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We investigate the properties of ultrathin 3,4,9,10-perylenetetracar-
boxylic diimide (PTCDI) films using a combination of tip-enhanced
photoluminescence and unsupervised machine learning. We expose
nanoscale spectral heterogeneities that can be understood on the basis
of the interplay between vibronic effects, intermolecular excitons, and
intramolecular excitons in PTDCI films.

Organic semiconductors have been a focal point in modern
optoelectronics research.' Indeed, as a result of their unique
properties and reduced dimensions, molecular nano-films have
been used as key sub-components in transistors,* solar cells,’
and light emitting diodes.® In this context, the rational design
of efficient miniaturized devices that harness the full power of
these ultrathin molecular semiconductors requires a detailed
molecular-level understanding of structure-property relation-
ships in these structures. Although many studies have investi-
gated how the average (macroscopic) morphology of organic
thin films correlates with device performance,”® impacts from
the spatial variations in the local morphology and properties
are less clear.

Many important processes such as light emission, carrier
recombination, or charge separation may preferentially occur at
“hotspots” in organic films. Hence, site-specific properties
rather than the large area averaged properties are important
to study. Recent advances in nanooptics and nanophotonics are
promising in this regard. Specifically, the two now fairly wide-
spread techniques of tip-enhanced Raman scattering (TERS)"°
and tip-enhanced photoluminescence (TEPL)'"'* can provide
detailed insights into the vibrational and electronic properties
of molecular and materials systems. Sequential or even
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simultaneously recorded topographic maps may also be readily
used to inspect correlations between structure and optical proper-
ties on the nanoscale. Even though TERS and TEPL have been
amply used to characterize molecular and materials systems,"*™*®
these techniques have not been thoroughly explored within
nanometer-scale organic semiconductor research, specifically in
exciton-supporting molecular thin films. This is the topic of
this work.

As mentioned above, the origins of light emission from
organic semiconductors have been previously explored using
conventional spectroscopic and microscopic approaches.’”™°
The previously employed methods are however limited by
diffraction to spatial resolutions on the order of a few hundred
nanometers with driving sources in the visible-near IR region of
the spectrum. In the case of perylene films, the subject of this
work, the recorded PL spectra exhibit a complex multi-peak
structure that arises from the recombination of intramolecular
and intermolecular excitons, with contributions from vibronic
sub-bands.?® Indeed, this kind of complex PL spectrum is quite
common in molecular aggregates. The strong intermolecular
electronic coupling along the p-stacking direction can produce
both intramolecular excitons and intermolecular charge trans-
fer excitons,”® while electronic-vibrational interactions yield
red-shifted vibronic sub-bands.>” Both of these effects and
the resultant optical spectra depend strongly on the molecular
packing within the aggregate. One of the motivations behind
the present work is to understand the interplay between the
different emission channels and the underlying molecular
arrangements that drive them on the nanometer length scales.
We use a 2 nm thick PTCDI film on gold (Au)*’ as a prototypical
system in our current study. Prior to an exposition of our
results, it is important to mention that our TEPL measurement
protocol is very well described in recent work to which the
reader is referred."” The conditions used here are otherwise
described in figure captions and the main text, as needed.

Fig. 1a displays a topographic AFM map of a 2 nm-thick
PTCDI film on Au, which was recorded using tapping mode
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Fig. 1 (a) Topographic AFM image of a PTCDI thin film on gold. The TEPL
measurements track exciton transitions within the white dashed area. (b)
Schematic representation of the nano-topical measurement that consists
of tip-out (c) and tip-in (d) images recorded at every spatial position, where
the tip is either 30-40 nm away from the surface (c) or in direct contact (d)
with it. Note that tip-in and tip-out spectra are also termed far field and
near field in (e), where selected spectra showing TEPL enhancement are
simultaneously plotted. Conditions: 532 nm continuous wave laser source,
50 pW at the sample position, 0.5 s integration time at each pixel, 5 nm
lateral/vertical steps in (c) and (d).

feedback. The 2 nm film was thermally deposited in an ultra-
high vacuum chamber at a very slow rate (0.03 nm minute ).
From our previous experience,>** ultrathin films deposited on
a metal surface at this condition are typically continuous
because of strong molecule-substrate interactions. The energy
level diagram of the PTCDI/Au interface is shown in the inset of
Fig. 1a. This diagram is drawn based on the ultraviolet photo-
emission spectroscopy (UPS) measurements (Fig. S1, ESIT),
which are discussed in more detail in the ESL.{ PTCDI is an
n-doped semiconductor and excited electrons in PTCDI can be
transferred readily to the Au substrate based on the band
alignment. The grains observed in the height map arise from
PTDCI aggregates, which cover the whole substrate with the
exception of a few areas that appear as dark nano-holes in the
AFM map. Nano-optical measurements were performed using a
silver (Ag)-coated silicon tip irradiated using a 532 nm laser
source. As schematically illustrated in Fig. 1b, unlike the case of
topographic mapping, an intermittent contact mode was used
for TEPL mapping. Namely, two spectra are recorded at every
pixel of the spectral nano-images. The first signals were
recorded when the tip is 30-40 nm away from the sample
(Fig. 1c), whereas the second set of signals were obtained when
the tip is in contact with the substrate (Fig. 1d). In this scheme,
the far field response (tip out) is dominated by scattering from
the PTDCI film itself, whereas the near field signal (tip in) is
enhanced as a result of the interplay between the plasmonic
probe and the substrate. The (junction) plasmon-enhanced
optical response in the tip-in vs. tip-out spectra is evident both
in the simultaneously recorded images in Fig. 1c and d and in
the selected near field and far field spectra shown in the same
figure. In Fig. 1e, we show that selected near field spectra
deviate from the average. For instance, the single pixel spec-
trum that is taken from the region that features the stron-
gest TEPL response shows a greater contribution from the
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intermolecular excitons. This exemplifies the power of TEPL
in isolating the different components that are otherwise spa-
tially averaged in the far field response.

Selected area topographic and nano-optical maps that
expose the heterogeneity of the recorded optical response are
shown in Fig. 2. Note that the area spanned by the topographic
and nano-PL maps in Fig. 2b-d roughly correspond to a
diffraction limited spot. In other words, conventional optical
microscopy and spectroscopy measurements cannot resolve the
observed heterogeneity within the analyzed area. Indeed, TEPL
mapping allows us, e.g., to between nano-domains of PTDCI
(see highlighted oval areas in Fig. 2b-d) at which photolumi-
nescence is dominated by intermolecular excitons vs. vibronic
sub-bands. This is perhaps most visible in the composite map
that tracks both mechanisms. Beyond clear correlations
between topographically distinct features (Fig. 2a) and TEPL
maps (Fig. 2b-d), our measurements also reveal correlations
between the measured heights and the nature of the excitonic
transitions in the film. For instance, thicker regions seem to
support intermolecular excitons, whereas thinner regions fea-
ture dim/quenched TEPL. These two observations can be read-
ily understood. The higher availability of molecules in the
thicker portions of the films increases the probability of inter-
layer exciton-driven PL, whereas charge transfer between PTCDI
molecules and the underlying gold film led to quenched emis-
sion. Indeed, the interplay between enhanced absorption and
quenched emission underlies TEPL. The latter would be
expected to dominate in the thinner films. This can be further
confirmed with a statically analysis of intensities for each
height. These distributions can be found in the ESIt (Fig. S2)
along a detailed explanation of the physical mechanisms
involved.

To systematically examine the data and identify the domi-
nant spectral modes in an unbiased fashion, we employ a
variational autoencoder (VAE).”® VAE is an unsupervised deep
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Fig. 2 Topographic AFM map (a) and TEPL maps in the 1.60-1.72 (b) and
1.87-1.99 (c) eV regions are shown along with a composite TEPL map that
tracks both intermolecular excitons and vibronic sub-band-mediated PL.
The selected energy maps are chosen such that they track different
contributions to PTCDI emission, as illustrated through the selected
spectra plotted in (e). Conditions: 532 nm continuous wave laser source,
50 pW at the sample position, 0.5 s integration time at each pixel, 5 nm
lateral/vertical steps in (c) and (d).
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learning technique based on the idea that complex experi-
mental observations can be explained by a small number of
latent variables. It is designed to learn the corresponding latent
code, which is a probabilistic, compressed representation of
input data, residing in a lower-dimensional space, from which
the original data can be reconstructed. Implementation-wise,
VAE learns how to compress the original observations into a
small number of latent variables using an encoder neural
network and then decompress the original observations back
from that latent representation via another neural network
called decoder. In the process, it learns the most important
information needed to describe the whole dataset, while dis-
carding all the information it considers irrelevant, such as
measurement noise. The special regularization term in the
VAE’s training loss function ensures that the latent space is
well-structured and continuous, making it interpretable and
meaningful in the context of identifying dominant data modes.
Recently, VAEs have been successfully applied to infer order
parameters and detect phase transitions in theoretical lattice
models®”*® and experimental datasets from electron and atomic
force microscopies on 2D systems.***° The VAE was implemented
using the pyroVED package (https://github.com/ziatdinovmax/pyro
VED) with the default VAE training configuration.

The analysis of the latent manifold learned by the VAE (Fig. 3a)
reveals that it successfully identified two dominant traits in the
dataset. These are characterized by changes in peak intensity,
represented by one latent variable, and shift in peak position,
captured by another latent variable. Introducing additional latent
variables did not contribute any further significant insights into
the data’s structure. Fig. 3b shows a one-dimensional cross-
section of the learned latent manifold. This cross-section is taken
along the axis of the second latent variable, holding the first latent
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variable (representing intensity) at a constant value. Note that we
have the flexibility to generate any number of samples from the
latent code and to select the grid density in the latent space at our
discretion. This capability significantly enhances the visualiza-
tion and interpretation aspects of our analysis. The analysis of
the cross section reveals two modes at approximately 1.73 and
1.90 eV, which can be assigned to vibronic sub-bands and inter-
molecular exciton, respectively. Additionally, another broader
mode, characterized by a wider distribution of peak positions, is
observed around 1.80 eV. This mode is likely associated with
intramolecular excitons. This identification of peaks with the
algorithm’s output aligns closely with experimental results.>

The reproducibility of our observations and conclusions
were ensured by repeating the above-described measurements
over several regions of the film. Simultaneously recorded AFM-
TEPL maps of a small region of the substrate are shown in
Fig. 4. Here, we isolate an area that features localized PL
emission to demonstrate our (measured) spatial resolution. It
is important to distinguish between actual and measured
spatial resolution. Whereas the first is governed by a combi-
nation of field localization and the so-called lightning rod
effect,®" the latter is dictated by the spatial extend of the signal
at the particular location imaged. Here, we show that a spatial
resolution on the order of 10 nm is possible. This is not
surprising given recent reports from our group in which sub-
5 nm spatial resolution was demonstrated in both linear'” and
nonlinear’> TEPL studies of excitonic materials. The contrast
between the topographic resolution that is governed by a
convolution between the tip and nanostructure shape and the
TEPL resolution is immediately noticeable in Fig. 4c.

In summary, we show the power of TEPL in the context of
mapping the optical and electronic properties of semiconductor
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(a) The latent manifold learned by VAE where the first latent dimension (z;) corresponds to variation in peak intensity and the second latent

dimension (z,) corresponds to variation in peak position. (b) Cross-section of the VAE latent manifold along the latent dimension associated with the peak
position (red rectangular in (a)). The color gradient corresponds to a change in peak position and serves as a visual guide. (c) The histogram of the
corresponding peak positions.
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Fig. 4 Simultaneously recorded selected area TEPL (at 1.87-1.99 eV) and
AFM maps (b) are shown. TEPL and AFM cross-sectional cuts taken along
the dashed lines in (a) and (b) are shown on the same plot in (c).
Conditions: 532 nm continuous wave laser source, 50 pW at the
sample position, 0.5 s integration time at each pixel, 5 nm lateral/vertical
steps in (a).

thin films made of PTCDI. Enhanced scattering (up to 10x) and
significantly improved spatial resolution (<10 nm, measured)
over conventional PL allows us to track heterogenous spectral
signatures on the nanoscale. The observed spectra that we were
able to resolve individually can be associated with 3 different
underlying mechanisms that depend on sample thickness and
the nature of the underlying substrate. For instance, we observe
dim PL in regions featuring thinner PTCDI coverage, which is
unlikely to be the case for films supported on other (e.g,
silicon) substrates. The generality of our observations therefore
needs to be checked for different substrates. Notwithstanding
the latter, the level of sensitivity and the high spatial resolution
we demonstrate can be exploited in the quest to improve film
quality or otherwise for quality control in the realm of optoe-
lectronic device fabrication. Finally, we have demonstrated the
utility of the unsupervised machine learning in identifying
dominant traits in the hyperspectral dataset that have direct
physical interpretation.

PVA, CFW, and PZE acknowledge support from the U.S.
Department of Energy, Office of Science, Basic Energy Sciences,
Chemical Sciences, Geosciences, and Biosciences Division, Con-
densed Phase and Interfacial Molecular Science program, FWP
16248. MZ acknowledges the Laboratory Directed Research and
Development Program at Pacific Northwest National Laboratory,
a multiprogram national laboratory operated by Battelle for the
U.S. Department of Energy. KR and WLC acknowledge support
from the U.S. Department of Energy, Office of Science, Office of
Basic Energy Sciences, Chemical Sciences, Geosciences, and
Biosciences Division under Award Number DE-SC0024525.

Conflicts of interest

There are no conflicts to declare.

7438 | Chem. Commun., 2024, 60, 7435-7438

View Article Online

ChemComm

Notes and references

1

w

o

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

J. H. Burroughes, C. A. Jones and R. H. Friend, Nature, 1988, 335,
137-141.

A. Facchetti, Mater. Today, 2007, 10, 28-37.

K. Liu, B. Ouyang, X. Guo, Y. Guo and Y. Liu, npj Flexible Electron.,
2022, 6, 1.

G. Horowitz, D. Fichou, X. Peng, Z. Xu and F. Garnier, Solid State
Commun., 1989, 72, 381-384.

T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang,
B. Ma, U. Jeong, T.-S. Kim and B. J. Kim, Nat. Commun., 2015,
6, 8547.

G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and
A. J. Heeger, Nature, 1992, 357, 477-479.

F. Cicoira, C. Santato, F. Dinelli, M. Murgia, M. A. Loi, F. Biscarini,
R. Zamboni, P. Heremans and M. Muccini, Adv. Funct. Mater., 2005,
15, 375-380.

S. B. Jo, H. H. Kim, H. Lee, B. Kang, S. Lee, M. Sim, M. Kim,
W. H. Lee and K. Cho, ACS Nano, 2015, 9, 8206-8219.

V. Vohra, K. Kawashima, T. Kakara, T. Koganezawa, I. Osaka,
K. Takimiya and H. Murata, Nat. Photonics, 2015, 9, 403-408.

R. M. Stockle, Y. D. Suh, V. Deckert and R. Zenobi, Chem. Phys. Lett.,
2000, 318, 131-136.

H. Lee, D. Y. Lee, M. G. Kang, Y. Koo, T. Kim and K.-D. Park,
Nanophotonics, 2020, 9, 3089-3110.

C.-F. Wang, M. Zamkov and P. Z. El-Khoury, J. Phys. Chem. C, 2021,
125, 12251-12255.

S. Mahapatra, D. Liu, C. Siribaddana, K. Wang, L. Li and N. Jiang,
Chem. Phys. Rev., 2023, 4, 021301.

J. Jelken, M. O. Avilés and F. Lagugné-Labarthet, ACS Nano, 2022, 16,
12352-12363.

Z. Li and D. Kurouski, Acc. Chem. Res., 2021, 54, 2477-2487.

P. Z. El-Khoury, Acc. Chem. Res., 2021, 54, 4576-4583.

N. Kumar, A. Zoladek-Lemanczyk, A. A. Y. Guilbert, W. Su, S. M.
Tuladhar, T. Kirchartz, B. C. Schroeder, I. McCulloch, J. Nelson,
D. Roy and F. A. Castro, Nanoscale, 2017, 9, 2723-2731.

D. Zhang, X. Wang, K. Braun, H.-J. Egelhaaf, M. Fleischer,
L. Hennemann, H. Hintz, C. Stanciu, C. J. Brabec, D. P. Kern and
A. J. Meixner, J. Raman Spectrosc., 2019, 40, 1371-1376.

D. M. Marin, J. Castaneda, M. Kaushal, G. Kaouk, D. S. Jones and
M. G. Walter, Chem. Phys. Lett., 2016, 659, 137-141.

S. Le Liepvre, P. Du, D. Kreher, F. Mathevet, A.-]. Attias, C.
Fiorini-Debuisschert, L. Douillard and F. Charra, ACS Photonics,
2016, 3, 2291-2296.

H. Zhao, Y. Zhao, Y. Song, M. Zhou, W. Lv, L. Tao, Y. Feng, B. Song,
Y. Ma, J. Zhang, J. Xiao, Y. Wang, D.-H. Lien, M. Amani, H. Kim,
X. Chen, Z. Wu, Z. Ni, P. Wang, Y. Shi, H. Ma, X. Zhang, ].-B. Xu,
A. Troisi, A. Javey and X. Wang, Nat. Commun., 2019, 10, 5589.

V. R. Gangilenka, L. V. Titova, L. M. Smith, H. P. Wagner,
L. A. A. DeSilva, L. Gisslén and R. Scholz, Phys. Rev. B: Condens.
Matter Mater. Phys., 2010, 81, 155208.

H. Yamagata, J. Norton, E. Hontz, Y. Olivier, D. Beljonne,
J. L. Brédas, R. J. Silbey and F. C. Spano, J. Chem. Phys., 2011,
134, 204703.

F. C. Spano, Acc. Chem. Res., 2010, 43, 429-439.

M. C. R. Delgado, E.-G. Kim, D. A. D. S. Filho and J.-L. Bredas, J. Am.
Chem. Soc., 2010, 132, 3375-3387.

L. G. Kaake, G. C. Welch, D. Moses, G. C. Bazan and A. ]J. Heeger,
J. Phys. Chem. Lett., 2012, 3, 1253-1257.

T. Wang, T. R. Kafle, B. Kattel, Q. Liu, J. Wu and W.-L. Chan,
Sci. Rep., 2016, 6, 28895.

D. P. Kingma and M. Welling, Foundations and Trends™ in Machine
Learning, 2019, 12, 307-392.

A. Baul, N. Walker, J. Moreno and K.-M. Tam, Phys. Rev. E, 2023,
107, 045301.

S. J. Wetzel, Phys. Rev. E, 2017, 96, 022140.

S. V. Kalinin, O. Dyck, S. Jesse and M. Ziatdinov, Sci. Adv., 2021,
7, eabd5084.

C.-F. Wang, A. B. C. Mantilla, Y. Gu and P. Z. El-Khoury, J. Phys.
Chem. A, 2023, 127, 1081-1084.

This journal is © The Royal Society of Chemistry 2024


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc01808g



