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AI in computational chemistry through the lens of
a decade-long journey

Pavlo O. Dral

This article gives a perspective on the progress of AI tools in computational chemistry through the lens

of the author’s decade-long contributions put in the wider context of the trends in this rapidly

expanding field. This progress over the last decade is tremendous: while a decade ago we had a glimpse

of what was to come through many proof-of-concept studies, now we witness the emergence of many

AI-based computational chemistry tools that are mature enough to make faster and more accurate

simulations increasingly routine. Such simulations in turn allow us to validate and even revise

experimental results, deepen our understanding of the physicochemical processes in nature, and design

better materials, devices, and drugs. The rapid introduction of powerful AI tools gives rise to unique

challenges and opportunities that are discussed in this article too.

Introduction

AI is now widely recognized as a powerful technology permeat-
ing daily lives from publicly available chatbots to more specia-
lized business, technology, and research tools. Computational
chemistry is no exception. AI has appeared as a long-sought
technology for computational chemists who are always in need
of faster and more accurate tools to increase the reliability and

scale of atomistic simulations. It is not just the numbers that
we are interested in. AI allows us to look at physicochemical
problems from a different perspective to obtain useful insights
and also approach the method development from a radically
new angle.

The author started his journey in the field of AI in computa-
tional chemistry in 2013 with a firm belief that AI is the tool to
solve many pertinent problems in simulations. Now is the time
to reflect on how the field developed over the decade and where
it is heading. This article approaches it through the lens of the
author’s contributions1–46 put in the broader context of the
current state of affairs in the field.

During the journey, we introduced and explored many
concepts to improve the quantum mechanical (QM) and
dynamics methods with machine learning (ML).1–7 We also
developed practical tools to perform AI-enhanced simulations
ranging from efficient and accurate geometry optimizations
and thermochemical calculations to molecular dynamics and
spectra generation.4,5,8–19 These tools include new methods,
software packages, and their deployment on a cloud computing
platform to make them accessible through a web browser. The
training of students and researchers is also important as
proficiency in AI tools for computational chemistry becomes
one of the most sought-after skills. Our contributions can be
viewed as the intimately interconnected triad of developing AI
methods and concepts breaking through the limitations of
traditional quantum chemistry, providing tools, and training
and popularization. Each element of the triad influences the
other, e.g., feedback from students highlights the current
bottlenecks and helps to improve the methods and tools.
Below, I discuss these topics starting with a concrete and
simple example for motivation.
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Getting the numbers and physics right

QM provides a theoretically rigorous way of getting the numbers
right in atomistic simulations, all we need to do is ‘just’ to solve
the numerical problem based on the Schrödinger equation. Such
accurate calculations are possible, with, e.g., full configuration
interaction (FCI) with a large, ideally complete, basis set. Take
for example the tiny H2 molecule, we can optimize its geometry
with the FCI/aug-cc-pV6Z method which would get us a bond
length of 0.7415 Å agreeing precisely with the experimental value
of 0.7414 Å.47 However, calculations even for such a small system
would take us 5 CPU days to do with common software on a
desktop computer.47 Then, how do we treat the larger systems of
practical interest, which may contain dozens (e.g., small organic
molecules) to millions of atoms (e.g., for enzymatic processes)?
Traditionally, the only way was to carry out approximations to
run calculations faster, leading to a vast sea of QM methods.47

(For larger-scale simulations even further approximations
are required leading to the proliferation of molecular mechanics
force fields, coarse-grained models, and hybrid QM/MM
approaches.) Many such successful QM approximations are
density functional theory (DFT) methods such as B3LYP,48,49

which is still one of the most popular methods around and, if
DFT is still too expensive, a last resort of a computational
chemist to treat the system quantum mechanically is to use fast
semi-empirical QM (SQM) methods.50 If one can afford it, the
good practice is to use the gold-standard,51–53 much-slower-than-
B3LYP, CCSD(T) method54 at least for single-point calculations
after geometry optimizations using a cheaper DFT method (for
the H2 example CCSD(T) is equivalent to FCI). The cost of
making more and more approximations is, in general, the
decreased accuracy. In the case of the H2 molecule, with com-
mon DFT or SQM we can get its bond length anywhere from ca.
0.6 to 0.8 Å. In other words, we cannot guarantee precise results
for large systems with common affordable QM approaches and
our main hope is to get the physics at least qualitatively right,
i.e., for a chemist, it might be good enough to find the roughly
correct geometry of the stable molecular configurations and
know its energy relative to other molecular configurations. The
only way for a computational chemist to verify the simulations
was to compare the observables with an experiment or better
theory, if available.

Now the above lengthy discussion about rather trivial knowl-
edge was with the purpose to show that ML is a game changer as it
provides us with a radically different way to approach the compu-
tational chemistry simulations. For the H2 example, we can get the
same bond length of 0.7415 Å with ML as with FCI but in a
fraction of second.29 Of course, we needed to train on FCI data,
but once it is done, the ML model can be perused again and again
for different kinds of simulations, e.g., for molecular dynamics
(MD) which would be much costlier than geometry optimization
with the reference method. This is the power of ML: it allows us to
perform very fast simulations without compromising or compro-
mising less on the accuracy. All we need is enough accurate data
and good ML algorithms or combinations of ML and QM models.
The community is making strides in all these respects.

Below, I will start by introducing the general-purpose AI-
based methods that computational chemists can readily apply,
then move on to address underlying and new concepts and
discuss how to apply AI to solving specific problems.

General-purpose AIQM1 method

One of the best examples from our research is the AIQM1
method which leverages ML to improve the approximated SQM
method to get the right numbers and physics in real-world
applications at a low computational cost (Fig. 1).14 AIQM1 is
more accurate than common DFT approaches such as B3LYP/
6-31G* while being orders of magnitude faster because
AIQM1’s speed is close to that of the SQM methods. AIQM1
can and should be used instead of the slower and less accurate
common DFT approaches whenever it is possible (the current
recommendation is to use AIQM1 for the neutral closed-shell
organic molecules although it also has decent accuracy in many
other cases). I cannot emphasize enough that, in the age of AI
in computational chemistry, there are fewer and fewer reasons
to use slower and, often less accurate, non-AI methods instead
of existing AI-based counterparts.

To give a perspective: the geometry optimization of the C60

molecule takes just 14 seconds on a single CPU with AIQM1 but
needs 30 min on 32 CPU cores with a DFT approach (oB97XD/
6-31G*). At the coupled cluster level, we cannot even get its
optimized geometry and can only afford to get energy after
spending 70 hours on 15 CPUs and using linear-scaling
approximation. The quality of the optimized geometries at
AIQM1 is essentially at the coupled cluster level and for many
types of bond lengths, we achieve picometer and sub-picometer
accuracy (Fig. 2a–c).14 AIQM1 even works in challenging cases
when, e.g., B3LYP provides a qualitatively wrong structure like
the erroneous cumulenic cyclo-C18 structure of the compound
known to be polyynic (Fig. 2d).14 AIQM1 allowed us to improve
upon the imprecise X-ray structural determination of the much
bigger polyynic compound which would be prohibitive to
optimize at the coupled cluster level (Fig. 2e and f).14

Not just geometries are good, energies and forces are also
particularly accurate with AIQM1, and for many properties
such as reaction energies and enthalpies, isomerization energies,
heats of formation, and rotational barriers, it is on par
with coupled-cluster-level approaches.12,14 In particular, heats of

Fig. 1 Simplified schematic showing the place of AIQM1 among the
traditional quantum mechanical methods: semi-empirical (SQM), density
functional theory (DFT), and coupled cluster exemplified by CCSD(T).
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formation are determined with chemical accuracy12,14 (errors
below the coveted 1 kcal mol�1) which is particularly impressive,
because, e.g., DFT is known to struggle with these types of
calculations and the main approach to make DFT work is to
exploit as much as possible the error cancellation by careful
construction of the isodesmic reactions and similar schemes.55

AIQM1 gets the heats of formation right much faster without
relying on error cancellations.

A particularly important property of AIQM1 is that it pro-
vides robust means for uncertainty quantification (UQ) in
contrast to non-AI QM approaches. The magnitude of uncer-
tainty is determined by how large is the deviation between eight
neural networks in AIQM1.12 The UQ allows us to weed out
unreliable predictions and treat them separately. On the other
hand, the confident AIQM1 predictions with low uncertainty
are a robust tool for detecting errors in experimental heats of
formation.12

As we have seen, AIQM1 is not just faster and more accurate
than common DFT approaches such as those based on B3LYP,
but it can even validate and revise experiments. This is a
watershed moment for computational chemistry.

AIQM1 is a QM method, not a pure AI approach and, thus, it
can also be applied in other typical QM application areas such
as the calculation of excited-state properties. Its performance
for the vertical excitations is on par with common TD DFT
methods but the speed is higher.14 The AIQM1/MRCI (multi-
reference configuration interaction) or CIS (configuration inter-
action singles) methods may come in handy for excited-state
geometry optimizations and dynamics.14,24 For example, we

used AIQM1 to investigate large cycloparaphenylene nanolas-
sos and showed that it could explain well not just ground-state
properties but also correctly predict the fluorescence quenching
in their complexes with fullerenes.24 This means that AIQM1
may be a good choice for, e.g., screening of better materials
exhibiting aggregation-induced emission or for investigating
photocatalytic processes.

Another example is the simulation of IR spectra, which
requires the prediction of the dipole moments that are avail-
able at the AIQM1 level.9 Such spectra have very good accuracy
in terms of peak positions and can be obtained faster than with
DFT approaches.9

What AIQM1 is and why it works

I have started with AIQM1 to give a taste of how AI is changing
computational chemistry. But what is AIQM1 and why does it
work so well? The method can be used for a good illustration of
key concepts such as the D- and transfer learning and the
importance of good-quality data, QM, and ML models (Fig. 3).

D-learning. The original D-learning concept, which we intro-
duced in 2015, uses ML to add a correction to the prediction of
the baseline QM method to approximate the predictions of the
target QM method.6 The baseline QM method is relatively fast
but also less accurate than the target QM method. This concept
can be used to create hybrid ML/QM models which are more
robust and accurate than either constituent ML or baseline QM
models while being faster than the target QM method.

Fig. 3 shows an example of AIQM1 operational process
and important stages of the D-learning. In the training

Fig. 2 AIQM1 can accurately predict geometries as compared with experiment and the coupled-cluster method (a)–(d). In the case of polyynes, AIQM1
(f) revises experimental bond lengths (e). Adapted with permission from ref. 14. Copyright 2021, the Authors.
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stage (Fig. 3a), we need to generate the data containing
differences between the target and the baseline QM methods.

In the case of AIQM1, it is ultimately the differences between
the coupled-cluster (CC, ECC

QM) and semi-empirical (SQM,

Fig. 3 The workflow of the design of the AIQM1 method: (a) the training procedure, (b) the final composition and implementation using ML atom’s
model tree concepts in Python. (a) Adapted with permission from ref. 14. Copyright 2021, the Authors. (b) Reproduced with permission from ref. 10 under
the CC-BY 4.0 license. Copyright 2024, the Authors.
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EODM2�
SQM ) energies (note that the D4-dispersion corrections ED4

disp

were also subtracted from the data but this is a technical detail
not important for discussing D-learning). Then the chosen ML
model is trained on these differences (in the case of AIQM1 it is
more complicated as it was done in two stages involving
transfer learning, see below). In AIQM1, eight ANI-type56 NNs
were trained on different subsets of the data.

In the prediction stage (Fig. 3b), the baseline QM method
should be used to predict the energies. The ML model is then
used to predict the differences that are added to the baseline
energies to approximate the target QM energies. In AIQM1, the
differences are calculated as the average of the eight NN
predictions (and D4 corrections are added back too). The
resulting energies approximate the coupled-cluster level.

Derivative properties such as forces or Hessians for geo-
metry optimizations, dynamics, or thermochemistry calcula-
tions can be readily obtained in AIQM1 by adding the corres-
ponding derivative properties obtained at each component
(SQM, NN, and D4). Hence, one can, e.g., obtain geometries
at the coupled-cluster level at a cost moderately exceeding the
cost of the SQM method which is the slowest among all the
components.

Transfer learning. I briefly mentioned that D-learning cor-
rections were trained in two stages involving transfer learning.
The latter concept is confusingly similar to D-learning because,
in the context of computational chemistry, ML is often trained
on the larger, lower-level QM data and later fine-tuned on the
smaller, higher-level QM data.30 The key difference between the
D- and transfer learnings is that D-learning always requires
the calculations at the baseline QM level.30 I will elaborate on
their differences, advantages and disadvantages, and related
concepts later.

How transfer learning works can also be shown in an
example of AIQM1. There, the NNs are first trained on the
differences between the DFT and SQM properties (energies and
forces). These differences are less costly to generate and hence
more abundant than available differences between the coupled-
cluster and SQM properties. These NNs are then fine-tuned by
optimizing a reduced subset of the NN weights on the differ-
ences between the coupled-cluster and SQM energies to yield
the final NN-correcting models as described above.

Data. The quality and limitations of AI-enhanced methods are
shaped by the data used for training. In the case of AIQM1, it was
crucial to have a diverse data set with many different molecules
and molecular complexes represented by equilibrium and off-
equilibrium structures. We took an existing ANI-1x data set57 with
4.6 million geometries for which energies and forces were avail-
able at the DFT level for the first stage of creating a D-model. In
the next stage, we used the smaller ANI-1ccx data set57 with half a
million geometries for which coupled-cluster energies were avail-
able. The limitation of both data sets is that they only represent
the neutral, closed-shell species (only containing CHNO elements)
in their ground state. Hence, AIQM1 is expected to perform the
best for the same type of species and properties. However, in
contrast to pure ML models, it does work well in other cases such
as charged species and excited-state properties.

QM methods. The quality of the baseline QM method is
important for a good D-learning approach. In general, the
closer the baseline to the target, the easier the learning
task.6,58 The problem is that methods closer to coupled cluster
are also expensive. DFT can have prohibitive costs for many
simulations too. Thus, in AIQM1, we decided to use a semi-
empirical QM baseline which is the most affordable type of
electronic structure approximation. Among numerous possible
candidates, we opted for the semi-empirical ODM2 method.59

The formalism of ODM2 goes beyond the popular methods
based on the neglect of diatomic differential overlap (NDDO)
approximation as it includes orthogonalization corrections,
effective core potentials accounting for core–valence interac-
tions, penetration integrals, and explicit dispersion corrections.
Its careful parametrization also yielded a balanced and accurate
(for the semi-empirical standards) description of various prop-
erties ranging from heats of formation to excitation energies
and noncovalent interactions, which placed it among the best
non-ML semi-empirical methods. In AIQM1, we use the mod-
ified ODM2, where the D3 dispersion correction term is
replaced with D4-type corrections60 but it is not important for
the subsequent discussion.

ML models. The success of D-learning also hinges on the ML
model used for correction. In contrast to our original proof-of-
concept work on D-learning, AIQM1 uses the modified version
of the ANI-type56 NNs. These networks are based on the Behler–
Parrinello approach where NNs make predictions of atomic
contributions and are trained so that their sum reproduces the
total energies as well as possible.61,62 This endows the NNs with
the transferability to molecules of different sizes, i.e., also
larger than those in the training set. For example, AIQM1 was
trained on molecules with no more than eight non-hydrogen
atoms but can be applied to much larger molecules as we
have seen.

Why D-learning is the key for AIQM1’s versatility and
robustness

AIQM1 is a nice example to explain why D-learning is so
powerful while being a relatively simple concept. In AIQM1,
NNs of ANI-type are used to correct the predictions of the SQM
approach based on the ODM2 method. ODM2 was shown to be
the best for heats of formation and several other properties
among other SQM methods, but it was still far from achieving
chemical accuracy.59 Needless to say, as an SQM method,
ODM2 is generally not as robust as common DFT approaches.
A slightly different variant of ANI-type NNs was trained several
years before the use of AIQM1 on the same data and using a
similar transfer learning procedure which resulted in the pure
ML method ANI-1ccx.63 This method is, hence, even faster than
AIQM1 while achieving similar accuracy, i.e., approaching the
gold-standard coupled cluster level for many applications such
as relative energies. Nevertheless, ANI-1ccx is only applicable to
predicting the energies and forces of the neutral closed-shell
species in an electronic ground state and is known to have
qualitative failures for, e.g., optimizing the C60 fullerene where
it erroneously predicts all equal bond lengths. ODM2, while
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being less accurate than ANI-1ccx for many properties, is
usually at least qualitatively correct as the underlying QM
formalism properly captures the physics of the problem. ANI-
1ccx is more accurate than ODM2 for species similar to those in
ANI-1ccx training set but may fail even qualitatively for other
applications as no physics is explicitly built into it. AIQM1
combines the best of two worlds and is much more accurate
than ODM2 and much more stable for capturing correct physics
than ANI-1ccx. AIQM1 is noticeably more accurate than ANI-
1ccx even for the tasks the latter method is good at. The
improved robustness of AIQM1 compared to both ODM2 and
ANI-1ccx was particularly obvious when benchmarked on tran-
sition states, which were not in the training data of the NNs.35

Thus, using the combination of the baseline QM methods and
ML corrections yields a hybrid model that inherits correct
physical behavior from the QM baseline and improved accuracy
from ML.30

Historically, the development of D-learning was inspired by
an early demonstration of the capability of ML to learn the DFT-
level atomization energies for chemically diverse species.30

While the demonstration was pioneering and impressive at
the time, it was quickly realized that even the SQM methods
were better.64 Instead of being disappointed by the not-so-good
performance of ML, in 2013, we saw an opportunity to combine
two computationally fast approaches SQM (or other QM) and
ML. I must also mention that D-learning can find its analogy in
similar works predating its publication. A notable example is
studies on using NNs to correct heats of formation predicted by
DFT to target the experimental values as early as 2003.65,66 Back
in 2015, we demonstrated proof-of-concept that the D-learning
approach is very general and not limited to specific combina-
tions of the baseline and target levels. Since 2013, many
improved models and data sets emerged which allowed us to
eventually also develop the generally applicable method
AIQM1. I will discuss such ML models and data issues later,
after looking at how D-learning is used, and other concepts and
methods combining ML and QM.

Where D-learning stands in AI-enhanced computational
chemistry

The original motivation behind the D-learning concept was the
creation of the general-purpose method such as AIQM1. An
increasing number of methods related to AIQM1 were devel-
oped independently following similar ideas. Some of them such
as QDp67 and DFTB/ChIMES68 also use the SQM method (often
based on GFN2-xTB rather than ODM2) and different types of
ML corrections, either based on another NN or even splines.
Typically, these methods target the DFT-level accuracy while
AIQM1 was designed to approximate the coupled-cluster level.
Other methods correct DFT to experiment.65,66,69,70

D-learning usually refers to hybrid models where 3D struc-
tural information and elemental composition are supplied as
descriptors (input) to the correcting ML model. However,
nothing restricts us from using other descriptors, e.g., derived
from the baseline QM model. In the end, why not reuse more
information from the baseline model when it is available for

free? While models such as AIQM1 use only such structural
and composition information, other models such as OrbNet
Denali71 use features from the QM baseline.30 Both types of
strategies were shown to work, at least as a proof-of-concept, for
correcting the approximate ab initio QM baseline (e.g., Hartree–
Fock) to a more accurate coupled cluster level, i.e., basically
learning the correlation energy (an idea which was also quite
old72).6,73

D-learning is also often used to create hybrid ML/QM models
for solving specific problems, e.g., running dynamics.74 This,
however, requires prior training of such models and therefore
is less straightforward to use than out-of-the-box general-
purpose approaches.

Deeper integration of AI with QM: alternatives to D-learning

While D-learning is a powerful concept, ML only corrects the
predictions of an approximate QM baseline method a posteriori.
We can use ML in a very different way by improving the QM
model and then get better results with such a hybrid model.

One of the concepts is improving the QM Hamiltonian with
ML. We demonstrated its possibility in 2015 (the same time as
D-learning) for an SQM approach by correcting the semi-
empirical parameters entering the Hamiltonian to make para-
meters adjustable for each molecule rather than using the fixed
set of parameters.7 We showed improved accuracy for such
models for atomization energies relative to the DFT target. With
time, many independently developed integrated approaches
emerged, some of which also improved the SQM Hamiltonian
by treating it as a layer of NNs75 or by using splines.76

Ab initio QM and DFT methods can also be similarly
improved with ML, on the levels of the Hamiltonian, (Kohn–
Sham) molecular orbitals, and functionals.77–79 On the DFT
side, several general-purpose ML-improved DFT functionals
were proposed, e.g., DM2180 and CF22D.81 Of course, these
approaches are slower than ML-improved SQM ones, but they
have the potential to be more robust because of the underlying
less approximate physical models.

Since accurate ab initio methods such as different variants of
coupled cluster and configuration interaction are very slow,
there is a high incentive to make them faster by, e.g., accelerat-
ing their convergence and selecting the most important
configurations.82–84

One of the biggest departures from the common QM meth-
ods is using ML to get the best wavefunction for the system.85,86

Impressive results were shown in this respect by obtaining
more accurate values than with coupled cluster and recent
works87,88 showed that it is possible to also obtain excited-
state energies. Although these methods are still very computa-
tionally expensive, attempts are made in the direction of
general-purpose faster approaches.89 The developments in this
field are important to keep an eye on.

From D-learning to pure ML approaches

All the above discussions are mainly concerned with how to
obtain more accurate (or faster) QM-based approaches by using
ML. The ultimately faster solution is to use pure ML and not to
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perform any QM calculations during the production simula-
tions. The most common application of pure ML models in
computational chemistry is to learn the potential energy (and
forces) for atomistic systems, i.e., building the so-called
machine learning (interatomic) potentials (MLPs).29,40,62,90–92

Before considering the MLP models in general, let us first
discuss how we can learn from the D-learning concept. This
is admittedly an unusual way of discussing AI in computational
chemistry as typically MLPs are considered first as simpler.
However, it is beneficial in the context of the practical con-
siderations which are quite general: we want a model that is as
accurate as possible but also as robust as possible. While we
want to discard the use of the baseline QM model, we want to
preserve the benefit of its correct physical behavior. This
indeed is possible to a good extent because we can generate
much more data at the baseline, faster QM method and use the
slow target QM method for generating only a fraction of data.
Then the hope is that the correct physics will be learned
statistically from more abundant data at the baseline QM level.

How we proceed from here depends on the approach we
choose. One of them is simply training the surrogate baseline
ML model on more plentiful data at the baseline QM level and
then training a correcting model on the difference between the
target and baseline QM levels – ala D-learning but without any
QM calculations needed for prediction. Indeed, in the litera-
ture, such an approach is also often referred to as D-learning,93

but I would prefer not to use this term for such ‘pseudo-hybrid’
models. The reason is that unless the surrogate baseline ML
model is essentially indistinguishable from the real QM base-
line method, the resulting hybrid model might still suffer from
unphysical behavior and reduced accuracy. For example, the
use of a surrogate ML baseline model plus ML correction did
not yield the model better than the ANI-1ccx method,63 but the
use of the real QM baseline (ODM2) yielded the AIQM1 method
with substantially improved performance. The better name for
such pseudo-hybrid approaches using the surrogate baseline
ML models is hierarchical ML – the concept introduced by us in
2020 for generalizing D-learning to an arbitrary number of
corrections and learning baseline QM too.4 An alternative way
of training ML models on the data from several levels is the so-
called multilevel combination quantum machine learning
(CQML) technique.94 It can be used to create ML models
exploiting the implicit correlation between multiple QM levels
in the data.

Another approach to learning from multiple levels is afore-
mentioned transfer learning, when the model is first trained on
the more abundant data at the baseline QM level and then it is
tuned on the smaller data at the target QM level.30 This
approach was used in ANI-1ccx, where the model was pre-
trained on the DFT baseline level and then transferred to the
coupled-cluster level.63 Interestingly, the alternative formula-
tion using two models (a surrogate ML baseline trained on DFT
and ML correction to the coupled-cluster level as in hierarchical
ML) yielded similar results to the single model obtained via
transfer learning.63 Hence, hierarchical ML might be easier to
implement as no changes in the training are required but

transfer learning may lead to a more efficient solution as it
has fewer models.

Transfer learning is also useful for repurposing the ML
model from one class of molecules to another, related one as
well as across different QM levels. ML approaches can further
benefit from unsupervised pre-training. An example of such an
ML model is PorphyBERT pre-trained on porphyrin-based dyes
and transferred to more accurate DFT properties of
metalloporphyrins.95

Despite the increasing number of studies utilizing transfer
learning, relatively little research is done in exploring its
advantages and limitations in the context of repurposing the
models for different levels and molecules. Several studies
indicate that while it is possible, the design of the original
and target data sets in terms of size and composition should be
done carefully for better performance.96,97

Nothing prevents us from combining several approaches
into one. It indeed might be highly beneficial and was done, as
we have seen, in AIQM1. There, the D-learning correction part
was also trained using the transfer learning approach by first
pre-training the NNs on the differences between the DFT and
SQM levels and later transferring to the differences between the
coupled cluster and SQM levels.

Zoo of machine learning potentials

I finally move on to describe the machine learning potentials
(MLPs) which are also typically the constituent parts of the
D-learning-based hybrid ML/QM models. We have already
mentioned multiple times the ANI-1ccx method. It is one of
the successful manifestations of the so-called universal MLPs,
i.e., the models that were pre-trained on the big data containing
chemically diverse species and applicable out of the box
for simulations where its target QM method could be used.
ANI-1ccx is constructed from the feed-forward NNs for each
chemical element and the predictions for each atom are
summed up to produce the total energy; it requires the local
descriptor describing the environment around each atom
within the cutoff. Such architecture was introduced in the
Behler–Parrinello high-dimensional NNs applied for specific
applications.61,62

These models are just several examples of the many
potentials in the rapidly growing zoo of MLPs.40,62,90 Some
of them are based on NNs but by far not all. Many of the MLPs
are based on kernel methods (kernel ridge regression and
Gaussian process regression) and even linear models and
polynomials.29,40,62,90–92 Our contribution to the zoo was the
KREG-based models introduced in 2017 and based on the KRR
and the global descriptor which describes the entire
molecule.5,15,28 These models learn total energies without
splitting them into atomic contributions. KREG models are
most similar to independently introduced GDML-based
models98,99 which also use the global descriptor and the KRR
algorithm but only learn from forces rather than energies. The
KREG models were first designed only for energies and later
extended to also learn forces.28 The technical detail that is
important to mention is that the inclusion of the force
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information into the data greatly improves the accuracy of the
MLPs.40,100 In kernel methods, it can be done by including the
terms corresponding to each force component in the training
data explicitly at the level of the regression function.29 In NNs, it
is typically done at the level of including the error for the forces
in the loss function used during the fitting of NN weights.15

The descriptor plays a big role. In addition to the aforemen-
tioned local and global descriptors, which can be combined
with different algorithms, the descriptor can be ‘learned’ in,
e.g., message-passing NNs.101,102 Furthermore, building equiv-
ariant models via using the ‘equivariant’ local descriptors was
shown to lead to improved accuracy, although the training time
substantially increases compared to models based on feed-
forward NNs.103,104

Most of the introduced MLPs were tested on the standard
benchmark sets and were used in specific applications. To
make them more practical for computational chemists, one
can provide pre-trained ‘universal’ models such as ANI-1ccx
and now it becomes a hot topic when many groups provide
such models trained on varying numbers of chemical elements
and data sets of different compositions and data at various QM
levels.63,105–108 Universal models can have hiccups as we saw
before for ANI-1ccx which has not-so-good performance for
transition states. However, they are getting better and better,
and, e.g., a recently introduced ANI-based model was shown to
describe reactions quite well.109 While the universal MLPs are
getting better, MLPs will continue to be developed and trained
for specific applications for the foreseeable future.

The good thing is that it seems that the construction of
MLPs is becoming quite mature if not routine for many
applications. For example, MLPs based on permutationally
invariant polynomials have very efficient implementations

and were used in many specific applications for studying PESs,
chemical dynamics, and vibrational levels of small to medium-
sized systems.110

Still, the choice of the appropriate MLP model might be not
easy and requires careful consideration of their accuracy, the
computational cost for training and prediction, and how these
performance metrics change with increasing number of train-
ing points as well as the performance for actual simulations.
We made a careful analysis of all these factors to give recom-
mendations for the choice of MLPs for learning single-molecule
PESs in 2021 (Fig. 4).40 The field of MLPs is improving fast
though, so newer models, such as equivariant ones, should be
now considered in addition to those we benchmarked. In
principle, there is an urgent need for standard, independent,
and regular tests for MLPs. The challenge is that even termi-
nology is not standardized. For example, when researchers
train an NN-based model on the training data, they might set
aside the hold-out test set on which they report the errors.
However, training NN is done by performing the backpropaga-
tion on the so-called ‘training’ set and monitoring the perfor-
mance on the validation data sets. The problem now is that the
‘training’ set used for backpropagation is the subset of the
‘total budget’ of the training points which also includes the
validation data. If this sounds confusing – it is. That is why we
consistently use the term ‘sub-training’ for the set used for
backpropagation in NNs (and finding regression coefficients in
the kernel methods). This resolves the confusion but unfortu-
nately not followed uniformly in the literature. I hope that the
reader of this paper might adopt this terminology of sub-
training and validation sets being subsets of the training set.

The key to making the use of MLP routine is also providing
the means to sample required data at the QM level. Here,

Fig. 4 Old recommendation from 2021 for choosing MLPs for learning single-molecule PESs based on considerations concerning accuracy, training,
and prediction time. Since 2021, many additions should be considered. Adapted with permission from ref. 40. Copyright 2021, the Authors.
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various strategies based on ideas behind active learning are
explored. Many of them use the deviation between the different
MLPs trained for the same task as the indicator of uncertainty
while others judge uncertainty differently (i.e., from the var-
iance given by the Gaussian process regression or using the
Bayesian NNs).111–114 In any case, active learning selects points
in a loop consisting of the simulations, identification of uncer-
tain points, labeling them, training the model, and repeating
the procedure until the satisfactory simulations.115 Examples of
successful active learning procedures and software include the
construction of the aforementioned ANI data sets and
models105 as well as approaches based on DPMD116 including
the deep potential generator (DP-GEN) procedure117 and algo-
rithms exploiting meta-dynamics.118 Our active learning imple-
mentations based on MLatom are also on the way.

One of the pertinent problems of the MLPs is the correct
treatment of the large systems which are likely to include
important long-range interactions such as dispersion, electro-
statics, and induction terms.119 In principle, if MLPs are
directly learning the whole system, e.g., with the global descrip-
tors like in sGDML120 or KREG,28 then they can also learn the
long-range interactions within the system. Nevertheless, most
MLPs applied to very large systems heavily rely on nearsighted-
ness approximations and only treat the local part of the system
within some cutoff. This inevitably leads to the loss of accuracy
when the properties of the whole system are reconstructed from
such MLPs. Lot of progress is made in this respect although
many challenges remain too.119 Dispersion interactions can be
either added explicitly via, e.g., D4 corrections, similarly to the
typical practice in DFT and as is done in ANI-1x-D4 and ANI-2x-
D4 methods121 (also implemented in MLatom),10 or they can
be attempted to be implicitly learned by MLP from the data
(as ANI-1ccx does to some extend).63,119 Both approaches are
approximations and can be insufficient.119 Electrostatics is also a
challenge to learn, and different approximations were suggested
too, i.e., some of them rely on learning charges (e.g., to reproduce
the dipole moments from the reference QM calculations)102 and
others on self-consistent or message-passing framework itera-
tively refining the charge distribution until the lower-energy
solution is found.119 While many approaches rely on learning
point charges,62 an alternative was suggested based on maxi-
mally localized Wannier centers.122 One of the interesting direc-
tions for exploring large systems is the incorporation of ML into
QM/MM and ONIOM schemes.119

Software for computational chemists

It is apparent from the above very incomplete overview that the
number and the quality of computational chemistry tools are
rapidly increasing, at a much faster pace than ever in its
history. Even specialists can no longer keep up with all the
developments. In addition, method development can benefit
end users only if they can access the software implementing the
new methods which ideally should be also easy to use. While in
the AI for computational chemistry, we see the laudable trend

of making the software open source, the problem is exacerbated
by the fact that the computational methods are scattered in
different software packages with often incompatible formats of
input and output. The AI requires a data-oriented approach to
software design with consistent support of the databases and
options for training and using ML models. The more tradi-
tional QM software is mostly designed to enable calculations of
the quantum mechanical properties of a single system at a
time. The clash in the software design strategies is also aggra-
vated by the use of different programming languages making it
more difficult for developers to merge the two software types.
Despite all the difficulties, many solutions and roadmaps to
potential solutions begin to emerge.123,124 Particularly the
development of packages like ASE allows bridging together
different types of models to enable common simulations such
as molecular dynamics (MD) and geometry optimizations.125

We also provide a software solution for AI-enhanced com-
putational chemistry – an open-source MLatom package that
was started in 2013 as a standalone package for creating and
using generic ML models for users without programming
experience.17,19 In 10 years, it was completely redesigned to
support the range of QM (ab initio, DFT, SQM), ML (popular
MLPs such as MACE,104 ANI-type NNs, generic KRR models),
and the hybrid ML/QM models (AIQM1 and user-customized)
via interfaces to many third-party software packages.10,15 While
it can be used as originally intended by users without program-
ming experience for their applications, MLatom is at the same
time a versatile Python package enabling the developers to
seamlessly build their computational workflows.10 Importantly,
we lower the barrier and democratize the use of AI in computa-
tional chemistry by providing access to MLatom through the
web user interface of the XACS (Xiamen Atomistic Computing
Suite) cloud computing.126

MLatom can use the QM, ML, and hybrid ML/QM models to
perform typical computational chemistry simulations including
geometry optimizations, frequencies and thermochemistry calcu-
lations, molecular and quantum dynamics, and supports different
types of spectroscopies (Fig. 5).10 Below we discuss how AI makes
dynamics and spectroscopy faster and even more accurate.

Dynamics

Dynamics is one of the costliest simulation types in computational
chemistry as it requires computationally expensive evaluations of
the required properties (e.g., forces in molecular dynamics) at each
of the many time steps. Hence, dynamics was one of the first
targets for ML, which enables simulations otherwise prohibitively
expensive.127 Dynamics is also a nice example of how ML can be
used completely differently: either as a surrogate model for the
reference (e.g., QM) methods or learning dynamics directly.

Accelerating dynamics with surrogate ML models

Using ML as a surrogate potential for fast prediction of forces to
propagate MD was one of the first successful applications of ML
in computational chemistry.127 The motivation to accelerate

ChemComm Feature Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 7
:2

2:
24

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4cc00010b


This journal is © The Royal Society of Chemistry 2024 Chem. Commun., 2024, 60, 3240–3258 |  3249

Fig. 5 Overview of MLatom functionality. Reproduced with permission from ref. 10. Copyright 2024, the Authors. The plot in panel ‘‘Quantum dissipative
dynamics with ML’’ is adapted with permission from ref. 3. Copyright 2022, the Authors. The plot in panel ‘‘UV/vis spectra (ML-NEA)’’ is adapted from
ref. 15. Copyright 2021, the Authors.
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MD led to the development of numerous MLPs. This is hence
also one of the most mature fields. Hybrid ML/QM models such
as AIQM1 can also be used to get more accurate and stable
dynamics which might be also sufficiently fast if the baseline
QM is fast enough (e.g., if it is SQM method). The relationship
between the accuracy of the models on the test set and the
stability of the dynamics is not as straightforward though, and
one should always perform careful checks and design of the
model.9,128–130

The use of ML is not limited to classical, ground-state MD.
ML was applied to PIMD too.99 Our interests often involved the
excited-state nonadiabatic dynamics, which is another area
where AI models are subject to intense development.20,27,41,131

Despite all the efforts, ML nonadiabatic dynamics is much less
easy to perform than ground-state ML-accelerated dynamics.
The reason is that the learning problem is much more difficult,
particularly in case of the mixed quantum-classical dynamics
based on the trajectory surface-hopping formalism. It needs an
accurate description of different adiabatic surfaces and also an
accurate evaluation of the hopping probability which ideally
requires evaluation of the nonadiabatic coupling vectors
(NACVs). The accuracy of the ML models is usually lower for
excited-state energies than for ground-state energies and the
ML should properly capture intricate details of the excited-state
PESs and the gap between them.131 When NACVs are evaluated,
they need to be phase-corrected and also the geometries with
large-magnitude NACVs properly sampled.18,27,42,131 ML tech-
niques for these tasks are constantly improved. In some cases,
it might be a good idea to simplify the learning problem, e.g.,
the calculation of NACVs can be avoided with the Zhu–Naka-
mura or Landau–Zener approximations.18,27,42,46,131 As we and

others independently showed, it might be easier to set up more
robust simulations by simply invoking the reference QM simu-
lations at the regions with a low energy gap.18,46,132

Another type of dynamics is the quantum dissipative
dynamics of open quantum systems. It is rather different from
MD, but the algorithm is analogous in a way that every time
step depends on the previous time steps. Here, NN approaches
for learning time series were successfully applied to achieve
accurate results at a fraction of the cost.133 Our contribution
was to demonstrate that even approaches such as KRR and
linear regression which would not be typically considered for
treating time series offer a good alternative to NNs.37,39 Inter-
estingly, even linear regression might be more accurate than
‘fancy’ NNs such as bidirectional recurrent NNs (BRNNs) for
ML-accelerated quantum dynamics (Fig. 6).37 This is a good
reminder that often, simpler models might be completely
sufficient and even preferable for a particular application. ML
for quantum dynamics is a relatively new field and we also
introduced an MLQD package8 interfaced with MLatom and
data sets22 which can be used to test and develop new models.

Learning dynamics: the new way of doing computational
chemistry

Despite all the accelerations of dynamics with AI, the dynamics
was still performed based on the same underlying sequential
algorithm, one step at a time. AI provides us an opportunity to
rethink how we approach the simulations as now we can, in
principle, use ML to learn what we actually need. In the case of
dynamics, we need to know the evolution of some property
(nuclear coordinates or populations) as a function of time. NNs,
as universal approximators,134 can do this.

Fig. 6 An example is when simpler model (KRR-L corresponding to the ridge linear regression) has better performance than a much more complex one
(BRNN, bidirectional recurrent neural network). The plots show how well different algorithms learn the time series from the quantum dissipative
dynamics, with the x-axis representing time in units of D units and the y-axis – the population difference. CNN denotes convolutional neural network,
CGRU – NN based on convolutional gated recurrent unit, BRNN – bidirectional recurrent neural networks, KRR-G – kernel ridge regression with the
Gaussian kernel. Reproduced with permission from ref. 37. Copyright 2022, the Authors.
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We introduced learning dynamical properties as a function
of time and shown the feasibility of this concept for both
molecular and quantum dissipative dynamics.1,3 In the case
of quantum dynamics, our AI-QD approach successfully
learned populations and coherence as a function of time and
gave accurate predictions for the test trajectories.3

Before we move on to show how this concept can be applied
to MD, we should also mention that AI can predict the entire
trajectory section in one shot, instead of predicting each time
step separately.2 We introduced and shown the feasibility of
this one-shot-learning strategy for quantum dynamics, where
we could predict 10-ps long trajectory section in just 70 ms.2

Learning the time evolution of nuclear positions as in MD
proved to be much more challenging.1 We showed that it can be
done for the simplest systems such as H2 which has periodic
oscillations of it bond length and dedicated KRR model can
predict its behavior for any arbitrary time.1 For larger systems
with many atoms, the learning task is much more difficult, and
practically, we could accurately learn molecular dynamics for a
finite time segment. These time segments are very long though,
much longer than typical MD time steps. We could get reason-
able MD quality by predicting up to 10–20 fs with our GICnet
model for as large molecules as azobenzene.1 In the case of
learning MD trajectories, we could only get a successful result
after we constrained the AI to respect the required physics
such as the conservation of the total energy and angular
momentum.1

Learning trajectories, in fact, is much more than creating a
faster MD propagator. In its core, we find an analytical function
that represents molecular objects in 4D-spacetime. The nuclear
positions are learned for input in 3D space plus a time dimen-
sion and predicted likewise. This is in contrast to MLPs that
predict an energy for an object learned in 3D space. That is why,
we use the term 4D-spacetime models which is a new concept.1

It is different from MD in many respects: 4D-spacetime models
can predict nuclear positions at any time (and hence any
resolution) in a time segment without the need for iterative
propagation making the predictions very fast and readily par-
allelizable. Sequential predictions for time segments allow the
generation of very long MD trajectories at a much-reduced cost,
even when compared to MD with MLPs. We can take derivatives
of 4D-spacetime models to obtain nuclear velocities and accel-
eration at different times, from which we can recover forces,
making these models more general compared to MLPs.1

In addition, since 4D-spacetime models contain information
about the molecular object at different times, they present a
unique opportunity to look from a new angle at the chemical
reactions. Reactions are contained in the 4D-spacetime models
and they can be used to analyze what happens in time when a
reactant becomes the product. We showed proof-of-concept
that we can predict the reaction pathway and also that we can
analyze 4D-spacetime models to understand which structural
parameters and velocities lead to chemical reactions.1

Similar to the D-learning concept started in 2013, it might
take some time until 4D-spacetime models become common-
place and materialize in ready-to-use methods such as AIQM1.

In the meantime, they can be used for specific problems as
MLPs are used. The concept is quite intuitive and several
groups independently studied related approaches, e.g., for
interpolating between time steps in MD.135

Geometry optimizations and reaction
explorations with AI

Before going to the next topic, I had to at least briefly mention that
AI models can be used for accelerating geometry optimizations of
minima and transition states.136–140 An increased interest is also
now in creating models directly predicting activation energies
important for reaction design.33,43,62,78,141–150 Concerning reaction
design and exploration, many specialized models are developed
also for planning the synthesis and exploration of the reaction
mechanisms.33,43,62,78,141–151

Spectroscopy

Spectroscopy is one of the major applications of computational
chemistry because it gives us a direct way to compare with
experimental observables. The direct spectroscopy simulations
with QM methods are often very time-consuming and, hence,
AI offers itself as a promising solution to reduce the time cost.
Interestingly, spectroscopy was a target of ML for quite a long
time as an early review from 1990s indicates.152

Similar to the dynamics, here AI can be applied using two
different strategies. One of them is to create AI counterparts for
QM methods and use them in the same way. One example of
such strategy which was mentioned before is the use of AIQM1
for running a long Born–Oppenheimer MD trajectory and then
post-processing it to obtain the infrared (IR) spectrum.9 Here AI
improves the quality of the semi-empirical QM baseline leading
to an accurate spectrum at a cost lower than DFT. Pure ML
models were also used quite early to generate IR spectra after
they were trained using active learning.153 MLPs and 4D-
spacetime models were also applied to generate the related
power spectra from the MD trajectories.1

Similarly, UV/vis absorption and emission spectra can be
simulated by calculating excited-state properties (excitation
energies, transition dipole moments or oscillator strengths)
for many molecular configurations and different molecules.
This is very costly. ML can efficiently learn these properties
from a relatively small fraction of the configurations (or mole-
cules) to produce high-precision spectra as was shown in ours
and independent studies.16,21,41,154–158 In addition, we devel-
oped a procedure based on ML for the automatic selection
of the optimal number of sampled configurations (Fig. 7).16

ML-accelerated simulation of the electronic spectrum is also a
strong example that the error of ML with respect to the
reference QM level is lower than the error of QM with respect
to the experiment.16 It has the consequence that the better way
to improve the electronic spectrum quality is to choose the
better reference QM level rather than trying to improve the
ML further.
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AI to directly predict spectra

AI can directly predict spectral shapes and intensities.159,160 It
can be done for IR and UV/vis absorption and emission spectra
mentioned above. This direct strategy might be particularly
useful in situations where the previous strategy (using ML as a
replacement (or supplement) of QM methods) is too inaccurate
and costly for practical applications of, e.g., high-throughput
screening of many materials. We had this situation for the two-
photon absorption which is a fascinating property of some
materials able to absorb two photons and release the photon of
higher energy – useful in many applications such as upcon-
verted laser and 3D printing. For this property, we created the
ML model directly trained on the experimental data and using
inexpensive structural and solvent descriptors.23 This model
did not just predict the spectra (two-photon absorption cross
sections as the function of the wavelength) with a satisfactory
quality similar to DFT but also provided insight which struc-
tural parameters are important in the design of the materials
with better two-photon absorption (Fig. 8).

An inverse problem of elucidating structure from spectra is
another important topic where AI is starting to become the
center of research.161,162

Materials and drug design

Computational chemistry is also intensively used in materials
and drug design. While many of the AI tools described above
can aid in such design efforts, specialized AI tools are often
necessary to develop for particular tasks and many reviews

cover these topics.163 An example of our research is developing
specialized models for designing better materials based on
mixed metal halides for ammonia separation and storage.38

Finding better materials for this application might help with
the pressing issue of energy storage as ammonia can be used as
a medium for indirect hydrogen storage. Remarkably, we were
able to train ML achieving chemical accuracy for predicting
the deammoniation energies which is the key property of
such materials.38 The crucial finding was that we can get much
better models when we train the models for intermediate QM
properties such as ionic polarizabilities and charges which
are then fed into the ML model predicting the final target
property.38 Similarly, we used ML to learn the two-photon
absorption on relatively small experimental data (less than
thousand data points) and were able to predict absorption
strengths for new compounds which were verified in the lab;
this approach has the potential to be used for screening better
materials for, e.g., upconverted laser or 3D printing.23

Both materials and drug design can follow many strategies.
One of them is, as in the above examples, learning the key property
of interest and then applying the ML model to screen the database
to find the best-performing materials. In the case of drug design,
that would mean, for example, using ML for learning, e.g., protein–
ligand binding affinities164 or antimicrobial resistance,165 and
applying them to screen the databases.166 The other way is to
use ML, e.g., generative models and reinforcement learning, to also
come up with new potential drug molecules.167 Explainability of
ML is also important as it can give insight to experts on what
factors are important in the design of new molecules and, e.g.,
identify the structural classes of antibiotics.168

Fig. 7 Simulation of precise UV/vis absorption spectra with machine learning (ML) procedure that automatically chooses the optimal number of the
training points. Reproduced with permission from ref. 15. Copyright 2021, the Authors.
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Nowadays, materials and drug design, and chemistry in
general, witness the radical shift to automized lab platforms
which increasingly rely on AI for many steps of the process,
from hypothesis creation to testing with robots.163,169,170 Which
leads to the final topic.

ChatGPT and other elephants in the
room

The aforementioned automatization and robotization of the lab
processes got a great boost from the large language models
such as ChatGPT and its successors, competitors, and related
models. They can write snippets of code that can be used by
developers of computational chemistry software. These lan-
guage models can also give suggestions for computational
chemists. Currently, there is lots of criticism and concerns
about the often-erroneous output from such models but we
should keep in mind that these models are just at the begin-
ning of their full potential. ChatGPT-like models might be even
too disruptive and even harmful. While I am a big proponent of
the use of AI in computational chemistry, I also strongly
advocate the ethical, responsible, and cautious use of AI.171

My conviction is that AI should stay as a useful tool helping
researchers and not be misused.

Conclusions and outlook

It is fitting to close the overview of our 10-year journey in AI
in computational chemistry by quoting an attendee of one
of my talks who quipped that ‘it looks too good to be true’.
Indeed, the reader might get such an impression and I am fully
aware of the existing reservations in the more traditionally
(quantum mechanically) oriented community. Let me reassure
you that AI delivers in computational chemistry what it
promises. It is already mature for many applications. Advances
in computational chemistry due to AI are breathtaking and
they are no longer limited to proof-of-concepts. AI is indeed
that good and everyone can check how good AI-enhanced
computational chemistry is, even via a web browser.10,19,126

We will see more improvements coming in terms of increased
accuracy and efficiency for more and more types of applications
as well as for new insights and concepts giving a fresh look
at chemistry.

Fig. 8 Learning two-photon absorption required a careful selection of features. Reproduced with permission from ref. 23. Copyright 2023, the Authors.
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136 A. Denzel and J. Kästner, Gaussian process regression for geometry
optimization, J. Chem. Phys., 2018, 148, 094114.

137 I. Fdez Galván, G. Raggi and R. Lindh, Restricted-Variance
Constrained, Reaction Path, and Transition State Molecular

Optimizations Using Gradient-Enhanced Kriging, J. Chem. Theory
Comput., 2021, 17, 571–582.

138 A. W. Mills, J. J. Goings, D. Beck, C. Yang and X. Li, Exploring
Potential Energy Surfaces Using Reinforcement Machine Learning,
J. Chem. Inf. Model., 2022, 62, 3169–3179.

139 K. Ahuja, W. H. Green and Y. P. Li, Learning to Optimize Molecular
Geometries Using Reinforcement Learning, J. Chem. Theory Com-
put., 2021, 17, 818–825.

140 R. Lindh and I. Fdez. Galván, Molecular structure optimizations
with Gaussian process regression, in Quantum Chemistry in the Age
of Machine Learning, ed. P. O. Dral, Elsevier, Amsterdam, Nether-
lands, 2023, pp. 391–428.

141 D. Kuntz and A. K. Wilson, Machine learning, artificial intelli-
gence, and chemistry: how smart algorithms are reshaping simula-
tion and the laboratory, Pure Appl. Chem., 2022, 94, 1019–1054.

142 K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev and A. Walsh,
Machine learning for molecular and materials science, Nature,
2018, 559, 547–555.

143 O. A. von Lilienfeld, K.-R. Müller and A. Tkatchenko, Exploring
chemical compound space with quantum-based machine learning,
Nat. Rev. Chem., 2020, 4, 347–358.

144 S. Manzhos, Machine learning for the solution of the Schrödinger
equation, Mach. Learn. Sci. Technol., 2020, 1, 013002.

145 J. Zhang, Y.-K. Lei, Z. Zhang, J. Chang, M. Li, X. Han, L. Yang,
Y. I. Yang and Y. Q. Gao, A Perspective on Deep Learning for
Molecular Modeling and Simulations, J. Phys. Chem. A, 2020, 124,
6745–6763.

146 T. Mueller, A. Hernandez and C. Wang, Machine learning for
interatomic potential models, J. Chem. Phys., 2020, 152, 050902.

147 Z. J. Baum, X. Yu, P. Y. Ayala, Y. Zhao, S. P. Watkins and Q. Zhou,
Artificial Intelligence in Chemistry: Current Trends and Future
Directions, J. Chem. Inf. Model., 2021, 61, 3197–3212.

148 T. Zubatiuk and O. Isayev, Development of Multimodal Machine
Learning Potentials: Toward a Physics-Aware Artificial Intelligence,
Acc. Chem. Res., 2021, 54, 1575–1585.
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