond to the four longest time scales defined by ln l�1

‘ for eigenvalues of the
Markov transition matrix QS . The red arrows correspond to the same times as for the steps in T ABðtobsÞ.

Fig. 3 Breakdown of kinetic Monte Carlo results for visits to the four sets of minima that constitute kinetic traps for relaxation to A in the landscape
illustrated in Fig. 1. The four panels (a)–(d) are the visit statistics for kMC trajectories with first passage times corresponding to the four peaks in Pðln yÞ
shown in Fig. 2, with (a) corresponding to the longest time scale, and (d) the fastest. Each panel contains separate histograms for the number of visits to
the four traps, coloured orange, green, blue and red, which correspond to the four sets of minima from left to right and from highest to lowest energy in
Fig. 1, starting with the two states that include the source B.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

0/
31

/2
02

5 
8:

30
:2

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D3CP04199A


This journal is © the Owner Societies 2024 Phys. Chem. Chem. Phys., 2024, 26, 1640–1657 |  1645

changed from B to a minimum in the next set of states to the
right in Fig. 1, the small peak around ln y = 5 disappears, and
the amplitude of the peak around ln y = 16 increases slightly.

IV. Graph transformation as a network
reduction tool

The eigendecomposition approach described in Section II is a
powerful tool for kinetic analysis,42,49,50 and we note that an
analogous framework has been employed in milestoning
calculations.4,5 Unfortunately, in systems featuring rare events
and a large separation of timescales for the slowest relaxation
modes, severe metastability makes the Markov matrix highly ill-
conditioned, and linear algebra approaches break down
because of finite numerical precision.24,42,51–54 Additionally,
some networks are too large for full eigendecomposition to
be tractable on a feasible time scale. Some further discussion of
these issues can be found in ref. 30. However, the graph
transformation approach22–24,26,55–57 enables us to calculate
the mean first passage time accurately in a deterministic
procedure. States are successively removed singly, or in groups,
and the branching probabilities and waiting times are
renormalised as

BZOZOZ ¼ BOZOZ þ BOZZGZBZOZ ; (12)

sZOZ ¼ sOZ þ sZGZBZOZ : (13)

The superscript denotes the set of eliminated nodes and the
subscript denotes the set of retained nodes. GZ ¼ ½IZ � BZZ��1
is the Green’s matrix for Z, and sX is the row vector of waiting
times for states in X .

The mean first passage time is certainly important, providing
a phenomenological rate constant via the reciprocal. However, it

cannot report on multiple relaxation time scales,6 which we
associate with energy landscapes featuring multiple funnels and
potentially multifunctional systems.7–9 Instead, the rate constant
calculated in this way is likely to be dominated by the slowest
relaxation process, which might lie beyond the experimental time
scale. Enhanced kinetic Monte Carlo schemes, such as Monte
Carlo with absorbing Markov chains (MCAMC)58,59 and kinetic
path sampling,3,32,60 can provide the full first passage time
distribution. However, they require a definition of metastable
macrostates, and become computationally expensive when these
states are large. Instead, we have recently introduced the partial
graph transformation approach (pGT),30 and we showed how
judicious choice of the set of removed statesZ can yield a reduced
network that retains the full first passage time distribution
quite well.

The equilibrium occupation probability distribution
for a pGT network O where nodes in set Z have been removed,
pZOZ , can be obtained by applying the balance condition.30 The

result is

pZOZ
� �

i

sZOZ

h i
i

¼ pi
ti

or
pZi
pi
¼ tZi

ti
for i 2 OZ with

pZi � pZOZ
� �

i
; tZi � sZOZ

� �
i
:

(14)

This new stationary distribution and the corresponding

branching probabilities, BZOZOZ ; and waiting times, sZOZ ; can be

used to define free energies for the retained minima, fs(T), and

the transition states that connect them, f yss0 ðTÞ as

fsðTÞ ¼ � kBT ln pZOZ
� �

s
;

f
y
ss0 ðTÞ ¼ fs0 ðTÞ � kBT ln KZOZOZ

� �
ss0þkBT ln kBT=hð Þ;

¼ fsðTÞ � kBT ln KZOZOZ
� �

s0sþkBT ln kBT=hð Þ;

(15)

where the rate constant KZOZOZ
� �

s0s in OZ is BZOZOZ
� �

s0s

.
sZOZ
� �

s
; or

KZs0s ¼ BZs0s=s
Z
s with s; s0 2 OZ . The rate constants in the reduced

network define a master equation for the retained states OZ .

Hence KZOZOZ corresponds to the equilibrium occupation prob-

abilities pZOZ ; and the effective free energies fs(T) are defined to

reproduce these relative probabilities. Similarly, the free ener-
gies of the transition states reproduce KZs0s:

KZs0s ¼
kBT

h
exp �

f
y
ss0 ðTÞ � fsðTÞ

� �
kBT

2
4

3
5:

We can therefore obtain a free energy disconnectivity
graph for the reduced network, corresponding to the thermody-
namic and kinetic properties of OZ . This approach has recently
been applied to translate rates from a quantum master equation
and provide new insight into polaritonic rate suppression.61

The first passage time (FPT) results presented in our previous
contribution6 employed minimal subsets of much larger kinetic
transition networks to demonstrate how multifunnelled land-
scapes with traps produce multiple features in Pðln yÞ. Here, we

Fig. 4 First passage time distributions to A starting from selected indivi-
dual minima in the four different kinetic traps in Fig. 1 from left to right: the
shallowest trap containing B (solid grey), the second trap (dashed light
blue), the third trap (dotted blue), and the deepest trap (dashdot dark blue).
The contribution of each eigenvalue to the first passage time distribution
depends on the initial condition of the network.
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tackle the full database using the partial graph transformation
approach, without using community definitions.

A. Partial graph transformation

Our previous analysis of partial graph transformation for a
model landscape, focused on reproducing FPT distributions
between metastable communities. We showed that the first
passage time distribution was preserved very well if only
boundary states between communities and the lowest minima
in each community were retained.30 However, in order to
reproduce accurate first passage time distributions between
global minima of metastable communities (with one source
and one sink), it is actually sufficient to just keep the global
minima of each trap (see ESI†). Whatever the source and sink of
interest, if we retain the global minimum of each trap in the
network, alongside the source(s) and sink(s), pGT preserves the
long time behaviour of the first passage time distribution.
In fact, it is more challenging to preserve the short time peaks.

We have now found better ways to determine which states to
retain with pGT, in order to properly preserve the full FPT
distribution. Various possibilities were considered, and we
will focus on the most successful approaches for brevity.
The minimal starting information required is the identity of

the source and sink states and the minima at the bottom of
competing funnels in the landscape.

We first show how the simple model landscape shown in
Fig. 1 can be reduced. We must retain at least one state from
each kinetic trap, and the source and sinks B and A. However,
we cannot arbitrarily choose which state to keep, because when
a state is removed via GT, the waiting time for all the neigh-
bouring states increases. This effect can increase the time taken
to traverse a short-time path as states are removed. For exam-
ple, the path corresponding to the shortest time peak in Fig. 2
corresponds to the direct transitionA  B. To protect this path
from the effects of GT, we must keep all the neighbours of B;
otherwise the waiting time to leave B increases, and the short-
est time peak shifts to longer times. For this simple landscape,
we retain B and all of its neighbours, which explicitly includes
A and at least one state from each kinetic trap. Visualisations of
the resulting network are shown in Fig. 5, alongside the first
passage time distributions generated from the full and pGT
reduced networks, which are essentially identical.

To extend this process to larger, more complicated net-
works, we perform Dijkstra’s shortest path algorithm62 for all
pairs of states within the sources and sinks list, using edge
weights equal to the branching probabilities in the original

Fig. 5 Partial graph transformation of the model landscape shown in Fig. 1. We retain state B and all its neighbours, which explicitly includes the sink A,
and at least one state from each kinetic trap. (a) Disconnectivity graph for the reduced network, computed as described in Section IV. (b) and (c) Network
visualisations showing connections between states, using Gephi,65 for the full and reduced networks, respectively. As states are removed their
neighbours gain self-transitions. The colour scheme is the same as in Fig. 4. (d) The first passage time distributions for A  B for the full (solid grey) and
the reduced (dashed dark blue) network are essentially identical.
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network, �ln Bij.
63,64 This analysis is equivalent to finding the

path that makes the largest contribution to the rate constant
when intervening minima are placed in steady state, in other
words, the fastest path in the steady state regime.19 Using a
straightforward depth-first algorithm we then calculate the mini-
mum number of steps (via transition states) for every minimum to
the minima in the fastest paths, with separate lists for the number
of steps to the path endpoints, and to the full path. To study the
convergence of the FPT as more minima are retained, states can
be systematically added for an increasing number of steps (see the
ESI,† for figures illustrating convergence).

Keeping minima on the fastest paths helps to preserve
shorter time peaks in the FPT distribution, but retaining only
these minima is insufficient. Retaining minima surrounding
the fastest paths helps to protect them from the effects of GT
and includes more routes for the flow of probability. Removal
of a node via GT increases the waiting time for all directly
connected nodes. If adjacent minima to the fastest paths are
not retained then, as more minima are removed, the time taken
to traverse the fastest path will increase.

To demonstrate the power of pGT, we revisit the nine
community network presented in ref. 30, for which the dis-
connectivity graph is shown in Fig. 6. Instead of looking at

transitions between metastable communities, we compute the
FPT distribution between a high energy minimum and one of
minima at the bottom of a basin (Fig. 7). When only the minima
at the bottom of the nine trapping basins, plus the source
minimum are retained, only the long time peaks in the FPT
distribution are preserved. To maintain the full FPT distribution
under pGT, we compute the fastest path between the source and
the sink, which are labelled B and A in Fig. 6, respectively. We
then additionally retain the fastest path and its first and second
neighbouring minima, to produce a reduced network of 84
states, which is shown in blue in Fig. 6. The FPT distributions
computed from the full 994 state network and the pGT reduced
84 state network match, which shows that we can reduce the size
of a network by an order of magnitude, and still preserve the full
FPT distribution. As for the previous model landscape, we work
in reduced units. All these calculations correspond to T = 1,
where eigendecomposition is tractable on the full 994 state
network.

As well as reducing the network size, partial graph transfor-
mation can decrease the number of eigenmodes that contribute
significantly to the first passage time distribution. The five
eigenvalues smallest in magnitude agree to three significant
figures for the full and reduced networks in Fig. 6. The slowest

Fig. 6 Disconnectivity graphs36,37 for a model energy landscape consisting of nine traps.30 The scale bar corresponds to five energy units and the source
and sink states A and B are marked. (a) Graph for the full system. The states that are on the fastest path between A and B and first and second
neighbouring minima surrounding the fastest path, are marked in blue. (b) Graph for the pGT reduced system, computed using the method described in
Section IV. We retain the global minimum of each trap, and all the states marked in blue in (a).

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
N

ov
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

0/
31

/2
02

5 
8:

30
:2

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/D3CP04199A


1648 |  Phys. Chem. Chem. Phys., 2024, 26, 1640–1657 This journal is © the Owner Societies 2024

peak can be approximated by the eigenmode with the smallest
magnitude eigenvalue, and the slowest two peaks can be
reproduced from the modes corresponding to the five smallest
magnitude eigenvalues. To reproduce the full distribution, the
summation over eigenmodes in eqn (4) must include the 40
eigenmodes with the largest |A‘| values for the full network,
compared to just 28 modes for the pGT reduced network.
Alternatively, if we sum over the modes in order of decreasing
magnitude for l‘, 234 terms are required to reproduce the
distribution for the full network, and only 39 modes for the
pGT reduced system. (see ESI,† for more information).

B. Results for an atomic cluster: LJ38

Our third example is the atomic cluster of 38 atoms bound by the
Lennard-Jones potential (LJ38),66 which has become a standard
benchmark for enhanced sampling methods.40,67–81 This system
exhibits a double-funnel energy landscape37,40,41,72,82 caused by
competition between the global potential energy minimum, a
truncated octahedron (Oh symmetry), and an incomplete Mackay
icosahedron (C5v symmetry), which is the second lowest mini-
mum. The barrier between these structures is large at the
temperature where they are in equilibrium, leading to broken
ergodicity and a low temperature heat capacity feature. These
thermodynamic signatures have been investigated extensively in
previous work. Analysis of the kinetics provides a complemen-
tary viewpoint, where the double-funnel landscape is associated
with multiple relaxation time scales.72

Here we considered a database with 71 887 minima in the
connected component of interest, and 123 561 transition states,
which is available for download from the Cambridge Landscape
Database.83 As in previous work, five low energy minima from
the Oh funnel and 395 minima from the C5v funnel are chosen
for the A and B states. Results corresponding to these sets are
colour-coded red A and blue B, respectively, in the figures.

Our objective was to reduce the number of minima in the
database using graph transformation as far as possible, while
preserving the full first passage time distribution to a good
approximation. We chose to run this part of the analysis at

kBT=E ¼ 0:14, which is somewhat higher than the equilibrium
temperature for the Oh and C5v sets, but still low enough for
broken ergodicity effects and separate relaxation time scales to
be clearly manifested. At this temperature it is feasible to
calculate converged first passage time distributions using a
leapfrog kinetic Monte Carlo scheme6 and 200 000 trajectories.
We additionally ran 400 000 trajectories for the first passage
time to B, and found that the distribution did not change.
Standard kinetic Monte Carlo runs are feasible for the reduced
network described below, and give very similar results for the
first passage time distributions in each case, providing a
further consistency check.

We investigate the FPT for relaxation from a high energy
minimum to both the A and B sets. We compute the shortest
(fastest) path, as defined in Section IVA, between all pairs of the
lowest minima in A and B and the starting minimum at
kBT=E ¼ 0:14, producing a set of pathway minima, C. We then
find the distance in terms of the shortest discrete path from
every other minimum to C and separately, the distance to the
combined set of the lowest minima in A, B and the starting
minimum. We retain the 2500 states with the highest equilibrium
occupation probabilities from the combined first- and second-
neighbour set, from the latter definition, as well as every minimum
in C itself. The branching probabilities employed in the fastest path
calculation are temperature dependent, and we analysed the effect
of changing the temperature from kBT=E ¼ 0:14. The retained
states do not change very much over a wide range of T, and the
effect on the calculated FPT is negligible (see ESI†). The results for
this database of 2506 states are shown in Fig. 8, with the corres-
ponding free energy disconnectivity graph in Fig. 9. The FPT results
for the renormalised database can be converged even closer to the
KMC results shown in Fig. 8 if more states are retained in the
renormalised database (ESI†). Using the properties of the left and
right eigenvectors of the transition matrix QS , as described in the
previous section, we can now assign the peaks in this first passage
time distribution and understand their heights.

Analysis of wR
‘ provides further insight into the first passage

time distribution and global dynamics of the LJ38 cluster.

Fig. 7 First passage time distributions for relaxation from B toA (left) andA to B (right), of the nine community network at T = 1.0, as shown in Fig. 6. The
distributions are computed using eigendecomposition for the full network with 994 minima (thick grey line), and two different partial GT reduced
networks consisting of, 10 states including the nine trap global minima and state B (thin light blue line), and a network of 84 states that additionally
contains the states on the fastest path between A and B and the first and second neighbouring minima surrounding the fastest path (dashed blue line).
Only the minima at the bottom of the traps are required to retain long time behaviour, whilst minima on and around the fastest path help pick out the
short time peaks.
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In this case, we find that the peaks in Fig. 8 corresponding to
the slow relaxation time scale can be assigned to a single
eigenvalue of the transition matrix QS , and the components
of the corresponding eigenvector are strongly localised on low-
lying minima at the bottom of the competing funnel that acts
as a kinetic trap. In fact, there are eigenvalues corresponding to
slower relaxation times that do not produce features in Pðln yÞ,
as we noted before.42 These eigenvalues correspond to minima
that are almost disconnected from the rest of the network
because they are separated by very high barriers. For most
initial probability distributions wL

‘ PSð0Þ is too small to produce
a significant feature in Pðln yÞ for these modes. The right
eigenvector is localised on the corresponding dead-end mini-
mum (or minima), providing a straightforward interpretation.

In contrast to the simple model landscape shown in Fig. 1,
the Pðln yÞ peaks corresponding to the faster relaxation time
scales in Fig. 8 do not correspond to a single eigenvalue of QS .
For relaxation to the fcc structure A the fast peak at around
ln y = 3 is a result of contributions from 13 eigenmodes with
|A‘/e| 4 0.01. For relaxation to the B states the largest peak
around ln y = 0.6 results from two eigenvalues with A‘/e values
of 0.243 and � 0.154. The shoulder peak around ln y = 4 results
from 45 modes with |A‘/e| 4 0.01, again including positive and
negative contributions. The decomposition of the faster relaxa-
tion peak as a superposition results from the denser spectrum
of eigenvalues for the transition matrix compared to the
slow relaxation. We expect to see a similar effect in molecular
and condensed matter systems if a slow relaxation time scale
is associated with a well-defined rate-determining step,
while faster relaxation can occur via a number of alternative
pathways.

As we have found before, whilst full eigendecomposition of the
transition matrix provides over 2000 eigenvalues, only a small
number of them contribute significantly to the first passage time
distribution. The distribution for relaxation to B can be repro-
duced from eqn (4) by summing over only the 200 eigenvalues
with the largest |A‘| values. In contrast, if we sum over the modes
in order of decreasing magnitude for l‘, we require 1934 terms to
reproduce the FPT distribution (see ESI†).

This scan over sources following state reduction with partial
GT provides an automated analysis of the dependence on initial
conditions, which can then be used for further analysis and
to suggest experiments that will highlight multiple relaxation
time scales.

Some examples are shown for the LJ38 cluster in Fig. 10.
Pðln yÞ is illustrated for four sources that produce multiple
peaks, including the source that was used for the analysis in
Section IVB. Identifying initial conditions that produce the
most interesting structure in the first passage time distribu-
tion, coupled with assignments based on the right eigenvector,
has enabled us to analyse kinetic transition networks for a wide
variety of systems. Some further examples are presented below.
New studies, ranging from proteins and nucleic acids the
photosystem II light-harvesting supercomplex, will be pre-
sented elsewhere.

V. Accessing longer time scales I: peak
fitting

Reducing the network using partial graph transformation
enables us to use a full eigendecomposition approach for the
FPT distribution. However, at sufficiently low temperature this
approach inevitably fails because the problem becomes increas-
ingly ill-conditioned.24 The formulation of Pðln yÞ in eqn (4)
suggests that we might be able to predict the distribution at lower
temperature by fitting the l‘ and A‘ as a function of temperature
for the regime where eigendecomposition is tractable.

For the model landscape in Fig. 1 accurate fits can be
obtained with an Arrhenius form for l‘ and a simple polyno-
mial for A‘ (see ESI†). However, for the more realistic case of the
LJ38 cluster fitting to the individual eigenmodes is problematic,
because the spectrum of l‘ is far more dense, especially for the
faster relaxations. However, we have found an alternative
approach that works well. For a temperature range where the
number of peaks in the FPT distribution is constant, we treat
each peak position and height as if they were the result of a
single eigenmode a with effective values of �ln la and Aa/e.

Fig. 8 First passage time distributions for relaxation to the A and B (right) states of the LJ38 cluster at kBT=E ¼ 0:14 where e is the pair well depth. The
initial probability distribution corresponds to a single higher energy minimum, selected to highlight the separation of relaxation time scales. The
histogram corresponds to 200 000 kinetic Monte Carlo trajectories run for the full database with 71 887 connected minima using the leapfrog algorithm.6

The solid curves were calculated using the eigendecomposition formulation in eqn (4) for a database of 2506 minima resulting from partial graph
transformation, as described in the text.
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These effective amplitudes and eigenvalues provide good approx-
imations to the true peaks, particularly when the range of
eigenvalues contributing to a given peak is small. To test the
procedure we compare the reference FPT distribution with the
full fit using all temperatures, and for fits where the data is
divided into two parts to produce high and low temperature fits.
The performance of the high temperature fit at low temperature
is the main point of interest, and some example results are
shown for LJ38 in Fig. 11. Eigendecomposition was performed at
regular temperature increments of 0.001 in reduced units, in the
range from 0.1 to 0.15. The fitted distributions are shown for
four temperatures, and indicate that the true distributions can
be reproduced with useful accuracy.

VI. Accessing longer time scales II:
a hybrid scheme

As in previous work, we compared the performance of eigen-
decomposition using LAPACK routines84 DSYEVR and DGEEV
for symmetrised and unsymmetrical matrix formulations,
along with the Implicitly Restarted Lanczos Method implemen-
tation in ARPACK.85 The symmetrised rate matrix is obtained
by a standard similarity transformation, which is applicable
under the detailed balance conditions that apply in all our
formulations. The symmetrised formulation did not prove to be
significantly more stable. For example, the lowest temperatures
at which eigendecomposition for the model landscape shown
in Fig. 1, produces first passage times that agree with the MFPT
generated from GT are: T = 0.93 for DGEEV, T = 0.89 for
DSYEVR, T = 0.92 for ARPACK using mode 1 of DSAUPD and
T = 0.87 for ARPACK using mode 3 of DSAUPD and with
DGETRF for LU decomposition and DGETRI for inverse com-
putation. After pGT, FPTs can be computed at slightly lower
temperatures, and DGEEV works down to T = 0.80. Here we
define the FPT to agree with GT if

lnðT EÞ � lnðT GTÞ
lnðT GTÞ

				
				o 0:01 and

0:99o
X
l‘4 0

A‘o 1:01;
(16)

where T E and T GT are the MFPTs computed using eigenvalue
methods and GT, respectively. We were able to reach lower
temperatures using ARPACK routines, but the eigenvalues
corresponding to the slowest relaxations also became unreli-
able as the temperature decreased. In contrast, the eigenvalues
and eigenvectors associated with the faster relaxations
remained accurate, particularly for LAPACK, even at relatively
low temperatures. We can therefore combine the eigendecom-
position results for the faster relaxations with the accurate

Fig. 9 Disconnectivity graph36,37 for the LJ38 database renormalised
down to 2506 states, which produces the Pðln yÞ distributions in Fig. 8.
The free energies of the minima and transition states are defined to
reproduce the equilibrium occupation probabilities and rates for the net-
work that results after partial graph transformation at kBT=E ¼ 0:14, defined
in eqn (15). Branches corresponding to minima in the original A and B sets
are coloured red and blue, respectively. The source state for the FPT
calculations is a higher energy minimum; its position in the graph is
marked with a magenta arrow.

Fig. 10 First passage time distributions for relaxation to the B state of the
LJ38 cluster at kBT=E ¼ 0:14 for initial probability distributions localised in
four different minima, as labelled in the legend. The selected minima were
chosen to highlight structure in the Pðln yÞ distribution. Starting minimum
604 corresponds to the results in Fig. 8.
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mean first passage time from graph transformation to produce
a hybrid scheme.

The different eigendecomposition routines performed simi-
lary for the LJ38 network, and, with the exception of mode 3
DSAUPD, produced accurate FPT distributions down to around
T = 0.07. Mode 3 does not reproduce the short time peaks
properly unless T 4 0.1, and the computation for the slowest
mode fails at a similar temperature to the other routines. The
lowest temperatures we could reach with the other routines for
LJ38 were:

A  B: DGEEV 0:079; DSYEVR 0:083;

DSAUPD mode 1 0:069

B  A: DGEEV 0:070; DSYEVR 0:080;

DSAUPD mode 1 0:067

We are grateful to a referee for suggesting alternative
eigendecomposition approaches based on Krylov subspace
iteration, which might be combined with hybrid schemes in
future work. A related hybrid method, employing Krylov projec-
tion for the slowest relaxation time and some faster relaxation
modes, has recently been used to analyse vacancy kinetics in
aluminum.86 The numerical stability was sufficient to access
the largest (numerically smallest) eigenvalue for relevant tem-
peratures in that work, potentially providing another way to
reach longer time scales for our applications. The assignments
and dependence of first passage time peaks on initial

conditions might also be connected with the Krylov projection,
and we will explore these possibilities in the future.

If the eigenvalues and eigenvectors are trustworthy
up to mode a, in order of increasing time scale, then the
remaining amplitude in the first passage time distribution is

A� ¼ 1�
Pa
‘¼1

A‘. Assuming that the distribution has one miss-

ing peak at long time, we can calculate an effective value for a
missing eigenvalue, l*, that gives a mean first passage time in
agreement with the graph transformation result, T GT:

A�
l�
¼ T GT �

Xa
‘¼1

A‘

l‘
: (17)

We find that this approach works very well for all the landscapes
we have tested; some representative results are presented in this
section for the first model landscape in Fig. 1 and the LJ38 cluster.
To check the accuracy of the FPT in the regime where the
eigenvalues corresponding to the slowest relaxations are incorrect,
we first compare the FPTs computed for the simple model land-
scape, at temperatures where eigendecomposition fails on the full
network, but remains tractable for the pGT reduced network. The
distributions computed using the hybrid method on the full
network, and standard eigenvalue methods on the pGT reduced
network are indistinguishable (Fig. 12).

For LJ38 we compare the hybrid scheme with the peak fitting
approach of Section V. The results in Fig. 13 are for
kBT=E ¼ 0:08, and illustrate the good agreement between the
two methods in terms of both peak positions and heights. Here,

Fig. 11 First passage time distributions for the LJ38 database for relaxation to the B state renormalised down to 2506 states at kBT=E values of (a) 0.10, (b) 0.12, (c)
0.13, and (d) 0.14. The starting state is the same as for Fig. 8. There are four plots in each panel, showing the full eigendecomposition results (full black), fits to the full
temperature range (long orange dashed), fits to the high temperature range (green dashed) and fits to the low temperature range (blue dashed), as described in the text.
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the peak fitting employed temperatures from kBT=E ¼ 0:15 to
0.1 at intervals of 0.001. This shows that incorrect computation
of eigenmodes with the smallest magnitude eigenvalues, does
not mean that all eigenmodes are incorrect. We also verified
that the hybrid scheme produced consistent results for cutoffs
in la ranging over several orders of magnitude, so long as the
cutoff is not too small.

Fig. 14 shows results for LJ38 with the hybrid scheme for
kBT=E ¼ 0:15 to 0.06 at intervals of 0.01. The systematic varia-
tion in the FPT is consistent for a wide range of eigenvalue
cutoff thresholds. These results cover time scales for the slow
relaxation that vary by over 20 orders of magnitude. Plotting the
slow peak position or �ln l* versus 1/T produces straight line
plots for relaxation to both A and B (see ESI†), which shows
how these kinetics manifest an apparently simple Arrhenius
temperature dependence. The peak position corresponding to
the faster relaxation is much less sensitive to temperature,

because it corresponds to a lower effective energy barrier. In
fact, this peak results from a superposition of contributions
from a number of different eigenmodes, and we would not
necessarily expect the temperature dependence to be
Arrhenius.

Approximating the missing amplitude by a single effective
mode should produce an accurate representation of the FPT if
the long time kinetics is dominated by one slow process.
Otherwise we will have a single long time peak that simply
reproduces the MFPT by construction. We can check whether a
large spectral gap opens up between the two slowest relaxations
as the temperature decreases in the range where full eigende-
composition is possible. The systematic variation of the slow
peak position in Fig. 14 provides a direct visual report on this
spectral gap condition.

Some networks support modes that do not produce detect-
able peaks in the FPT (Section IIIA); the corresponding

Fig. 12 First passage time distributions for the model landscape shown in Fig. 1. At the lower temperatures considered here, standard eigendecomposition
for the full network breaks down. The amplitude of the first peak in Fig. 2 becomes very small, and we focus on the three peaks corresponding to the slower
relaxation modes. Left: Comparison of standard eigendecomposition for the pGT reduced network with the hybrid method applied to the full network. The
plots are for the hybrid method at T = 0.85 (solid grey) and T = 0.80 (solid light blue), and eigendecomposition T = 0.85 (dashed dark blue) and T = 0.80
(dashed blue). Right: The distributions change smoothly with temperature: T = 0.84 (grey) T = 0.80 (light blue), T = 0.76 (blue) and T = 0.72 (dark blue).

Fig. 13 First passage time distributions for the LJ38 database renormalised down to 2506 states comparing the hybrid scheme (Section VI solid red
curves) with fits to higher temperature results (Section V dashed blue curves). (a) and (b) Are for relaxation to the A and B states; the starting state is the
same as for Fig. 8. For these examples kBT=E ¼ 0:08, in the regime where eigendecomposition begins to produce positive eigenvalues for the modes that
don’t significantly contribute to the FPT, and below the temperature where the truncated octahedral (A) and incomplete icosahedral (B) morphologies
are in equilibrium, which is around kBT=E ¼ 0:1.
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amplitudes are negligible for initial conditions of interest.
Hence the relevant spectral gap may correspond to the slowest
two modes that result in resolvable peaks. We note that it may
still be possible to define a quasi-stationary distribution87,88

(QSD) if this gap is large enough, and the projection of the
initial condition onto slower modes is sufficiently small. The
QSD is defined as the occupation probability distribution in
the long time limit conditional on not being adsorbed in the
product states.87,88 Usually, this distribution is proportional to
wR

1. However, for some sources and sinks, the MFPT is signifi-
cantly smaller than the mixing time for the full network, if we

define this quantity as
P
‘

l�1‘ (the Kemeny constant89–91). If

there are slow modes with negligible projection onto the initial
conditions then a QSD may still exist on practical experimental
time scales, but proportional to the right eigenvector for the
slowest visible relaxation mode. This effective QSD will then
correspond to the slowest resolvable peak in the FPT distribution.

The hybrid approach seems particularly attractive, since it
does not involve fitting, and it should work for distributions
that feature a well separated slow relaxation time scale, where
choosing a suitable cutoff for the eigenvalues is straightfor-
ward. Such distributions are likely to be typical for systems
featuring rare event dynamics and competing structures, with a
wide variety of potential applications in biophysics and materi-
als science.86

VII. CD4 receptor peptide

To test the hybrid scheme for a challenging example corresponding
to an important biomolecule we consider the disordered CD4
peptide, PDB code 2KLU,93 which has a multifunnel landscape.92

This peptide corresponds to residues 402–419 in the membrane-
proximal region of the cytoplasmic tail of human cluster of
differentiation 4 (CD4), and is implicated in HIV-1 infection.94–97

Circular dichroism and NMR experiments suggested a-helical
structure,98 which is consistent with binding of HIV-1 viral proteins

Nef (negative factor) and Vpu (viral protein U).96,99–102 Previous
simulations indicated a relatively flat free energy landscape.103

For the FPT analysis we used an existing kinetic transition
network created using discrete path sampling;19,20 for full
details of this database we refer readers to the original
report.92 The potential employed for this particular database
was the properly symmetrised104 AMBER ff99SB-ILDN force
field,105 with implicit solvent GB-Neck2,106 which produced the
best agreement with experiment.92 Similar multifunnel land-
scapes, featuring a variety of low energy structures with variable
a-helix content, were obtained with alternative potentials.92

We surveyed the FPT distributions for different choices of
target product state and source state. The distributions can
exhibit multiple relaxation times, with peaks at ln(y/s) values
ranging between around �27 to 12. Fig. 16 shows one specific
example corresponding to the source and target states highlighted
in the landscapes illustrated in Fig. 15. Here we constructed the
list of retained minima by calculating the Dijkstra fastest path
between source and sink, again using edge weights that depend
on branching probabilities, as described in Section IVA. We found
that the two main peaks appeared converged when minima on
this path and up to two steps away (in terms of connections via
transition states) were included. The smaller peak at longer time
appeared when one more minimum was added, corresponding to
a possible trap connected to the same funnel as the source, giving
a renormalised database of 234 states.

To assess the convergence of the FPT we compared with
systematically larger sets of retained minima obtained from the
fastest paths between the nine potential energy funnel bottoms
in Fig. 15. Here we used the minima on the fastest paths, then
added minima one step away, two steps away, etc. The FPT was
identical to the result obtained for the smaller set for 3500
minima and above, at which point all members of the smaller
set were included.

For this relatively complex multifunnel landscape we find
that the FPT distribution depends strongly on the choice of
initial and final states. Hence it would be essential to know
what these end points are for a given experiment in order to

Fig. 14 First passage time distributions for the LJ38 database renormalised down to 2506 states calculated with the hybrid scheme described in Section
VI. (a) and (b) are for relaxation to the A and B states; the starting state is the same as for Fig. 8. In each case the kBT=E values range from 0.15 to 0.04 in
steps of 0.01, and the peak corresponding to the slow relaxation (trapping) steadily shifts to larger values of ln y.
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make a proper comparison. If the experiment can probe alter-
native end points then it would be possible to build up a picture of

the global landscape in a systematic fashion. For CD4 we have
found combinations that produce up to three well-defined peaks
in the FPT distribution. Although the spectrum of relaxation times
defined by the eigenvalues l‘ is not affected by the source state,
the amplitudes in the FPT depend on the corresponding compo-
nent of the left eigenvector. Only a few of these amplitudes are
likely to be resolvable for a particular source, but in principle it is
possible to probe the whole spectrum if the initial state can be
controlled. Theory could play an important role in designing and
interpreting such experiments in the future. For example, under-
standing the subtle differences between alternative low-lying
minima, and how these structures interconvert, could be helpful
in drug design efforts that mimic the interaction of the cytoplas-
mic tail of CD4 with HIV-1 accessory proteins.107,108

VIII. Conclusions

Our key objective in this work is to calculate and understand
first passage time distributions for energy landscapes that
support multiple relaxation time scales. In the present con-
tribution we first considered partial graph transformation30 for
reducing the dimension of a kinetic transition network while

Fig. 15 Disconnectivity graphs for the CD4 receptor peptide. Left: Original potential energy graph92 with the secondary structure of selected low energy minima
illustrated. Right: the free energy graph for a renormalised landscape at 302 K containing 3580 selected minima. The FPT calculations considered relaxation to a
low-lying helical minimum indicated in the graphs with a magenta arrow. The source state above it is highlighted with an arrow of the same color.

Fig. 16 First passage time distribution at 302 K for the CD4 database
renormalised down to 234 states calculated with the hybrid scheme
described in Section VI. These results correspond to the free energy
disconnectivity graph in Fig. 15. y is the first passage time in seconds.
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preserving the full first passage time distribution, p(y), as far as
possible. The renormalised network can be visualised using
free energy disconnectivity graphs, which reproduce the sta-
tionary distribution and rates. Eigendecomposition can be
applied to solve the master equation for the kinetics and
calculate the full first passage time distribution. The peaks in
this distribution, expressed as a function of ln y, can be
investigated in terms of right eigenvectors of the rate matrix,
QS , and assigned to distinct features of the energy landscape in
favourable cases. The number of peaks in Pðln yÞ can be
scanned systematically for all the possible source states in the
network using the left eigenvectors of QS , which highlights
starting conditions that are predicted to reveal the competing
relaxation time scales.

Landscapes featuring rare events and multiple time scales
are particularly interesting, partly because of potential applications,
such as molecular switches and multifunctional materials.
However, the eigendecomposition approach suffers from
numerical problems for such systems, preventing access to
the longest relaxation time, which may be the most important
property. We have presented two approaches to tackle this
problem. The first uses a fit to the peaks of Pðln yÞ calculated
in the tractable temperature range. The second approach is a
hybrid scheme, which combines eigendecomposition for faster
relaxations with graph transformation for the mean first pas-
sage time. The two methods give consistent results for time
scales that are beyond the reach of eigendecomposition. The
hybrid scheme is particularly attractive, requiring only a choice
for a time scale that lies between the slowest relaxation mode
and the faster modes. This approach is now being applied to
existing kinetic transition networks to extract new insight into
the competing pathways. The kinetic information associated
with alternative paths is averaged out when a single rate is
associated with the mean first passage time. However, we now
have a powerful tool to investigate competing pathways, which
may be useful in future projects to understand and design new
molecules and materials with target properties that depend
upon their dynamical response.

Multifunnel landscapes may also exhibit thermodynamic
signatures of broken ergodicity, especially low temperature
peaks in the heat capacity.40,67,71,73–78,80,81 These features can
be associated with specific sets of local minima,109 where
transitions occur between alternative structures. Analysing the
FPT provides a complementary approach to probe the structure
of the landscape based on kinetics. Combining these thermo-
dynamic and kinetic perspectives will enable us to understand
and predict molecular properties at a fundamental level,
resolved in terms of the locally stable structures and the path-
ways that connect them.
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