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Numerical simulations are frequently utilized to investigate and optimize the complex and hardly in situ

examinable Physical Vapor Transport (PVT) method for SiC single crystal growth. Since various process and

quality-related aspects, including growth rate and defect formation, are strongly influenced by the thermal

field, accurately incorporating temperature-influencing factors is essential for developing a reliable

simulation model. Particularly, the physical material properties of the furnace components are critical, yet

they are often poorly characterized or even unknown. Furthermore, these properties can be different for

each furnace run due to production-related variations, degradation at high process temperatures and

exposure to SiC gas species. To address this issue, the present study introduces a framework for efficient

investigation and calibration of the material properties of the PVT simulation by leveraging machine

learning algorithms to create a surrogate model, able to substitute the computationally expensive

simulation. The applied framework includes active learning, sensitivity analysis, material parameter

calibration, and uncertainty analysis.

1 Introduction

The use of wide bandgap semiconductor materials is highly
promising in the next generation of high-power electronic
devices, making them especially important for the electronic
industry.1,2 Of particular interest is silicon carbide (SiC), due to
its exceptional chemical and physical properties such as
chemical inertness, high breakdown electrical field strength,
high thermal conductivity, and high electron saturation
velocity.3,4 Unlike silicon (Si), the most commonly used growth
technique for SiC single crystals is based on sublimation. This
is attributed to the incongruent melting of stoichiometric SiC at
ambient pressure resulting in solid carbon (C) and a Si-rich
solution containing around 13 at% C.5 In response to this issue,
Lely6 developed in the year 1955 a self-seeded vapor growth
method, known today as the Lely process. Twenty-three years
later, Tairov and Tsvetkov7 invented the physical vapor transport
(PVT) method, also known as the modified Lely method or
seeded sublimation growth, which reduces the uncontrolled

nucleation of crystals present in the Lely process by placing a
SiC seed crystal at the top of the reactor. In this process, SiC
powder sublimates at temperatures around 2300–2400 °C and
low pressures. The different SiC gas species are transported
upwards through an inert gas atmosphere and recrystallize on
the somewhat cooler SiC seed crystal. These process conditions,
together with the growth system representing a quasi-closed
reactor, make it challenging to acquire experimental data and
typically limit experimental observations to temperature
measurements with pyrometers at merely two locations.8

Therefore, limited knowledge of the actual process conditions
remains a significant limiting factor for the up-scaling of SiC
crystals to larger diameters.9

To improve process knowledge while circumventing large
amounts of time-consuming and expensive experimental trials,
numerical crystal growth simulations are frequently utilized.
Reliable numerical models not only facilitate the production of
high-quality crystals and high output and resource-saving
processes, but they can also aid in optimizing growth
conditions or scaling the process appropriately. However,
precise models must consider complex coupled physics
phenomena, accurately representing the key aspects of the
growth environment without oversimplification. Simulations
aim to understand and tailor SiC crystal growth conditions on
different scales, ranging from simulations of complete crystal
growth runs (macro simulations) to the arrangement of
individual atoms and molecules at the crystal growth interface
(mesoscale to atomistic simulations).10,11 Macro simulations

6322 | CrystEngComm, 2024, 26, 6322–6335 This journal is © The Royal Society of Chemistry 2024

a Christian Doppler Laboratory of Advanced Computational Design of Crystal

Growth, Department of Materials Science, Montanuniversität Leoben, 8700 Leoben,

Austria. E-mail: lorenz.taucher@unileoben.ac.at, lorenz.romanerunileoben.ac.at
b EEMCO GmbH, Ebner-Platz 1, 4060 Leonding, Austria
c Chair for Information Technology, Montanuniversität Leoben, 8700 Leoben,

Austria

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d4ce00866a

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

25
 5

:5
5:

26
 P

M
. 

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ce00866a&domain=pdf&date_stamp=2024-11-08
http://orcid.org/0009-0000-3801-3374
http://orcid.org/0000-0001-8385-9635
https://doi.org/10.1039/d4ce00866a
https://doi.org/10.1039/d4ce00866a
https://doi.org/10.1039/d4ce00866a
https://pubs.rsc.org/en/journals/journal/CE
https://pubs.rsc.org/en/journals/journal/CE?issueid=CE026044


CrystEngComm, 2024, 26, 6322–6335 | 6323This journal is © The Royal Society of Chemistry 2024

have implemented multi-physics simulation frameworks
covering inductive heating, heat transport, mass transport,
linear elasticity and plasticity models to understand and control
the influence of process parameters and used materials on
quality metrics, such as defect densities, of the grown
crystal.12–17

The thermal field, i.e. the temperature distribution, inside
the reactor is the first key parameter to be described accurately
in simulations as it determines subsequent properties and
processes.18 Temperature gradients control the mass transport
from the source to the seed, defining the crystal growth rate in
the diffusion-limited growth mode in an inert gas
atmosphere.5,19 The temperature at the seed crystal governs
supersaturation and gas–surface reaction rates. Furthermore,
the formation of point defects is strongly influenced by the
growth rate and the absolute growth temperature. Temperature
gradients, in general, and especially radial temperature
gradients, determine thermo-elastic stresses in the crystal
resulting in defect formation like dislocations, polytypes or
micropipes.20,21 The thermal field is controlled by several
factors, which need to be incorporated precisely in the
simulations. The factors include the design of the PVT reactor,
the process control parameters such as heating power, coil
position and pressure and, last but not least, the physical
properties of the materials used in the reactor.22

Nowadays, machine learning (ML) models can be used to
substitute or supplement computer simulations and to enhance
process optimization. Providing results many orders of
magnitude faster is a common benefit over solely using
numerical calculations. Even though the simulation output is not
reproduced perfectly, the accuracy of those models is generally
sufficiently high. This has the advantage that the design space
can be investigated thoroughly, shedding light on sensitivities of
the output and dependencies between inputs. Many ML models,
above all neural networks (NNs), have been successfully applied
to a variety of tasks for crystal growth simulations. These tasks
included tailoring growth conditions by optimizing process
parameters or geometrical design as well as using reinforcement
learning (RL) algorithms for optimal process control or
forecasting the crystal quality regarding dislocation density.23–28

Further applications can be found in ref. 29.
Owing to their fast predictions and satisfactory accuracy, ML

models are also employed for parameter calibration in
combination with classical calibration algorithms. Kennedy and
O'Hagan30 and Hidgon et al.31 demonstrated this by replacing
the computer simulation with a ML model and, furthermore, by
additionally modeling the discrepancy between the simulation
and the real system. Calibration of finite element simulations to
experiments has been demonstrated recently e.g. to extract
elastic and plastic material parameters from indentation
experiments and to estimate the parameters of the Johnson–
Cook and Zerilli–Armstrong models.32–34 Although this is a
quite different application from the one investigated here, the
methodological requirements share similar aspects.

In the present approach, ML, specifically Gaussian process
regression (GPR), is used to predict the temperature of a FEM-

based PVT simulation. To keep the amount of necessary
simulations, and therefore the computational effort, low, an
active learning (AL) algorithm is utilized. Subsequently, the ML
models were used for sensitivity analysis, the calibration of
material parameters and uncertainty analysis. Material
parameter calibration is of great relevance for the operation of
PVT furnaces. Essential physical material properties for accurate
thermal field modeling are the emissivities and the electrical
and thermal conductivities of the different components of the
PVT reactor, especially graphite-based materials such as the
crucible and the insulation. Unfortunately, precise material data
for the PVT temperature regime are often not available.20,35

Even when data are available, their usefulness is limited by
deviations caused by production-related material parameter
variations and material degradation. Our calibration approach
allows us to extract material parameters directly from the
furnace's operation data, enabling the calibration of individual
furnaces in crystal growth facilities, where numerous PVT
reactors are operated. Furthermore, it provides matching of all
process parameters to the observed temperature, which is
extremely tedious or even impossible to achieve in a manual
calibration approach. With this, our work paves the way to
efficient and sophisticated investigation and calibration of PVT
simulations for SiC crystal growth, opening up new possibilities
for crystal growth researchers and facilities.

2 Methodology
2.1 Experimental

Two separate experimental runs were conducted using the
same inductively heated PVT furnace. The trials were carried
out consecutively without powder using the same crucible.
Argon pressure and frequency, f, were fixed to 5 mbar and 7
kHz, respectively. Temperature measurements were taken at
the top and bottom measurement locations using pyrometers
(see Fig. 1), whereas solely the top pyrometer was used for
temperature-controlled process guidance. For both
measurements, an IMPAC ISR 6 Advanced pyrometer36 was
employed. The measurement uncertainty is 0.6% of the
measured value in °C for temperatures above 1500 °C. During
the runs, either the vertical coil position, z, was changed, or
the temperature at the top was set to a predefined value by
adjusting the coil power, P, accordingly. After any changes,
the process was held constant until a steady state was
reached, meaning the temperatures at the measurement
locations had converged. In the first experimental run that is
further used for material parameter calibration, P and z were
varied in the range of 5.80 to 9.90 kW and −30 to 35 mm,
respectively. During the second experimental trial, only two
different z values, −20 and 0 mm, were used, and P values
between 5.31 and 10.56 kW were measured. This run was
performed subsequently and served as test set for the calibrated
material parameters. The steady-state temperatures of the top,
Ttop, and bottom pyrometer, Tbottom, as well as the corresponding
P and z for the two experimental runs, are summarized in
Tables 4 and 5 in the appendix.
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2.2 Numerical modeling

Numerical simulations were conducted using the finite element
method (FEM) based software COMSOL Multiphysics. Due to
the rotational symmetry of the reactor, including the PVT
furnace chamber and the crucible with insulation, a 2D axis-
symmetry modeling approach was chosen. Fig. 1 illustrates the
main components of the model and a representative thermal
field. The growth reactor is enclosed by a double-wall water-
cooled quartz tube with steel covers on top and bottom. An
electromagnetic field is generated by a coil, inducing currents
in the electrically conductive parts of the furnace, particularly
the crucible, which heats the system inductively. To achieve
temperatures high enough for the sublimation of the SiC source
material, the crucible is surrounded by an insulation layer.

In COMSOL Multiphysics, induction heating is calculated by
solving the Maxwell equations. In principle, the generated heat
is transferred through conduction, convection and radiation.
However, convection was not included in the presented model,
as other studies have shown that it has no significant impact on
the thermal field.37,38 Since this study aims for the calibration
of the material parameters of the furnace components and the
experimental runs were conducted without SiC source material,
mass transport was excluded. Furthermore, only the steady-state
solution is computed, as only the stationary pyrometer
temperatures are extracted from the experimental run.
Explanations of the governing partial differential equations can
be found in ref. 20 and 39.

2.3 Machine learning

The applied framework combines the following aspects:

• Active Learning: the number of necessary training
examples required for machine learning is reduced.

• Machine Learning-assisted Sensitivity Analysis: the
impact of input variables on the temperature is identified
allowing us to select the most relevant parameters and to
discard the ones with negligible impact on calibration.

• Machine Learning-assisted Calibration: posterior
material parameter distributions rather than mere point
estimates are obtained by utilizing the Metropolis algorithm.

• Machine Learning-assisted Uncertainty Analysis:
parameter uncertainty is propagated to the entire thermal
field by drawing samples from the posterior distribution and
predicting the thermal field.

2.3.1 Inputs and target. Ten different parameters of the PVT
simulation were varied in a predefined range shown in Table 1.
These parameters further used as the inputs, x, for temperature
prediction with the ML model are divided into two groups, in
variable inputs, q, and calibration inputs, θ, i.e. x = [q, θ]. q
contains the experimentally controllable parameters, namely P,
z and f. All other inputs correspond to θ and are material
parameters. The “true values” of these parameters are unknown;
therefore, they are inferred by the calibration process.
Parameters chosen to be temperature independent are
represented with the actual physical values. These parameters
include the emissivity of the crucible (εc), the SiC seed crystal
(εSiC) and the steel cover (εsteel), along with the electrical
conductivity of the insulation (γins). All other calibration
parameters represent a multiplicative, temperature
independent, factor to a pre-selected temperature
dependency. They comprise the coefficient of the electrical
conductivity of the crucible (Cγ,c), as well as the coefficient of
the thermal conductivity of the insulation (Cλ,ins) and the
crucible (Cλ,c). The respective initial assumptions are included
in the appendix (see Table 6 and 7) and can be found in ref.
40–42, whereas the electrical conductivity of the crucible
corresponds to MERSEN Grade 2020. To better understand this
concept, consider the following example: in the simulation, the
relationship between the thermal conductivity of the insulation,
λins,initial(T), and the temperature, T, is implemented. This
temperature dependency is adjusted by a multiplicative factor,
Cλ,ins, used in the calibration procedure. Thus, this method
assumes that the actual temperature dependency, λins(T) =

Table 1 Ranges and units of simulation parameters used as inputs for
the ML model

Input Lower bound Upper bound Unit

P 5 11 kW
z −30 35 mm
f 6.5 7.5 kHz
εc 0.5 1.0 —
εSiC 0.8 0.95 —
εsteel 0.1 0.3 —
γins 400 1600 S m−1

Cγ,c 0.6 1.2 —
Cλ,ins 0.9 1.5 —
Cλ,c 0.6 1.4 —

Fig. 1 Thermal field (left) and key components (right) of the numerical
model of an inductively heated PVT furnace for SiC single crystal
growth.
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Cλ,ins·λins,initial(T), is off by a scaling factor, which is reasonable
given the material degradation at high process temperatures or
production related changes in material properties.

2.3.2 Gaussian process regression. To link the inputs to
target, we selected Gaussian process regression as the
supervised machine learning algorithm. GPR is particularly
suitable for our purpose since it naturally provides
uncertainty prediction that can be used in an active learning
procedure to generate the COMSOL data set in the most
efficient manner. Note that the COMSOL furnace calculation
represents the computationally most demanding task in our
computational approach. Other ML methods do not provide
the uncertainty as conveniently but require additional
measures such as bootstrapping. GPR can deal very well with
a limited amount of data when choosing the right kernel.
Attempts to train neural networks to the same dataset
resulted in higher prediction errors and were, thus, not
pursued further.

Gaussian processes (GPs) are non-parametric ML models,
where the targets are modeled as joint multivariate Gaussian
distribution.43 Therefore, a prediction from a GP not only
includes the expected target value, the mean, but also an
uncertainty estimate, the variance. Unlike the finite-dimensional
multivariate Gaussian distribution, a GP represents a
probability distribution over functions and can intuitively be
seen as an infinite-dimensional Gaussian distribution. Since a
GP deals with functions, it is specified by a mean function,
μ(x), and a covariance function, called the kernel, k(x, x′). k(x,
x′) is used to calculate the covariance matrix, K. Considering
the training data set of n noisy training examples {(xi, yi)}

n
i=1

= (X, y) where yi = f(xi) + ε with ε ∼ (0, σ2ε), and a test data
set with t examples {(x*i, y*i)}

t
i=1 = (X*, y*), the joint Gaussian

distribution for a GP is formulated as:

(1)

where μ = μ(X), μ* = μ(X*), K = K(X, X), K* = K(X, X*), and K**

= K(X*, X*). Through conditioning on y, X and X*, the
predictive distribution of the unknown test vector y* is
obtained (see eqn (2)).

(2)

The expectation value is the prediction of the ML model
while the conditioned covariance of the test target values,P

y* y;X;X*j , provides the uncertainty (squared standard

deviation 2) of the predictions in the diagonal. Prior
information about the target given the inputs can be
integrated into μ(x), representing the prior belief. In the
absence of prior knowledge, μ(x) is typically set to zero, as in
the present study. The kernel functions as a feature
transformation of the covariance matrix and serves as a

measure of similarity computed solely from the inputs.
Essentially, similar inputs tend to yield similar outputs. The
strength of correlation between points close in the design
space can be determined by the specific kernel chosen.
Therefore, the kernel acts as a hyperparameter of the
GP, defining the characteristics in the function space,
such as smoothness. For highly smooth functions, the
infinitely differentiable squared exponential kernel
(also known as the radial basis function (RBF) kernel
or Gaussian kernel) is commonly employed. This kernel
involves two hyperparameters, the signal standard deviation,
σf, which defines the output variation, and the length scale,
, which dictates the distance required to decorrelate two
points in input space, thereby establishing smoothness.
Given the expectation of smooth functions and the diverse
nature of inputs, a squared exponential-automatic relevance
determination (SE-ARD) kernel is utilized.

SE‐ARD x; x′ð Þ ¼ σ2f exp − 1
2

XD
d¼1

xd − x′d
� �2

2d

 ! !
(3)

is a combination of individual squared exponential kernels
defined on the different input dimensions, D, and hence one
length scale hyperparameter, d, per input dimension, d. For
better comparison of d, the inputs were normalized.
Appropriate hyperparameters ([1, 2, …, D, σf]) of the SE-
ARD kernel are found by Bayesian optimization. In this
method, starting at initial values for the hyperparameters,
they are optimized by maximizing the marginal log likelihood
in a gradient-based approach. As the marginal log likelihood
landscape is non-convex, it can only guarantee to land in a
local minimum. For the GPs, the implementation in the
MATLAB Statistics and Machine Learning Toolbox was
used.44

2.4 Active learning

Learning the response surface for the whole design space, χ,
often requires large amounts of training data points. To
reduce the necessary number to a minimum, an active
learning (AL) algorithm is applied.45 In AL, the learner,
represented by the GP, selects the data it trains on, i.e., the
training data points are not chosen all at once, but
sequentially taking the current training data set {(xi, yi)}

n
i=1

into account. This is done by maximizing a decision
criterion, called an acquisition function, that depends on the
output of the current GP. After the design point xn+1 is
determined, the computer simulation is conducted, or in ML
terminology, the true target yn+1 is queried. This active data
selection scheme is repeated until a termination criterion is
satisfied.

In the present study, active learning by Cohn (ALC)46 is
utilized as an acquisition function. ALC aims to maximize
the expected reduction in predictive variance, 2, averaged
over χ. This is achieved by the calculation of 2n in the design
space for the model trained on the first dataset, which is
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obtained with COMSOL. Then, new models are trained where
the predictive mean, ŷn+1, of an extra point xn+1 is added to
the dataset and the variances 2n∪x are evaluated. The point
giving the greatest reduction in variance is selected. Its
mathematical formulation is as follows:

xnþ1 ¼ arg max
x∈χ

ð
χ

bσ2
n x′ð Þ − bσ2

n∪x x′ð Þ� �
dx′ (4)

The integral over χ in practical applications is
approximated with the sum over Nref reference points with

xref;i
� �Nref

i¼1 .

xnþ1 ¼ arg max
x∈χ

1
Nref

XNref

i¼1

bσ2
n xref;i
� �

− bσ2
n∪x xref;i
� �� �

This acquisition function was preferred over active learning
by McKay47 which selects xn+1 as the design point with the
highest 2, due to the better distribution of design points in
ALC.48

To start the implemented AL workflow, an initial dataset
is sampled using Latin hypercube sampling (LHS), a
stratified sampling method that ensures a space-filling
design, followed by conducting simulations at these initial
design points.49 The initial dataset size was set to 30, which
is around 30% of the recommended rule of thumb n = 10d
for a reasonable amount of training examples in a one-shot
design, where n represents the number of training examples
and d is the number of input dimensions.50 Next, COMSOL
calculations are carried out and a GP is fitted to the top
measurement location in the PVT chamber for these initial

training data samples. These data are then utilized to
determine the suitable initial hyperparameter values for
gradient-based hyperparameter optimization through 10-fold
cross-validation. Following this, the active learning loop
proceeds for a predefined number of 120 iterations using the
ALC criterion as the acquisition function, resulting in a total
of 150 training examples. At each iteration, 1000 reference
points are sampled by LHS. Fig. 2 illustrates the AL scheme.
After AL, the performance of the ML models is evaluated with
40 LHS test samples. Note that while in the ML community,
this procedure is called AL, statisticians would call it
sequential Design of Experiment (DoE).51

2.5 ML-assisted material parameter calibration

Experimentally, Ttop and Tbottom are measured using
pyrometers. The GP for Ttop is automatically obtained
through the AL algorithm. Since the calibration should make
use of as much available data as possible, a second GP is
trained with the data gathered during AL to predict Tbottom.
Owing to the optimized global prediction ability of the ML
models, it is possible to entirely substitute the computer
simulation for the calibration of the material parameters of
the PVT furnace. In this study, calibration is performed using
the Metropolis algorithm, a Bayesian inference-based Markov
chain Monte Carlo (MCMC) method.53,54 The Metropolis
algorithm includes the following steps:

1. A calibration parameter set θ0 at some values was
initialized within the design space.

2. At iteration t with calibration parameters, θ t, a
candidate set, θ*, was generated from a symmetric proposal
distribution.

(5)

Fig. 2 Active learning scheme for the global optimization of the ML model. (1) Apply Latin hypercube sampling (LHS) to generate initial inputs and
run the simulation with those values. (2) Fit a Gaussian process for temperature prediction to the current training dataset. If a stopping criterion is
satisfied, the active learning routine stops. (3) If the stopping criterion is not met, evaluate an acquisition function to determine the next
parameters for the simulation. (4) Conduct the simulation to obtain the true target value for the determined set of parameters. (2) Retrain the
Gaussian process on the new dataset and continue the loop. Figure adapted from ref. 52.
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3. The Metropolis acceptance probability was computed:

α ¼ min 1;
p θ*jM; Dð Þ
p θ tjM; Dð Þ

� �
:

4.

θ tþ1 ¼ θ* with probability α;

θ t with probability 1 −α

�

was set.

5. Steps 2–4 were iterated.
In this algorithm, the posterior distribution p(θ|M, D) is

only calculated up to a normalization constant. Specifically,
p(θ|M, D) is proportional to the product of the likelihood,
p(D|M, θ), and the prior, p(θ). The prior distribution of a
calibration parameter, p(θi), is chosen to be Gaussian
centered within the calibration parameter limits, with a
standard deviation of one sixth of the range, ensuring that
approximately 99.7% of p(θi) lies within the chosen
boundaries. Likewise, the proposal distribution along with
p(D|M, θ) are Gaussian distributions too. p(D|M, θ) for all
experimental data points, D = {di, j}

n, 2
i=1, j=1, given the two ML

models for the top and bottom position of the pyrometer
measurement, M = {Mj}

2
j=1, the variable inputs, q, and the

calibration parameters, θ, corresponds to:

p DjM; θð Þ ¼
Y
j

Y
i

1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp − di;j qi

� �
−Mj qi; θ

� �� �2
2σ2

 !
(6)

The standard deviation, σ, is set to be approximately the
average measurement uncertainty of the employed pyrometers in
the experimental temperature range divided by 1.96, which is 5
°C. After the calibration, a burn-in period was empirically set,
where some initial samples are discarded, as in the beginning,
and the Markov chain is not converged to the target distribution
p(θ|M, D).

3 Results and discussion
3.1 Evaluation of AL

Since Ttop is experimentally controlled, the AL procedure focuses
exclusively on this location. The employed acquisition function
selects additional design points that maximize the global
expected reduction in variance, thereby optimizing the GP
globally. Consequently, this aims to reduce the generalization
error as the global uncertainty decreases. This trend is
illustrated in Fig. 3, which shows the mean standard deviation
of the GP (MStD) and the root mean square error (RMSE) for
test examples evolving with the number of AL iterations. Due to
the low number of initial training examples compared to the
high-dimensional design space, fluctuations in the RMSE and a
significant deviation between MStD and RMSE are observed in
the beginning of the AL procedure. However, as the number of
AL iterations increases, the GP can appropriately optimize its

hyperparameters, resulting in smaller fluctuations and a better
agreement. At around 60 AL iterations, the deviations tend to be
negligible, referring to reliable uncertainty estimates of the GP.
The general trend of the MStD and the RMSE shows an
exponential decrease, indicating rapid global optimization.
Since the AL procedure prioritizes the reduction of global
uncertainty, only small changes are observable at higher
iteration numbers. After 120 AL iterations, the RMSE of the final
ML model was 0.77 °C.

3.2 Performance of the final ML model after AL

Fig. 4 shows the comparison between the prediction of the
GP after AL and the COMSOL results for the test samples
sorted by temperature. As seen in the top subplot, the ML
model predicts the COMSOL simulation output across the
entire temperature range, from approximately 1450 °C to
2150 °C, with high precision. This is indicated by the circles
lying on the diagonal, representing a perfect ML model. The
temperature differences between ML predictions and
simulation outputs ΔT are presented in the bottom subplot.
The error on the test examples spans from about −1.45 to
1.75 °C. The error bars, which display the 95% confidence
interval of the ML prediction, appear valid as the majority
of them cross the dashed line, indicating that the actual
value is located within the confidence interval. Since those
results show the possibility to almost reproduce the
simulation output with the GP as well as that the predicted
confidence intervals seem valid, this model could be used
to predict the temperature within the whole design space
with high accuracy. This makes it possible to use the ML
model for various downstream tasks that would take
hundreds or thousands of simulation runs such as
sensitivity analysis, uncertainty analysis or parameter
calibration. Owing to the small amount of training data
necessary, the prediction of 150 000 samples merely takes

Fig. 3 Mean standard deviation of the GP and root mean square error
on the test data over the number of active learning iterations.
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close to 1 s. This is approximately 2 × 108 times faster than
the simulation using FEM. Additionally, a second GP was
fitted to predict Tbottom, whereas the RMSE of this GP,
determined on the test examples, was 0.73 °C.

3.3 ML-assisted sensitivity analysis

The obtained model allows us to explore how sensitive the
temperature reacts to an input quantity. For this purpose, the
temperature change with respect to an input variation is
evaluated by finite difference approximation providing the slope
as a measurement of the sensitivity. Sensitivity analysis was
conducted by sampling 10000 input sets within the design space
using LHS. The LHS design was kept constant except for one
parameter, which was varied 1000 times across its range. At each
value, the 10000 LHS samples were evaluated using the GP, and
the slopes of all evaluated temperatures with respect to the
parameter were calculated. The mean and standard deviation of
these slopes are shown in Table 2. The sensitivity analysis
indicates that an increase in z and P leads to a rise in
temperature. In contrast, εSiC and εsteel have a negligible impact
on temperature, whereas an increase in all other inputs results in
a temperature decrease. These findings can be interpreted as
follows:

• The increase in temperature with increasing z, which
corresponds to an upward shift of the coil, is attributed to
the associated upward shift of the hot-zone center towards
the top measurement location.22

• The electromagnetic heating of the crucible is influenced
by the skin effect, resulting in heat being generated mainly
within a shallow depth. This depth is inversely proportional to

ffiffiffiffi
f

p
. Hence, an increase in f reduces the skin depth, decreasing

the size of the effective heater and therefore the temperature.22

• The negligible influence of εSiC and εsteel may be due to
the relatively small surface of the SiC seed crystal and the
already low temperature of the steel covers as a result of the
water cooling system, respectively.

• Rising electrical conductivity decreases the temperature,
due to the reduced Joule heating.39

• An increase in thermal conductivity leads to a decrease
in temperature, as the mitigation of the heat loss to the
environment becomes less effective.20

Additionally, the significant magnitude of the standard
deviations suggests interactions between the parameters,
indicating that their influence on temperature depends on the
values of other parameters. In contrast, a completely
independent parameter would consistently show the same slope
at a specific value, regardless of the values of other
parameters.55 Due to these interactions, it is necessary to use
many different parameter sets for sensitivity analysis. This
ensures that parameters appearing to be non-influential are
truly negligible, rather than their influence being diminished by
specific combinations of other parameters. For comparison, the
optimized length scale hyperparameters of every input for the
final GP are also provided in the table, indicating that inputs
with larger length scales have smaller influence on the
predicted temperature. Thus, the two parameters with hardly
any effect on the temperature, εSiC and εsteel, are neglected in
the following material parameter calibration.

3.4 Evaluation of ML-assisted material parameter calibration

For the calibration, 5 mio MCMC iterations were conducted,
where 10000 initial iterations are discarded (burn-in). The exact
experimentally chosen z, P and f and the corresponding Ttop
and Tbottom were used. The resulting marginalized and the
bivariate distributions are shown in the form of histograms in
Fig. 5. Prior distributions are shown as dashed blue lines,
whereas the red lines correspond to a maximum likelihood
estimate of a Gaussian posterior distribution fitted to the
marginal histograms. The fitting parameters of the posterior

Fig. 4 ML predictions vs. COMSOL simulation results. The red open
circles represent the test data, and the dashed diagonal line indicates
the ideal ML model (ML prediction = true value). Differences, ΔT,
between the shown ML predictions and COMSOL simulation results.
The error bars correspond to the 95% confidence intervals of the
Gaussian process.

Table 2 Mean and standard deviation (Std. Dev.) of the slopes obtained
by sensitivity analysis, along with the length scale hyperparameters of the
inputs of the Gaussian process

Input Mean slope Std. Dev. Slope Unit Length scale [−]
P 9.19 1.81 °C/0.1 kW 1.72
z 2.32 0.71 °C mm−1 3.48
f −2.34 0.52 °C/0.1 kHz 29.88
εc −9.32 2.50 °C/0.1 10.67
εSiC −0.23 9.49 × 10−3 °C/0.1 3.28 × 103

εsteel −1.77 × 10−3 1.30 × 10−4 °C/0.1 3.75 × 105

γins −6.16 0.847 °C/100 S m−1 12.06
Cγ,c −14.33 3.39 °C/0.1 6.42
Cλ,ins −45.80 7.49 °C/0.1 3.15
Cλ,c −1.86 0.25 °C/0.1 79.00
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distributions are shown in Table 3. Since the ML models
extrapolate to values of εc larger than one, but those values are
physically not meaningful, they should be neglected.
Furthermore, Fig. 5 illustrates that highly influential parameters
are generally easier to calibrate, as changes in these values
result in markedly different outcomes, leading to narrower
marginal posterior distributions. Therefore, the information
gain for us is higher as the uncertainty of these parameters
decreases significantly. Moreover, small deviations of highly
influential parameters may require substantial adjustments of
less influential ones due to correlations, potentially resulting in
inaccurate estimates for these parameters. Hence, constraining
low influential parameters with narrower priors may be
necessary.

The bivariate distributions reveal the correlations between
the different inputs, giving further insight into the simulation
and the possibility of calibration. Three significant correlations
can be seen in the data. In the bottom left corner, the negative

correlation between the most influential calibration parameters,
Cγ,c and Cλ,ins, is depicted. Since both decrease the temperature
as their values increase, the negative correlation compensates
their effects. A similar correlation is determined between γins
and Cλ,ins. Besides that, one positive correlation is observed
between Cγ,c and γins. Since a lower γins results in more heat
generated in the insulation, which is consequently lost for
heating the interior of the furnace, it has to be compensated by
a lower Cγ,c to achieve the same Ttop and Tbottom.

The mean of the fitted posterior distributions is used for
predicting the experimental data, shown in Fig. 6. As illustrated
in Fig. 6(a) and (b), the ML predictions closely match the
experimental data for both the top and bottom pyrometer
measurements. Examining the differences between the
predictions and the experimental data (see Fig. 6(c), dashed and
solid lines) reveals maximum deviations in the range of ±25 °C
for both measurement locations, whereas the mean absolute
error including all measurements is 9.75 °C. To verify the
obtained results from the GPs, FEM simulations with the
calibrated material parameters were conducted. These results
are displayed as markers in Fig. 6(c), nearly aligning with the
ML predictions, further confirming the quality of the GPs used
in this approach. Even though the calibration resulted in the
material parameters able to reproduce the experimental data
with satisfactory accuracy, the residuals tend to mirror the top
pyrometer measurements, where higher measured temperatures
result in higher residuals and vice versa. This implies that the
simple calibration approach, which involves calibrating a
scaling factor, may suffer from insufficient flexibility in

Fig. 5 Posterior and prior distributions of the calibration parameters. The marginal distributions are displayed on the diagonal. The dashed blue
line represents the prior distribution, while the histogram depicts the posterior distribution approximated using MCMC. The red solid line
corresponds to the maximum likelihood estimate of a Gaussian distribution fitted to the histogram. The bivariate histograms illustrate the
correlations between parameters.

Table 3 Posterior means and standard deviations (Std. Dev.) of the
calibration parameters, determined by fitting Gaussian distributions to the
marginal posterior distributions obtained via MCMC

Input Posterior mean Posterior Std. Dev. Unit

εc 0.949 0.052 —
γins 776.42 170.32 S m−1

Cγ,c 0.725 0.030 —
Cλ,ins 1.274 0.034 —
Cλ,c 1.429 0.095 —
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accounting for the temperature dependency of the material
parameters. Alternatively, it suggests that assuming
temperature-independent material parameters might be an
overly strong approximation for some parameters such as γins or
that an important parameter was not included in the
calibration, leading to systematic errors.

To validate the effectiveness of the calibrated parameters,
Ttop and Tbottom were predicted for a second experimental run,
which serves as a test set. Fig. 7 demonstrates that the error
increased compared to the initial calibration, reaching values
between −36 and 41 °C. However, the error remains centered
around the optimum, implying the good generalization
performance of the calibrated parameters.

Fig. 8 shows the comparison of the initial assumptions on
the temperature dependency of the material parameters, the
calibrated profiles, and literature values.40–42,56–59 After
calibration, the electrical conductivity of the crucible exhibits
significant changes, now aligning with the ranges at those high
temperatures used in other research projects. It is unlikely that
the electrical conductivity of the crucible changes to this extent
due to material degradation or other effects, suggesting that the
initial assumption about this property was incorrect. The two
other temperature-dependent properties initially have smaller

values, resulting in less significant changes due to the scaling
factor. However, the calibrated temperature dependencies of
these parameters are higher than both the initial and literature
values, which may be attributed to material degradation from
repeated experimental runs, material related differences or
production related deviations. To verify the calibrated
parameters, experimental measurements of the material
properties must be conducted. This process will help to
determine how the initial assumptions and hyperparameters
affect the calibration results.

3.5 Surrogate model for thermal field prediction

In the current study, two GPs were utilized to predict the
temperature, one for the top and the other one for the bottom
measurement location. A further application is to fit one GP to
every node in the FEM model, resulting in an ensemble of
models able to predict the whole thermal field. Such models are
referred to as surrogate models, as they are able to substitute the
entire numerical simulation. Since the whole computational
domain is not of particular interest, only the temperatures at
nodes within certain limits are used to fit the ML models. At the
end, 28449 GPs were fitted to the training data (150 samples per
GP) and tested on the test set (40 samples per GP). Testing all

Fig. 6 Comparison of experimental data, used for calibration, with ML
predictions and COMSOL simulations using the calibrated material
parameters. (a) and (b) The experimental data (circles) and the ML
prediction (solid line) of the top and bottom pyrometers, respectively.
(c) The residuals between the experimental data and both the ML
predictions (solid and dashed line) and the COMSOL simulations
(square and diamond markers) for the top and bottom pyrometers.

Fig. 7 Comparison of experimental data, not included in the
calibration, with ML predictions and COMSOL simulations using the
calibrated material parameters. (a) and (b) The experimental data
(circles) and the ML prediction (solid line) of the top and bottom
pyrometers, respectively. (c) The residuals between the experimental
data and the ML predictions for the top and bottom pyrometers.
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samples with all models took around 22 s, referring to
approximately 10000 evaluations per second. One test sample
and the corresponding ML prediction are shown in
Fig. 9(a) and (b), respectively. To display spatial differences in
accuracy, the RMSE and the mean absolute percentage error
(MAPE) of every GP for the test set is depicted in Fig. 9(c) and (d).
In the center of the furnace and within the crucible, the RMSE
remains nearly constant at around 0.95 °C. As the temperature
significantly decreases radially due to the insulation, the RMSE
also reduces to approximately 0.75 °C. An increase in RMSE is
observed at the bottom right of the insulation, reaching very
locally the overall maximum of 1.74 °C. Additionally, some error
hot spots at the top and bottom are observable. Compared to the
RMSE, the MAPE remains almost identical throughout, ranging
from 0.03% to 0.06%. Exceptions are noted in the bottom right
corner and the top right outside the insulation. These exceptions
might result from a more complex temperature behavior related
to the inputs, which could be mitigated by increasing the number
of training examples.

These models can not only predict the entire thermal field,
but can also be applied to study specific areas individually, such
as the temperature along the seed or along the central axis of
the PVT furnace. This provides expanded insight into the
temperature distribution and temperature gradients. A potential
drawback is the necessity to store all these models and the
inability to directly interpolate spatially between them. However,
there is also a benefit to an ensemble of independent ML
models. Since they only represent the temperature at a specific
node, it allows them to accurately model abrupt temperature
changes, such as those occurring in the transition from one
material to another. One way to improve prediction efficiency is
to use only a subset of the models, since especially in areas

Fig. 8 Comparison of calibrated temperature dependent material
properties with literature values. The temperature dependencies are
displayed for (a) the electrical conductivity of the crucible, (b) the
thermal conductivity of the insulation, and (c) the thermal conductivity
of the crucible. Blue lines indicate the initial material parameters used
in this study, solid red lines the calibrated parameters, dashed red lines
± one standard deviation and other lines the literature values.

Fig. 9 Ensemble of ML models for thermal field prediction. (a) and (b) The COMSOL simulation results and the ML predictions for a specific test
case, respectively. (c) The RMSE and (d) the MAPE for each ML model, calculated using all test samples.
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where the mesh is very dense, little additional information is
gained by using all GPs.

3.6 ML-assisted uncertainty analysis

Uncertainty can be propagated from the parameters to the
output by predicting the output for different sets of inputs
drawn from the posterior distribution, specifically from the
converged Markov chain. By predicting the entire thermal
field, the investigation of uncertainty propagation is enabled
not only at the measurement locations, but also throughout
the entire furnace. This analysis was performed for one
experimental setup with P = 9.4 kW and z = −20 mm. To
minimize computational cost, every 1000th sample of the
converged chain was selected. The thermal field was
predicted for each of these samples, and subsequently, the
standard deviation at each node was calculated. Fig. 10
presents the results of this uncertainty analysis. Within the
furnace and crucible, the uncertainty remains relatively stable
with values between 1.5 and 2.5 °C. However, it increases
rapidly within the insulation in the radial direction and at
the bottom. This increase is less pronounced at the top,
though a stronger increase is also observed outside the top
insulation. The maximum standard deviation is observed at
the bottom, reaching approximately 12 °C. These results
suggest that incorporating an additional temperature
measurement beyond the two existing ones could enhance
the calibration of material parameters. This arises from the
fact that the same uncertainties in material parameters lead
to significantly higher temperature variations in certain
regions of the furnace. Measuring the temperature at one of
these locations could result in a more accurate determination

of certain parameters, i.e. narrower marginal posterior
distributions. Moreover, increased precision in one
parameter would also improve the estimates of other
parameters, particularly those that are correlated. For this
purpose, a measurement at the outer surface of the
insulation might be well-suited. Moreover, the bottom
pyrometer could be replaced by this more adequate
measurement, as the uncertainty within the crucible is
already effectively reduced by the top pyrometer.

4 Conclusion

In the present study, the application of ML algorithms for
the investigation and calibration of a PVT simulation for SiC
crystal growth was demonstrated. Through the utilization of
an AL algorithm, it was possible to keep the number of
necessary training examples low, while globally optimizing
the applied GPs for temperature prediction. This allowed us
to completely substitute the numerical simulation with ML
models and therefore not only enabled thorough sensitivity
analysis, but also the calibration of the material parameters
used in the PVT simulation. Through sensitivity analysis, the
influence of the different parameters could be determined,
further identifying those with negligible impact on
temperature. Consequently, those parameters were excluded
from the subsequent calibration, resulting in a reduction of
computational effort. The calibration was conducted using
the Metropolis algorithm, experimental data of the top and
bottom pyrometers and two ML models that were fitted to
the measurement locations. This resulted in calibrated
material parameters along with their uncertainties and
correlations, providing deeper insight into the simulation.
The obtained material parameters showed good
generalization, as it was possible to predict a second
experimental run, while keeping the error centered around
the optimal value. Additionally, by fitting a ML model to each
node in the FEM simulation, it is possible to successfully
predict the entire thermal field. This enables a
comprehensive investigation of the temperature influence of
experimentally controllable parameters and material
properties on a larger scale. Finally, an uncertainty analysis
for the entire furnace was conducted by drawing samples
from the posterior parameter distribution. Through this
analysis, measuring the temperature at the outer surface of
the insulation is suggested as an additional measurement
location for improved material parameter calibration.

The chosen way of calibrating material properties may still
be improved e.g. by providing more flexibility in their
dependencies with the temperature. In addition, future work
should focus on developing more versatile ML models that
incorporate temporal temperature variations, should account
for the SiC powder source and can adapt to geometric
changes of the reactor. Nevertheless, this work shows the
potential of ML algorithms for the calibration of PVT
simulations, paving the way for further advancements in SiC
crystal growth. Additionally, based on this work, we suggest

Fig. 10 Uncertainty analysis for the entire furnace. The standard
deviation is displayed for every node of the FEM simulation model.
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the following research topics for the calibration of PVT
simulations:

• Calibration of Parametrization: the parametrization of
temperature-dependent material properties could be calibrated
to ensure sufficient flexibility. Challenges include finding
appropriate priors for each parameter without overfitting to
the experimentally available data.

• Material Parameter Calibration with Time-Dependent
Models: calibration of material properties such as heat
conductivity using time-dependent models that account for
temporal variations.

• Calibration of Pressure Dependencies: since material
parameters, such as the thermal conductivity of the insulation,
also depend on the pressure, incorporating an additional
parameter or an analytic expression and conducting field
experiments that include pressure variations can be used to
calibrate pressure dependencies.

• Identification of Optimal Temperature Measurement
Locations: the capability to analyse the uncertainty of the
entire furnace could be utilized to identify optimal locations
for temperature measurements, which enable improved
material parameter calibration.

• Design of Optimal Field Experiments: computationally
efficient predictions of the thermal field could be leveraged to
design optimal experimental runs for calibrating temperature-
dependent material properties over a wide temperature range.

• Degradation Monitoring: repeated ML-assisted
calibration of PVT simulations could be employed to observe
potential degradation in material properties, especially when
reusing the insulation and the crucible.

Appendix: experimental data

Appendix: initial assumptions of
temperature dependent material
properties

The initial assumption of the thermal conductivity of the
crucible, λc,initial(T), is given by:

Table 4 Data of the first experimental run. These data were used for
calibration

No. [−] P [kW] z [mm] Ttop [°C] Tbottom [°C]

1 9.90 −30 1900 1865.0
2 9.40 −20 1900 1865.0
3 6.50 −20 1600 1583.5
4 7.36 −20 1700 1679.0
5 8.30 −20 1800 1770.0
6 7.82 −5 1800 1758.0
7 6.10 −5 1600 1584.5
8 7.00 −5 1700 1681.6
9 8.97 −5 1900 1875.3
10 8.66 5 1900 1854.1
11 6.80 5 1700 1687.0
12 7.71 5 1800 1775.4
13 7.50 15 1800 1768.8
14 5.80 15 1600 1595.7
15 6.20 15 1650 1619.8
16 6.60 15 1700 1676.8
17 7.10 15 1750 1719.1
18 8.00 15 1850 1802.1
19 8.53 15 1900 1851.0
20 8.34 25 1900 1846.5
21 8.25 35 1900 1851.1

Table 5 Data of the second experimental run. These data were used for
testing the calibrated parameters

No. [−] P [kW] z [mm] Ttop [°C] Tbottom [°C]

1 5.31 −20 1450 1460.0
2 5.67 −20 1500 1507.0
3 6.05 −20 1550 1554.0
4 6.45 −20 1600 1601.0
5 6.86 −20 1650 1647.0
6 7.31 −20 1700 1694.0
7 8.27 −20 1800 1787.0
8 8.80 −20 1850 1834.0
9 9.35 −20 1900 1880.0
10 9.94 −20 1950 1927.0
11 10.56 −20 2000 1974.0
12 5.34 0 1500 1502.0
13 5.68 0 1550 1549.0
14 6.06 0 1600 1595.0
15 6.87 0 1700 1688.0
16 7.30 0 1750 1735.0
17 7.76 0 1799 1781.0
18 8.26 0 1850 1827.0
19 8.78 0 1900 1873.0
20 9.32 0 1950 1920.0
21 9.90 0 2000 1966.0

Table 6 Initial assumption of the electrical conductivity of the crucible,
γc,initial(T)

T [K] γc,initial [S m−1]

301 61 881
519 78 493
773 91 575
1050 97 752
1273 98 619
2023 93 985

Table 7 Initial assumption of the thermal conductivity of the insulation,
λins,initial(T)

T [K] λins,initial [W mK−1]

293.15 0.25
673.15 0.25
1073.15 0.35
1473.15 0.48
1873.15 0.69
2273.15 1.0
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λc;initial Tð Þ ¼ 76:2
1

2:2 × 10 − 3T
þ 0:3

� �
W mK − 1

Data availability

The data used to support the findings of this study are
included within the article or ESI.†

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The financial support by the Austrian Federal Ministry for
Digital and Economic Affairs, the National Foundation for
Research, Technology and Development and the Christian
Doppler Research Association is gratefully acknowledged.
Furthermore, this study was funded by EEMCO GmbH.

References

1 P. G. Neudeck, R. S. Okojie and L.-Y. Chen, Proc. IEEE,
2002, 90, 1065–1076.

2 P. J. Wellmann, Z. Anorg. Allg. Chem., 2017, 643, 1312–1322.
3 N. Ohtani, T. Fujimoto, M. Katsuno and T. Aigo, J. Cryst.

Growth, 2002, 1180–1186.
4 T. Kimoto, Prog. Cryst. Growth Charact. Mater., 2016, 62,

329–351.
5 P. J. Wellmann, Semicond. Sci. Technol., 2018, 33, 103001.
6 J. A. Lely, Ber. Dtsch. Keram. Ges., 1955, 32, 229–250.
7 Y. M. Tairov and V. F. Tsvetkov, J. Cryst. Growth, 1978, 43,

209–212.
8 P. J. Wellmann, M. Bickermann, D. Hofmann, L. Kadinski,

M. Selder, T. L. Straubinger and A. Winnacker, J. Cryst.
Growth, 2000, 216, 263–272.

9 S. Zhang, G. Fu, H. Cai, J. Yang, G. Fan, Y. Chen, T. Li and L.
Zhao, Materials, 2023, 16, 767.

10 M. Selder, L. Kadinski, Y. Makarov, F. Durst, P. Wellmann, T.
Staubinger, D. Hofmann, S. Karpov and M. Ramm, J. Cryst.
Growth, 2000, 211, 333–338.

11 K.-H. Kang, T. Eun, M.-C. Jun and B.-J. Lee, J. Cryst. Growth,
2014, 389, 120–133.

12 Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas and N. K.
Yushin, J. Heat Transfer, 2001, 123, 1098–1109.

13 Y. Chen, S. Liu, S. Chen and B. Yang, Mater. Sci. Semicond.
Process., 2024, 178, 108414.

14 B. Gao, X. J. Chen, S. Nakano, S. Nishizawa and K.
Kakimoto, J. Cryst. Growth, 2010, 312, 3349–3355.

15 R.-H. Ma, H. Zhang, S. Ha and M. Skowronski, J. Cryst.
Growth, 2003, 252, 523–537.

16 S.-i. Nishizawa, T. Kato and K. Arai, J. Cryst. Growth,
2007, 303, 342–344.

17 B. Xu, X. Han, S. Xu, D. Yang and X. Pi, Cryst. Res. Technol.,
2024, 59, 2300354.

18 M.-T. Ha and S.-M. Jeong, J. Korean Ceram. Soc., 2022, 59,
153–179.

19 D. L. Barrett, J. P. McHugh, H. M. Hobgood, R. H. Hopkins,
P. G. McMullin and R. C. Clarke, J. Cryst. Growth, 1993, 128,
358–362.

20 J. Steiner, M. Arzig, A. Denisov and P. J. Wellmann, Cryst.
Res. Technol., 2020, 55, 1900121.

21 F. La Via, M. Zimbone, C. Bongiorno, A. La Magna, G.
Fisicaro, I. Deretzis, V. Scuderi, C. Calabretta, F. Giannazzo,
M. Zielinski, R. Anzalone, M. Mauceri, D. Crippa, E. Scalise,
A. Marzegalli, A. Sarikov, L. Miglio, V. Jokubavicius, M.
Syväjärvi, R. Yakimova, P. Schuh, M. Schöler, M. Kollmuss
and P. Wellmann, Materials, 2021, 14, 5348.

22 J. B. Allen, C. F. Cornwell, N. J. Lee, C. P. Marsh, J. F. Peters
and C. R. Welch, Ceram. Eng. Sci. Proc., 2011, 32(5), 91–102.

23 M. Isono, S. Harada, K. Kutsukake, T. Yokoyama, M. Tagawa
and T. Ujihara, Adv. Theory Simul., 2022, 5, 2200302.

24 Y. Tsunooka, N. Kokubo, G. Hatasa, S. Harada, M. Tagawa
and T. Ujihara, CrystEngComm, 2018, 20, 6546–6550.

25 W. Yu, C. Zhu, Y. Tsunooka, W. Huang, Y. Dang, K.
Kutsukake, S. Harada, M. Tagawa and T. Ujihara,
CrystEngComm, 2021, 23, 2695–2702.

26 L. Wang, A. Sekimoto, Y. Takehara, Y. Okano, T. Ujihara and
S. Dost, Crystals, 2020, 10, 791.

27 Y. Dang, C. Zhu, M. Ikumi, M. Takaishi, W. Yu, W. Huang, X.
Liu, K. Kutsukake, S. Harada, M. Tagawa and T. Ujihara,
CrystEngComm, 2021, 23, 1982–1990.

28 X. Liu, Y. Dang, H. Tanaka, Y. Fukuda, K. Kutsukake, T. Kojima,
T. Ujihara and N. Usami, ACS Omega, 2022, 7, 6665–6673.

29 N. Dropka and M. Holena, Crystals, 2020, 10, 663.
30 M. C. Kennedy and A. O'Hagan, J. R. Stat. Soc. Ser. B Stat.

Method, 2001, 63(3), 425–464.
31 D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo and

R. D. Ryne, SIAM J. Sci. Comput., 2004, 26, 448–466.
32 H. Li, L. Gutierrez, H. Toda, O. Kuwazuru, W. Liu, Y. Hangai,

M. Kobayashi and R. Batres, Int. J. Solids Struct., 2016, 81,
151–159.

33 P. Fernandez-Zelaia, V. R. Joseph, S. R. Kalidind and S. N.
Melkote, Mater. Des., 2018, 147, 92–105.

34 J. L. de Pablos, I. Sabirov and I. Romero, Arch. Comput.
Methods Eng., 2023, 30, 2859–2888.

35 J. Ihle and P. J. Wellmann, Cryst. Res. Technol., 2024, 2400080.
36 IMPAC ISR 6 Advanced, https://www.advancedenergy.com/

getmedia/edf74b6b-98d6-4f03-8807-ff43000add74/de-op-isr6-
data-sheet.pdf, Accessed July 2024.

37 D. Hofmann, M. Heinze, A. Winnacker, F. Durst, L.
Kadinski, P. Kaufmann, Y. Makarov and M. Schäfer, J. Cryst.
Growth, 1995, 146, 214–219.

38 R.-H. Ma, Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas and
N. K. Yushin, J. Cryst. Growth, 2000, 211, 352–359.

39 D. J. Griffiths, Introduction to electrodynamics, Cambridge
University Press, London, 4th edn, 2017.

40 MERSEN speciality graphite materials for sintering, https://www.
mersen.com/sites/default/files/publications-media/2-gs-speciality-
graphite-materials-for-sintering-mersen.pdf, Accessed July 2024.

41 MERSEN Calcarb CBCF 18-2000, https://www.graphite-eng.
com/uploads/downloads/Calcarb_grade_CBCF18-2000_new_
purity.pdf, Accessed July 2024.

CrystEngCommPaper

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

25
 5

:5
5:

26
 P

M
. 

View Article Online

https://www.advancedenergy.com/getmedia/edf74b6b-98d6-4f03-8807-ff43000add74/de-op-isr6-data-sheet.pdf
https://www.advancedenergy.com/getmedia/edf74b6b-98d6-4f03-8807-ff43000add74/de-op-isr6-data-sheet.pdf
https://www.advancedenergy.com/getmedia/edf74b6b-98d6-4f03-8807-ff43000add74/de-op-isr6-data-sheet.pdf
https://www.mersen.com/sites/default/files/publications-media/2-gs-speciality-graphite-materials-for-sintering-mersen.pdf
https://www.mersen.com/sites/default/files/publications-media/2-gs-speciality-graphite-materials-for-sintering-mersen.pdf
https://www.mersen.com/sites/default/files/publications-media/2-gs-speciality-graphite-materials-for-sintering-mersen.pdf
https://www.graphite-eng.com/uploads/downloads/Calcarb_grade_CBCF18-2000_new_purity.pdf
https://www.graphite-eng.com/uploads/downloads/Calcarb_grade_CBCF18-2000_new_purity.pdf
https://www.graphite-eng.com/uploads/downloads/Calcarb_grade_CBCF18-2000_new_purity.pdf
https://doi.org/10.1039/d4ce00866a


CrystEngComm, 2024, 26, 6322–6335 | 6335This journal is © The Royal Society of Chemistry 2024

42 K. Ariyawong, PhD thesis, Université Grenoble Alpes, 2015.
43 C. E. Rasmussen and C. K. I. Williams, Gaussian processes for

machine learning, MIT Press, Cambridge, Mass., 3rd edn,
2008.

44 The MathWorks Inc., Statistics and Machine Learning Toolbox
version: 23.2 (R2023b), 2023.

45 B. Settles, Technical Report, University of Wisconsin-
Madison. Department, 2009.

46 D. A. Cohn, Adv. Neural Inf. Process. Syst., 1996, 6(9), 679–686.
47 M. D. Mckay, Neural Comput., 1992, 4, 589–603.
48 J. Beck and S. Guillas, SIAM/ASA Journal on Uncertainty

Quantification, 2016, 4, 739–766.
49 M. D. Mckay, R. J. Beckman and W. J. Conover,

Technometrics, 2000, 42, 55–61.
50 J. L. Loeppky, J. Sacks and W. J. Welch, Technometrics,

2009, 51, 366–376.

51 R. B. Gramacy and H. K. H. Lee, Stat. Comput., 2012, 22,
713–722.

52 T. Ueno, H. Ishibashi, H. Hino and K. Ono, npj Comput.
Mater., 2021, 7, 139.

53 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller and E. Teller, J. Chem. Phys., 1953, 21, 1087–1092.

54 A. Christophe, N. de Freitas, A. Doucet and M. I. Jordan,
Mach. Learn., 2003, 50, 5–43.

55 T. J. Santner, The Design and Analysis of Computer
Experiments, Springer, New York, 2003.

56 H. Luo, X. Han, Y. Huang, D. Yang and X. Pi, Crystals,
2021, 11, 1581.

57 J. Su, X. Chen and Y. Li, J. Cryst. Growth, 2014, 401, 128–132.
58 O. Klein and P. Philip, J. Cryst. Growth, 2003, 247, 219–235.
59 M. Pons, E. Blanquet, J. Dedulle, I. Garcon, R. Mardar and

C. Bernard, J. Electrochem. Soc., 1996, 143(11), 3727.

CrystEngComm Paper

Pu
bl

is
he

d 
on

 1
0 

O
ct

ob
er

 2
02

4.
 D

ow
nl

oa
de

d 
on

 3
/1

3/
20

25
 5

:5
5:

26
 P

M
. 

View Article Online

https://doi.org/10.1039/d4ce00866a

	crossmark: 


