

Cite this: *Chem. Commun.*, 2024, **60**, 1193

DOI: 10.1039/d4cc90017k

rsc.li/chemcomm

Correction: Critical role of hydrogen bonding between microcrystalline cellulose and g-C₃N₄ enables highly efficient photocatalysis

Zhaoqiang Wang,^{†,a} Guixiang Ding,^{†,a} Juntao Zhang,^a Xianqing Lv,^a Peng Wang,^b Li Shuai,^a Chunxue Li,^{*c} Yonghao Ni^{*a} and Guangfu Liao^{*a}

Correction for 'Critical role of hydrogen bonding between microcrystalline cellulose and g-C₃N₄ enables highly efficient photocatalysis' by Zhaoqiang Wang et al., *Chem. Commun.*, 2024, **60**, 204–207, <https://doi.org/10.1039/D3CC04800D>.

The authors regret that there was an error in the scale bar of Fig. 1a in the original article. The correct version of Fig. 1 is shown below.

Fig. 1 (a) HRTEM image of MCC-0.05/CN. (b) The SAED pattern of MCC-0.05/CN. (c) XRD and (d) FTIR spectra of CN and MCC-X/CN. (e) and (f) The element mapping of MCC-0.05/CN.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China. E-mail: yonghao@unb.ca, liaof@mail2.sysu.edu.cn

^b Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China

^c College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China. E-mail: chunxueli@fjut.edu.cn

† These authors contributed equally to this work.

