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Ring expansion of spirocyclopropanes with
stabilized sulfonium ylides: highly
diastereoselective synthesis of cyclobutanes†

Hisanori Nambu, *ab Yuta Onuki,a Kana Aso,a Momoka Kanamori,a

Keisuke Tomohara,b Kiyoshi Tsugec and Takayuki Yakura*a

A novel method was devised for regioselective ring expansion of

Meldrum’s acid-derived spirocyclopropanes to spirocyclobutanes

with stabilized sulfonium ylides, affording 1,2-trans-disubstituted

6,8-dioxaspiro[3.5]nonane-5,9-diones in up to 87% yields without

the formation of any isomers. The aforementioned reaction was

also applied to the barbituric acid-derived spirocyclopropane,

resulting in the formation of the corresponding cyclobutanes.

Sulfonium ylides stabilized by electron-withdrawing groups
(EWG) have been used as a versatile methylene synthon in
the synthesis of a variety of carbo- and heterocyclic
compounds.1,2 As a pioneering work, Payne reported that the
reaction of a,b-unsaturated diethylmalonate with EWG-
stabilized sulfonium ylide 1 (EWG = CO2Et) afforded cyclopro-
pane in 90% yield (Scheme 1A).3 In this reaction, the Michael
addition of 1 followed by SN2-type cyclization of the carbanion
(C-cyclization) proceeded with the concomitant release of the
sulfide. In contrast, the reaction of the corresponding 1,3-
diketone with stabilized sulfonium ylide 1 unexpectedly pro-
duced dihydrofuran in 83% yield through enolate cyclization
(O-cyclization, Scheme 1A).3 The regioselectivity of these reac-
tions may be attributed to the inherent difference between
esters and ketones. Recently, we reported the ring-opening
cyclization of spirocyclopropanes4 with EWG-stabilized sulfo-
nium ylides 1 to afford hexahydrobenzopyranone as a single
isomer via the regioselective ring-opening of cyclopropane with
sulfonium ylide 1 and subsequent SN2-type O-cyclization

(Scheme 1B, eqn (1)).4f Considering the similar reactivity of
cyclopropane and carbon–carbon double bonds, we expected
that the reaction of ester-derived spirocyclopropane 2 with
stabilized sulfonium ylide 1 would provide spirocyclobutane 3
through C-cyclization (Scheme 1C). Because cyclobutane is a
useful scaffold found in several biologically active natural
products and pharmaceutically active compounds,5 the devel-
opment of a synthetic method for cyclobutane is currently the
subject of intense research.6 Although several instances of

Scheme 1 Reactions of various carbonyl compounds with stabilized
sulfonium ylides 1 as nucleophiles.
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cyclopropane to cyclobutane ring expansion have been docu-
mented thus far,7,8 to the best of our knowledge, there have
been no examples of sulfonium ylide-mediated ring expansion
(C-cyclization).9 Herein, we describe the ring expansion of
Meldrum’s acid-derived spirocyclopropanes 2 to spirocyclobu-
tanes 3 using EWG-stabilized sulfonium ylides 1 (Scheme 1C).

Initially, we examined the reaction of 6,6-dimethyl-1-phenyl-
5,7-dioxaspiro[2.5]octane-4,8-dione (2a)10 with dimethylsulfo-
nium benzoylmethylide (1a) as an EWG-stabilized sulfonium
ylide (Table 1). The ring expansion of 1a proceeded under the
reaction conditions previously reported by our group (1.5 equiv.
of 1a in refluxing CH2Cl2),4f affording 1-benzoyl-7,7-dimethyl-2-
phenyl-6,8-dioxaspiro[3.5]nonane-5,9-dione (3a) after 24 h in
75% yield (entry 1). Notably, no isomer formation was observed
during this process. The structure of 3a including its stereo-
chemistry was confirmed by a single-crystal X-ray diffraction
analysis. This analysis revealed that the structure corresponds
to that of cyclobutane with a 1,2-trans configuration (see ESI†
for details). Screening of the solvents at reflux revealed that
benzene and halogenated solvents, such as dichloromethane
and 1,2-dichloroethane, were suitable for this reaction (entry 1
vs. entries 2–5). Finally, we found that chlorobenzene at 80 1C
was the most effective and afforded 3a in 86% yield after 6 h
(entry 6).

After determining the optimal conditions, we investigated
the reaction of spirocyclopropane 2a using a range of sulfo-
nium ylides 1 that are stabilized by carbonyl functional groups
(Table 2). The reaction with 1.5 equiv. of p-methoxybenzoyl
sulfonium ylide 1b in chlorobenzene at 80 1C afforded the
corresponding spirocyclobutane 3b as the sole product after 6 h
in 74% yield (entry 2). The use of m- and o-methoxybenzoyl
sulfonium ylides 1c11 and 1d12 provided the corresponding
products 3c and 3d in 86% and 87% yields, respectively (entries
3 and 4). The reaction with sulfonium ylide 1e bearing a p-nitro
group as a strong EWG decreased the product yield, and a
significantly longer reaction time was required to achieve full
conversion (61% yield, 24 h, entry 5 vs. entry 1). In contrast, the
reaction with p-chlorobenzoyl sulfonium ylide 1f under the
optimized conditions proceeded smoothly to completion
within 5 h, furnishing 3f in 83% yield (entry 6). We also

investigated the suitability of an acetyl sulfonium ylide for this
reaction. To this end, we used tetrahydrothiophenium acetyl-
methylide (1g) because of the difficulty in preparing dimethyl-
sulfonium acetylmethylide. The reaction of 2a with 1g afforded
the desired product 3g as a single isomer, albeit with a
prolonged reaction time and lower yield (24 h, 36% yield, entry
7 vs. entry 1). Moreover, ethoxycarbonyl group-substituted
sulfonium ylide 1h was used in the present protocol, and the
corresponding cyclobutane 3h was obtained in 53% yield after
23 h (entry 8).

Next, we examined the scope of the reaction with the
spirocyclopropane substrates 2 using benzoyl-substituted sul-
fonium ylide 1a (Table 3). Treatment of spirocyclopropanes 2b,
2c and 2d, which possess p-acetoxy-, p-methyl-, and p-
bromophenyl groups on the cyclopropane, respectively, with
1a under the optimized conditions (chlorobenzene at 80 1C),
afforded the corresponding products 3i, 3j, and 3k in 64%–80%
yields with perfect diastereoselectivities (entries 1–3). The

Table 1 Ring expansion of spirocyclopropane 2a with sulfonium ylide 1a

Entry Solvent Temp. Time (h) Yielda (%)

1 CH2Cl2 Reflux 24 75
2 EtOAc Reflux 4.5 60
3 Benzene Reflux 5 74
4 CH3CN Reflux 24 59
5 ClCH2CH2Cl Reflux 7 75
6 C6H5Cl 80 1C 6 86

a Isolated yield.

Table 2 Ring expansion of spirocyclopropane 2a with sulfonium ylides
1a–h

Sulfonium ylide Product

Entry R1 R2 Time (h) Yielda (%)

1 1a C6H5 Me 6 3a 86
2 1b p-MeOC6H4 Me 6 3b 74
3 1c m-MeOC6H4 Me 6 3c 86
4 1d o-MeOC6H4 Me 6 3d 87
5 1e p-NO2C6H4 Me 24 3e 61
6 1f p-ClC6H4 Me 5 3f 83
7 1g Me –(CH2)4� 24 3g 36
8 1h EtO Me 23 3h 53

a Isolated yield.

Table 3 Ring expansion of spirocyclopropanes 2b–h with sulfonium
ylides 1a

Entry

Spirocyclopropane

Time (h)

Product

R Yielda (%)

1 2b p-AcOC6H4 3 3i 64
2 2c p-MeC6H4 6 3j 74
3 2d p-BrC6H4 6 3k 80
4 2e m-MeOC6H4 12 3l 69
5 2f 2-naphthyl 48 3m 80
6 2g Vinyl 24 3n 68
7 2h H 24 3o 26

a Isolated yield.
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reaction of m-methoxyphenyl-substituted spirocyclopropane 2e
for 12 h provided cyclobutane 3l in 69% yield (entry 4).
Although spirocyclopropane 2f, which possesses a 2-naphthyl
group, required a relatively long reaction time (48 h), 3m was
obtained in a good yield (80%, entry 5). There was a concern
that the use of vinyl-substituted spirocyclopropane 2g would
compete with the conjugate addition, but the reaction of 2g
proceeded uneventfully and afforded the desired product 3n in
68% yield (entry 6). Finally, the reaction of the simple spirocy-
clopropane 2h (R = H)13 was investigated (entry 7). A 20,30-
nonsubstituted spirocyclopropane was found to be less reactive
than an aryl-substituted one,4e which resulted in a lower yield
of product 3o (26% yield).

A plausible mechanism for the ring expansion of spirocy-
clopropane 2 with sulfonium ylide 1, stabilized by an acyl
group, is shown in Scheme 2. The ring opening of spirocyclo-
propane 2 would proceed through the nucleophilic attack of
the carbanion in 1 on the electrophilic cyclopropane carbon
possessing an R1 substituent in A. This reaction would lead
to the formation of betaine intermediates B and C. SN2-type C-
cyclization of the carbanion in B would occur smoothly to
afford trans-product 3 with the concomitant release of dimethyl
sulfide. In contrast, the C-cyclization of C would hardly proceed
owing to the severe steric repulsion between the acyl group
(R2CO) and substituent R1 in C. Consequently, intermediate C
could be converted into cyclization precursor B through rever-
sible intramolecular proton transfer via the stabilized sulfo-
nium ylide D,14,15 finally providing trans-isomer 3.

To demonstrate the utility of the present protocol, we
examined the conversion of spirocyclobutane 3a into highly
substituted non-spiro cyclobutane 4 (Scheme 3). The treatment
of 3a with sulfuric acid in methanol/diethyl ether (1 : 1) at 50 1C
led to a transesterification process, resulting in the formation
of dimethyl ester. The reaction yielded the corresponding
cyclobutane 4 in 82% yield. Since the reaction of dimethyl
2-phenylcyclopropane-1,1-dicarboxylate (5) with sulfonium

ylide 1a did not proceed,4f,16 spiro form 3a was required for
the synthesis of diester 4. This ring-expansion reaction of
spirocyclopropanes could be a useful method for the prepara-
tion of substituted cyclobutanes.

Having achieved ring expansion of ester-derived spirocyclo-
propanes, we further investigated the reaction of an amide-
derived spirocyclopropane with an EWG-stabilized sulfonium
ylide. The reaction of spirocyclopropane 6,17 derived from
barbituric acid, with sulfonium ylides 1a and 1h in chloroben-
zene proceeded smoothly at 50 1C to provide the corresponding
spirocyclobutanes 7a and 7b in 64% and 83% yields, respec-
tively (Scheme 4). Interestingly, unexpected products 8a and 8b,
which indicated that SN2-type O-cyclization of the enolate ion
instead of the carbanion would occur, were also obtained in 8%
and 9% yields, respectively. Although the results are still
preliminary, the reaction of barbituric acid-derived spirocyclo-
propane with sulfonium ylide exhibits promise as a synthetic
method of spirobarbiturate cyclobutane analogs. These com-
pounds have potential as pharmaceutical agents.18

In conclusion, we devised a novel method for regioselective
ring expansion of cyclopropanes to cyclobutanes using stabilized
sulfonium ylides. Meldrum’s acid-derived spirocyclobutanes
with EWG-stabilized sulfonium ylides afforded the corres-
ponding spirocyclobutanes as single diastereomers in yields of
up to 87%. The present reaction provides an efficient route to
highly substituted cyclobutanes. To the best of our knowledge,
this is the first example of a ring expansion of cyclopropanes
with sulfonium ylides. This reaction may be envisaged as a

Scheme 2 Plausible reaction mechanism.

Scheme 3 Conversion of spirocyclobutane 3a into cyclobutane 4.

Scheme 4 Ring expansion of barbituric acid-derived spirocyclopropane
6 with sulfonium ylides 1a and 1h.
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formal [3+1] cycloaddition, facilitating the construction of the
four-membered ring system.19 The expansion reaction could be
applied to the transformation of barbituric acid-derived spiro-
cyclopropane into the corresponding spirocyclobutane. Ongoing
efforts are being made to apply the present method to the
synthesis of a variety of cyclobutane derivatives.
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