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Herein, we report the use of a molecular-defined rhodium(n) coor-
dination polymer (Rh-CP) as a heterogeneous, recyclable catalyst in
carbene transfer reactions. We showcase the application of this
heterogeneous catalyst in a range of carbene transfer reactions and
conclude with the functionalization of natural products and drug
molecules.

Rhodium(u) carboxylate paddlewheel complexes feature two
rhodium centers, a rhodium-rhodium single bond and four
bridging carboxylate ligands. They represent a privileged class
of catalysts, primarily due to each rhodium center having a free
coordination site, central for facilitating for example carbene or
nitrene transfer reactions (Scheme 1A)."™* While the develop-
ment of homogeneous rhodium paddlewheel catalysts has
received significant attention,>* the use of their heterogeneous
counterparts has been much less explored.>® Previous efforts
primarily focused on the immobilization of homogeneous
catalysts on a surface or polymer.® The catalytic activity of this
material, however, is achieved through a single-molecule
catalyst grafted onto the heterogeneous support (Scheme 1B).
Studies on the application of heterogeneous rhodium-based
carbene transfer catalysts, where the catalytically active site is
an integral part of the heterogeneous material, however,
received only little attention (Scheme 1C).°® Studies on such
heterogeneous catalysts are in high demand as these would
allow facile catalyst recovery from the reaction mixture and may
result in enhanced catalyst lifetime, which—given the low
abundancy and high price of rhodium—would have a signifi-
cant impact on the environmental footprint of rhodium-
catalyzed reactions.”
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Unlocking catalytic potential: a rhodium(i)-based
coordination polymer for efficient carbene
transfer reactions with donor/acceptor

Building on our interest in metal-catalyzed carbene transfer
reactions using,” we considered that a Rh(u)-based coordination
polymer (Rh-CP) could serve as a viable starting point to access a
heterogeneous, molecular-defined rhodium catalyst with a repe-
titive paddlewheel structure (Scheme 1D). Such Rh-CP would
differentiate from other approaches, where molecular-defined
rhodium catalysts are heterogenized by immobilization to
surfaces.” We got intrigued by a previous report by Buntkowsky
and co-workers, who described a straightforward synthesis of
such a Rh(u)-based coordination polymer by a ligand exchange
reaction of Rh,(OAc), (Scheme 1C).° A related report by Furukawa
et al. reports on the formation of octahedral clusters using
benzene-1,3-dicarboxylic acid.” Very much to our surprise, only
limited applications in catalysis were described, which focus on
the reaction of ethyl diazoacetate.®

We commenced our studies by performing a ligand
exchange reaction between Rh,(OAc), and terephthalic acid
(H,BDC) to obtain the Rh-CP as a green powder in excellent
yield (Fig. 1A, 97%). The Rh-CP was authenticated to the
literature® by PXRD analysis (see Fig. S1, ESIT), TGA analysis
(Fig. S2 and S3, ESIf) ATR-IR (Fig. S4, ESIf), and diffuse
reflectance spectra (Fig. 1B). Importantly, diffuse reflectance
spectra in an Ulbricht sphere (Fig. 1B) indicate the persistence
of the paddlewheel structure within the Rh-CP. This structural
motif is crucial for the catalytic properties.'®

'H NMR measurements were carried out to determine the
degree of ligand exchange. For this purpose, Rh-CP was
digested in a mixture of DMSO-d¢ and D,SO,, whereby the
integrals of the BDC linker and acetate gave a ratio of about 82
to 3 corresponding to a molar BDC: OAc ratio of 20:1 (Fig. S7
and S8, ESIT). Scanning electron microscopy (SEM) shows our
Rh-CP as comparatively small agglomerates, which are char-
acterized by a lamellar morphology at higher magnification
(Fig. S5 and S6, ESIt). EDX elemental mapping indicates a
homogeneous dispersion of rhodium throughout the synthe-
sized Rh-CP, confirming a consistent elemental distribution
within the compound (Fig. 1C).
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Scheme 1 Rh(i) paddlewheel complexes and Rh(i)-CP in carbene trans-
fer reactions.

To evaluate the catalytic efficiency and stability in catalysis
of the Rh-CP and to probe differences to homogeneous, achiral
rhodium(u) catalysts, we investigated the model reaction of
donor/acceptor diazoalkane 6 with styrene 3 to give cyclopro-
pane 7 (Scheme 3). In a first step, we performed the reaction on
10 mmol scale of diazoalkane 6 (1.9 g) employing 0.5 mg Rh-CP
(23.1% Rh-content) to evaluate stability and activity of Rh-CP.
Complete consumption of the diazoalkane was observed and
the desired cyclopropane was isolated in 92% yield (2.31 g) in
high diastereoselectivity. The diastereoselectivity was compar-
able to achiral, homogeneous Rh(u) catalysts, which is sugges-
tive that the coordination polymer backbone has little influence
on the geometry of transition state in this cyclopropanation
reaction. A further reduction of the Rh-CP catalyst loading to
0.236 mg gave the desired cyclopropane 7 in slightly reduced
yield of 91% (2.29 g).

Recycling studies further showed that the first five cycles
gave a relatively constant yield of >86% of cyclopropane 7,
while the amount of recovered Rh-CP constantly decreased to
60%. This reduction might be attributed to mechanical forces
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Fig. 1 (A) Synthesis of Rh-CP. (B) Optical Kubelka—Munk spectra of

Rh,(OAc)4 and Rh-CP obtained from diffuse reflectance spectra. (C) EDX
Rh mapping of Rh-CP.
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Scheme 2 Studies on Rh-CP catalyzed cyclopropanation of styrene.

on the Rh-CP catalyst during stirring the reaction mixture that
results reduction of particle sizes and reduced catalyst recovery.
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Scheme 3 Scope of different nucleophiles in Rh-CP catalyzed reactions.

The increase of product yield in the fourth and fifth catalytic cycle
might result from this particle size reduction that would also result
in an increased catalytically active surface of the heterogeneous
catalyst. Notably, the amount of recovered Rh-CP significantly
decreased after the fifth cycle (30%) resulting in a reduced yield of
76% of the desired cyclopropane. After the sixth cycle only traces of
Rh-CP were recovered, and no further reactions were performed."
Kinetic studies of the Rh-CP were investigated next. Using 10 mg of
Rh-CP a rapid and linear consumption of diazoalkane 6 was
observed. The reaction rate only slowed down after a consumption
of >90% of diazoalkane 6 (Scheme 2 and Table S1, ESI).

In a next step, we investigated the applicability of the Rh-CP
in the reaction of donor/acceptor diazoalkane 6 in carbene
transfer reactions (Scheme 3). Only a minor excess of the
corresponding nucleophile was used to emphasize the high
efficiency of the Rh-CP. To our delight, the Rh-CP is compatible
with a broad range of different substrates and performs excel-
lent in cyclopropa(e)nation reactions (7-9). N-Methyl indole
gave the product of C3-functionalization 10 in 74% yield and
N,N-dimethyl aniline reacted smoothly in para-C-H functiona-
lization to give 11 75% yield.

X-H reactions (X = N, O, S, Si) gave the desired reaction
products (12-20) in up to 96%. Yet, a longer reaction time of up
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Scheme 4 Scope of natural products and drugs in Rh-CP catalyzed
carbene transfer reactions.

to 24 h was required to achieve the full conversion of diazoalk-
ane 6. This observation could be explained by a potential
catalyst poisoning as the desorption of products or reagents
might be energetically disfavored. We further examined rear-
rangement reactions of sulfur ylides and were able to isolate the
products of Doyle-Kirmse (21), Stevens rearrangement (22) and
Sommelet-Hauser (23) rearrangement reactions in up to 93%
yield (Scheme 3).
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To further underline the applicability of Rh-CP, we studied
more complex natural products and drugs in the reaction with
donor/acceptor diazoalkanes (Scheme 4). Simple drug molecules
such as Ibuprofen, Naproxen or Carprofen gave the desired O-H
functionalization products (24, 25, 27) in high yield. Notably,
only the O-H functionalization product of Carprofen was
observed, while the free N-H function remained untouched.

We further explored natural products; vitamin E reacted in an
O-H functionalization reaction to give the desired O-H functio-
nalization product 26 in moderate yield. Derivatives of amino
acids (28) and celecoxib (30) underwent X-H functionalization
with Rh-CP catalyst. Quinidine, however, remained unreactive
and no reaction was observed with the diazoalkane 6 staying
untouched, which is indicative of catalyst poisoning (Scheme 4A).

In a last step, we studied the functionalization of brucine 31
in Rh-CP catalyzed reaction with diazoalkane 32. Under similar
reaction conditions as reported by Beckwith and co-workers,"
we were able to obtain three different reaction products (33-35)
in a total yield of 39% using 4 equivalents of diazoalkane 32
(Scheme 4B)."*

In summary, we described here the application of a Rh(u)-
based coordination polymer as a heterogeneous catalyst in
carbene transfer reactions. Based on the IR and UV-Vis data,
we were able to prove that the paddlewheel structure of the
Rh,(OAc), precursor is also present in the synthesized Rh-based
coordination polymer. Moreover, detailed studies on catalyst
recycling and catalyst efficiency were performed. We were able
to demonstrate the broad applicability ranging from X-H and
C-H functionalization reactions towards rearrangement reac-
tions and the functionalization of natural products and drugs.
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