## ChemComm



**View Article Online** 

View Journal | View Issue

Open Access Article. Published on 22 December 2023. Downloaded on 7/31/2025 7:32:16 PM.

### COMMUNICATION

Check for updates

Cite this: Chem. Commun., 2024, 60, 1004

Received 28th November 2023, Accepted 21st December 2023

DOI: 10.1039/d3cc05781j

rsc.li/chemcomm

# Enhanced photocatalytic hydrogen evolution through MoS<sub>2</sub> quantum dots modification of bismuth-based perovskites<sup>†</sup>

Yunjian Fan,<sup>a</sup> Jingmiao Hu,<sup>bc</sup> Tianyang Li,<sup>d</sup> Shuang Xu,<sup>d</sup> Shan Chen<sup>®</sup>\*<sup>a</sup> and Huajie Yin<sup>®</sup>\*<sup>b</sup>

Efficient and cost-effective photocatalysts are pivotal for advancing large-scale solar hydrogen generation. Herein, we report a composite photocatalyst by incorporating MoS<sub>2</sub> quantum dots (MoS<sub>2</sub> QDs) as a cocatalyst into Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, resulting in a high enhancement in photocatalytic performance. Remarkably, the optimum MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite achieves an impressive hydrogen evolution rate (6.09 mmol h<sup>-1</sup> g<sup>-1</sup>) in an ethanol and HI/H<sub>3</sub>PO<sub>2</sub> mixed solution. This rate is 8.8 times higher than pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (0.69 mmol h<sup>-1</sup> g<sup>-1</sup>) and notably surpasses Pt/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (2.47 mmol h<sup>-1</sup> g<sup>-1</sup>). Moreover, the composite displays exceptional stability during an 18-hour reaction, showcasing its potential for sustainable photocatalytic hydrogen evolution.

The urgent need for sustainable energy due to extensive fossil fuel use has sparked interest in harnessing solar energy as a renewable solution.<sup>1</sup> Photocatalytic hydrogen evolution, a promising pathway for generating clean hydrogen from sunlight, faces challenges like efficiency, stability, and cost, underscoring the crucial importance of developing high-performance and cost-effective photocatalysts to drive innovation in this technology.<sup>2–5</sup> Lead halide perovskites (LHPs) have gained significant attention as efficient photocatalysts in the past five years, exhibiting favorable visible light absorption, exceptionally-long charge-carrier diffusion length when employed for photocatalytic fuel production and chemical synthesis.<sup>6–11</sup> However, the presence of

<sup>b</sup> Key Laboratory of Materials Physics, Centre for Environmental and Energy nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China, Hefei, 230031, China. E-mail: yinhj@issp.ac.cn toxic lead (Pb) in LHPs severely limits their potential for practical application. Therefore, researchers are exploring alternatives like Sn and Bi metals to replace Pb within halide perovskite structures. Despite this, the introduction of Sn<sup>2+</sup> often leads to instability, while Bi<sup>3+</sup> shows promise due to its similar isoelectric state to Pb<sup>2+</sup> and success in stabilizing bismuth-based halide perovskites.<sup>12-16</sup> However, the severe charge recombination due to the high exciton binding energy of Bi-based perovskite photocatalysts, results in their poor photocatalytic activity. For example, Zhao et al. reported the MA3Bi2I9 photocatalyst for photocatalytic hydrogen evolution reaction (HER) in the saturated HI solution, which initially exhibited low hydrogen generation activity (12.19  $\mu$ mol h<sup>-1</sup> g<sup>-1</sup>) and was subsequently improved (169.21  $\mu$ mol h<sup>-1</sup> g<sup>-1</sup>) with Pt as a cocatalyst.<sup>17</sup> Nonetheless, its activity remains notably lower than that reported for LHP photocatalysts (1–20 mmol  $h^{-1} g^{-1}$ ).

Recently, several non-noble metal co-catalysts, including rGO,<sup>12</sup> COP,<sup>18</sup> BP,<sup>9</sup> Ni<sub>3</sub>C,<sup>10</sup> and MoS<sub>2</sub> nanosheet,<sup>19</sup> have been introduced to the LHP photocatalysts and the resulting composite demonstrated an impressive photocatalytic performance improvement. It is widely acknowledged that their beneficial impact stems from the creation of various heterojunctions between lead perovskites and the co-catalyst, which effectively enhances the electron–hole separation efficiency and augments photocatalyst carrier transport rates.<sup>20–22</sup> Notably, although MoS<sub>2</sub> quantum dots (QDs) have proven to be a high-performance, sustainable, and cost-effective alternative to Pt for electrocatalytic and photocatalytic HER applications,<sup>23–25</sup> their potential as a cocatalyst to enhance the photocatalytic HER activity of Bi-based perovskite photocatalysts remains unexplored.

Herein, we present a composite of  $Cs_3Bi_2I_9$  perovskite microcrystals modified with MoS<sub>2</sub> QDs for efficient photocatalytic hydrogen generation *via* HI splitting in an HI/ethanol solution. The photocatalytic performance of the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite demonstrated an impressive rate of 6.09 mmol h<sup>-1</sup> g<sup>-1</sup> for hydrogen evolution, surpassing pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (0.69 mmol h<sup>-1</sup> g<sup>-1</sup>) by 8.8 times and Pt/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (2.47 mmol h<sup>-1</sup> g<sup>-1</sup>) by 2.5 times. Notably,

<sup>&</sup>lt;sup>a</sup> Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230039, China. E-mail: chenshan@ahu.edu.cn

<sup>&</sup>lt;sup>c</sup> University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China

<sup>&</sup>lt;sup>d</sup> School of Materials Science and Engineering, Anhui University, Hefei, 230039, China

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: https://doi.org/ 10.1039/d3cc05781j

this activity level represents a new record among Bi-based perovskite photocatalysts under visible-light conditions. This heightened activity is attributed to the superior HER active sites provided by  $MoS_2$  QDs as co- catalysts, combined with the unique crystal structure of  $Cs_3Bi_2I_9$ , ensuring the creation of  $MoS_2$  QDs/ $Cs_3Bi_2I_9$  heterojunctions of a type II nature.

We employed a modified solvothermal approach to synthesize high-quality Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> microcrystals (method details in the supporting information).<sup>26</sup> Additionally, MoS<sub>2</sub> QDs were synthesized via a solvothermal treatment of bulk MoS<sub>2</sub> in isopropanol, followed by a sequence of centrifugal separation.<sup>27</sup> The MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> heterostructure composites were obtained by ultrasonic mixing Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> microcrystals into the isopropanol dispersion of MoS<sub>2</sub> QDs followed by solvent evaporation. The zeta potential of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> microcrystals and MoS<sub>2</sub> QDs is 10.57 and -9.39 mV, respectively (Fig. S1, ESI<sup>+</sup>). Thus, the negatively charged MoS<sub>2</sub> QDs were electrostatic self-assembly onto the surface of the positively charged Cs3Bi2I9 after ultrasonication and solvent evaporation, as illustrated in Fig. 1a. The resulting composite contained MoS<sub>2</sub> QDs with a mass percentage of 5.4 wt%. Pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, as illustrated in Fig. S2 (ESI<sup>†</sup>), exhibited a regular hexagonal prism shape with sizes ranging from 500 nm to 1 µm. The XRD pattern (Fig. S3, ESI<sup>†</sup>) confirms its



Fig. 1 (a) Schematic illustration of synthetic route for the  $MoS_2 QDs/Cs_3Bi_2I_9$ . (b) SEM images of  $MoS_2 QDs/Cs_3Bi_2I_9$ . (c) TEM image of the  $MoS_2 QDs/Cs_3Bi_2I_9$ . (d) UV-vis diffuse reflectance spectra of  $Cs_3Bi_2I_9$ ,  $MoS_2 QDs$ , and  $MoS_2 QDs/Cs_3Bi_2I_9$  (inset: product pictures) (e) and (f) XPS spectra of Bi 4f and I 3d region of  $Cs_3Bi_2I_9$  and  $MoS_2 QDs/Cs_3Bi_2I_9$ .

excellent crystallinity, with peak positions matching the standard perovskite structure of  $Cs_3Bi_2I_9$  (JCPDS#23-0847). TEM images of  $MoS_2$  QDs revealed their size to be between 2 nm and 5 nm (Fig. S4, ESI<sup>†</sup>), and XPS spectra illustrated the presence of both the 1T phase and 2H phase (Fig. S5, ESI<sup>†</sup>).<sup>28</sup> After incorporating  $MoS_2$  QDs, the resulting  $MoS_2$  QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composites maintained their hexagonal prism shape (Fig. 1b) and crystallinity. TEM and HRTEM images revealed tight attachment of  $MoS_2$  QDs (yellow circles) to the surface of  $Cs_3Bi_2I_9$  crystals (Fig. 1c and Fig. S6, ESI<sup>†</sup>).

In the inset image of Fig. 1d, Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> exhibited a vibrant red color, while the color of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> was slightly deepened. Their UV-vis diffuse reflectance spectra (UV-vis-DRS) further indicated extended light absorption in the range of 600-800 nm due to the presence of MoS<sub>2</sub> QDs. In comparison to pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, the measured band gap of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> was reduced to 1.81 eV from the Kubelka-Munk plot (Fig. S7, ESI<sup>†</sup>). The presence of MoS<sub>2</sub> QDs in the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>/MoS<sub>2</sub> QDs composite was further confirmed by XPS survey spectra, including the Bi 4f and I 3d regions (Fig. 1e, f and Fig. S8, ESI<sup>†</sup>). The high-resolution Bi 4f and I 3d peaks of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> shifted towards lower binding energies (0.26 eV for Bi 4f and 0.40 eV for I 3d), respectively, compared to pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. These shifts could be attributed to the strong interfacial interaction between MoS2 QDs and Cs3Bi2I9, as reported in previous studies.20-22,29

The photocatalytic hydrogen evolution performance of MoS<sub>2</sub> ODs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (5 mg) and the comparison samples was measured in a 20 mL ethanol solution containing 0.2 mL of HI and 0.2 mL of H<sub>3</sub>PO<sub>2</sub> under visible light irradiation ( $\lambda > 420$  nm, 300-W Xe lamp).  $H_3PO_2$  is used as a sacrificial reagent in the reaction system to reduce  $I_3^-$  ions to form I-. The generated  $H_2$ increased linearly with irradiation time, reaching a peak hydrogen evolution rate of 6.09 mmol  $h^{-1}$  g<sup>-1</sup> over a 3-hour reaction period. The apparent quantum efficiency (AQE) of MoS<sub>2</sub> QDs/ Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> for H<sub>2</sub> evolution at 500 nm was determined to be 4.71%.<sup>30</sup> When the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite was replaced with an equal amount of pristine Cs3Bi2I9 while maintaining other experimental conditions, the average achieved H<sub>2</sub> evolution rate dramatically dropped to 0.69 mmol  $h^{-1}g^{-1}$ . This observation indicates that the enhanced photocatalytic activity of MoS<sub>2</sub> QDs/ Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> originates from the incorporation of MoS<sub>2</sub> QDs. Furthermore, Pt-loaded Cs3Bi2I9 (Pt/Cs3Bi2I9) and bulk MoS2-modified Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> exhibited H<sub>2</sub> evolution rates of 2.47 (Fig. S9, ESI<sup>†</sup>) and 1.93 mmol  $h^{-1}$   $g^{-1}$ , respectively, which were notably lower than that of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, highlighting the superior cocatalytic performance of MoS<sub>2</sub> QDs over Pt and bulk MoS<sub>2</sub>. Consequently, the photocatalytic HER activity of MoS2 QDs/Cs3Bi2I9 is over 8.8 and 2.4 times higher than that of Cs3Bi2I9 and Pt/Cs3Bi2I9, respectively. As illustrated in Fig. 2c, the effect of different mass percentages of MoS<sub>2</sub> QDs in the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite was investigated. Notably, the incorporation of just 0.9 wt% MoS<sub>2</sub> QDs into Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> led to a significant increase in the H<sub>2</sub> evolution rate to 3.67 mmol  $h^{-1}$  g<sup>-1</sup>. With higher MoS<sub>2</sub> QDs loading, the H<sub>2</sub> evolution rate progressively increased, peaking at 6.09 mmol h<sup>-1</sup> g<sup>-1</sup> for the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite with



**Fig. 2** (a) Time courses of photocatalytic H<sub>2</sub> evolution over Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, bulk-MoS<sub>2</sub>/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, Pt/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> ( $\lambda > 420$  nm). (b) The H<sub>2</sub> generation rate of Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, bulk-MoS<sub>2</sub>/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, Pt/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, Pt/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>, MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. (c) The H<sub>2</sub> generation rate of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> loading different amounts of cocatalyst (0.9, 3.6, 4.5, 5.4, 7.2 wt%). (d) Cycling measurements of photocatalytic H<sub>2</sub> production of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> ( $\lambda > 4_20$  nm). (e) Comparison of the hydrogen evolution performance of reported perovskite-based catalysts and this work.

5.4 wt%  $MoS_2$  QDs. However, at 7.2 wt%  $MoS_2$  QDs, the photocatalytic HER activity showed a decline.

In addition to its impressive photocatalytic hydrogen evolution activity, the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite also exhibited remarkable stability (Fig. 2d). Throughout six cycles of 3-hour experiments, the rate of photocatalytic hydrogen evolution remained nearly constant. XRD patterns displayed no alterations in the crystalline phase of the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite after an 18-hour reaction, and SEM analysis confirmed the preservation of its morphology (Fig. S10, ESI†). Furthermore, the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite outperformed recently reported Bi-based perovskite photocatalysts and some of Pb-based perovskite photocatalysts in terms of photocatalytic hydrogen evolution (Fig. 2e and Table. S1, ESI†).

Both electrochemical and photoelectrochemical experiments were employed to elucidate the significant effect of  $MoS_2$  QDs in enhancing the photocatalytic hydrogen evolution activity of  $Cs_3Bi_2I_9$ . From Fig. 3a, it can be found that the electrocatalytic HER onset potential of  $MoS_2$  QDs could reach



Fig. 3 (a) Electrochemical HER polarization curves of  $Cs_3Bi_2I_9$  and  $MoS_2$  QDs loaded carbon paper recorded in HI solution. (b) PL spectra of  $Cs_3Bi_2I_9$  and  $MoS_2$  QDs/ $Cs_3Bi_2I_9$ . (c) Transient photocurrent responses of  $Cs_3Bi_2I_9$ ,  $MoS_2$  QDs and  $MoS_2$  QDs/ $Cs_3Bi_2I_9$  recorded in 0.1 M tetrabuty-lammonium hexafluorophosphate ethanol solution under light irradiation. (d) EIS Nyquist plots of  $Cs_3Bi_2I_9$  and  $MoS_2$  QDs/ $Cs_3Bi_2I_9$  under light irradiation.

 $\sim -0.2$  V vs. RHE indicating a superior HER activity of MoS<sub>2</sub> QDs compared with pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. Moreover, the photoluminescence (PL) emission intensity of MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> exhibited a notable reduction compared to that of pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (Fig. 3b). Time-resolved photoluminescence (TRPL) results show that the average lifetime for MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> is greater than  $Cs_3Bi_2I_9$  (Fig. S11, ESI<sup> $\dagger$ </sup>). This suggests that the association with MoS<sub>2</sub> QDs significantly enhances the separation efficiency of electrons and holes within Cs3Bi2I9, thereby substantially boosting the photocatalytic HER efficacy of MoS2 QDs/ Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>. Notably, the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite demonstrated the highest photocurrent, directly correlating with its most favorable catalytic H<sub>2</sub> evolution activity (Fig. 3c). Furthermore, for a deeper understanding of the improved HER activity of the photocatalyst, we employed electrochemical impedance spectroscopy (EIS) to characterize and analyze the opto-electronic performance of the photocatalysts in terms of the separation and transfer of photogenerated charges. EIS analysis revealed that the MoS2 QDs/ Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> composite displayed significantly lower charge transfer resistance compared to pristine Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> (Fig. 3d).

Based on the ultraviolet photoelectron spectroscopy (UPS), we obtained  $E_{\rm VB}$  and  $E_{\rm CB}$  values of 1.1 V (NHE), -0.92 V (NHE) and 3.54 V (NHE), -0.11 V (NHE) for Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> and MoS<sub>2</sub> QDs, respectively (Fig. S12 and S13, ESI†). The energy diagram of the MoS<sub>2</sub> QDs/Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>-based hydrogen generation system through HI splitting is illustrated in Fig. 4.<sup>10,18,19,33</sup> According to the UPS calculation method, we obtained the Fermi levels ( $E_{\rm f}$ ) values of 0.12 V for Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> and 0.52 V for MoS<sub>2</sub> QDs. A type II heterojunction forms at the interface of MoS<sub>2</sub> QDs and



Fig. 4 Schematic band diagram of  ${\sf Cs}_3{\sf Bi}_2{\sf I}_9$  and  ${\sf MoS}_2$  QDs for photocatalytic HI splitting reactions.

 $Cs_3Bi_2I_9$ , leading to efficient migration of photogenerated electrons to  $MoS_2$  QDs, thus facilitating the effective separation of photogenerated carriers. Simultaneously, these photogenerated electrons on the surface of  $MoS_2$  QDs diffuse toward active sites where protons undergo efficient reduction to generate H<sub>2</sub>. These heterojunctions play a pivotal role in promoting the separation of charge carriers, thereby contributing significantly to the remarkable enhancement in activity.

In summary, the incorporation of  $MoS_2$  QDs as cocatalysts has been demonstrated to significantly enhance the photocatalytic performance of  $Cs_3Bi_2I_9$  for hydrogen evolution. The optimized  $MoS_2$  QDs/ $Cs_3Bi_2I_9$  composite showcases an impressive 8.8-fold increase in the rate of  $H_2$  evolution compared to the unmodified  $Cs_3Bi_2I_9$ . This study underscores the potential of harnessing zero-dimensional  $MoS_2$  QDs as remarkably efficient cocatalysts, to enhance the efficacy of the photocatalytic HER in Bi-based perovskite photocatalysts. Furthermore, the insights gleaned from this research pave the way for the development of exceptionally active photocatalysts based on lead-free perovskites.

This work was financially supported by the National Natural Science Foundation of China (52102197, 52102325), Excellent Research and Innovation Team Project of Anhui Province (2023AH010001) and Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP016).

### Conflicts of interest

There are no conflicts to declare.

#### Notes and references

- 1 K. Sivula and R. Krol, Nat. Rev. Mater., 2016, 1, 15010.
- 2 Q. Wang and K. Domen, Chem. Rev., 2020, 120, 919-985.

- 3 M.-Y. Qi, M. Conte, M. Anpo, Z.-R. Tang and Y.-J. Xu, *Chem. Rev.*, 2021, **121**, 13051–13085.
- 4 S. Chen, H. Yin, P. Liu, Y. Wang and H. Zhao, *Adv. Mater.*, 2023, 35, 2203836.
- 5 M. Liu, M. B. Johnston and H. J. Snaith, *Nature*, 2013, **501**, 395–398.
- 6 S. Park, W. J. Chang, C. W. Lee, S. Park, H.-Y. Ahn and K. T. Nam, *Nat. Energy*, 2016, 2, 16185.
- 7 Z. Guan, Y. Wu, P. Wang, Q. Zhang, Z. Wang, Z. Zheng, Y. Liu, Y. Dai, M.-H. Whangbo and B. Huang, *Appl. Catal.*, *B*, 2019, 245, 522–527.
- 8 S. Bera, S. Ghosh, T. Maiyalagan and R. N. Basu, *ACS Appl. Energy Mater.*, 2022, 5, 3821–3833.
- 9 X. Deng, X. Kuang, J. Zeng, B. Zi, Y. Ma, R. Yan, J. Zhang, B. Xiao and Q. Liu, *Nanotechnology*, 2022, **33**, 175401.
- 10 Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li and X. Tao, ACS Catal., 2019, 9, 8144–8152.
- 11 Y. Wu, P. Wang, X. Zhu, Q. Zhang, Z. Wang, Y. Liu, G. Zou, Y. Dai, M.-H. Whangbo and B. Huang, *Adv. Mater.*, 2018, **30**, 1704342.
- 12 T. Wang, D. Yue, X. Li and Y. Zhao, *Appl. Catal., B*, 2020, **268**, 118399.
- 13 P. Zhou, H. Chen, Y. Chao, Q. Zhang, W. Zhang, F. Lv, L. Gu, Q. Zhao, N. Wang, J. Wang and S. Guo, *Nat. Commun.*, 2021, 12, 4412.
- 14 D. Wu, B. Huo, Y. Huang, X. Zhao, J. Yang, K. Hu, X. Mao, P. He, Q. Huang and X. Tang, *Small*, 2022, **18**, e2106001.
- 15 B.-M. Bresolin, P. Sgarbossa, D. W. Bahnemann and M. Sillanpää, Sep. Purif. Technol., 2020, 251, 117320.
- 16 Z. Zhang, Y. Yang, Y. Wang, L. Yang, Q. Li, L. Chen and D. Xu, Angew. Chem., Int. Ed., 2020, 132, 18293–18296.
- 17 Y. Guo, G. Liu, Z. Li, Y. Lou, J. Chen and Y. Zhao, ACS Sustainable Chem. Eng., 2019, 7, 15080–15085.
- 18 C. Cai, Y. Teng, J.-H. Wu, J.-Y. Li, H.-Y. Chen, J.-H. Chen and D.-B. Kuang, Adv. Funct. Mater., 2020, 30, 2001478.
- 19 X. Zhao, S. Chen, H. Yin, S. Jiang, K. Zhao, J. Kang, P. F. Liu, L. Jiang, Z. Zhu, D. Cui, P. Liu, X. Han, H. G. Yang and H. Zhao, *Matter*, 2020, 3, 935–949.
- 20 Y. Jiang, J.-F. Liao, H.-Y. Chen, H.-H. Zhang, J.-Y. Li, X.-D. Wang and D.-B. Kuang, *Chemistry*, 2020, 6, 766–780.
- 21 J. Ran, H. Zhang, S. Fu, M. Jaroniec, J. Shan, B. Xia, Y. Qu, J. Qu, S. Chen, L. Song, J. M. Cairney, L. Jing and S. Z. Qiao, *Nat. Commun.*, 2022, **13**, 4600.
- 22 B. Xia, B. He, J. Zhang, L. Li, Y. Zhang, J. Yu, J. Ran and S. Z. Qiao, *Adv. Energy Mater.*, 2022, **12**, 2201449.
- 23 Y. Ji, M. She, X. Bai, E. Liu, W. Xue, Z. Zhang, K. Wan, P. Liu, S. Zhang and J. Li, *Adv. Funct. Mater.*, 2022, **32**, 2201721.
- 24 Y. Tang, C. H. Mak, R. Liu, Z. Wang, L. Ji, H. Song, C. Tan, F. Barrière and H.-Y. Hsu, *Adv. Funct. Mater.*, 2020, **30**, 2006919.
- 25 Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li, Z. Ye, S. Lu, X. Tao and C. Chen, *Appl. Catal.*, B, 2019, 253, 41–48.
- 26 M. Li, S. Xu, L. Wu, H. Tang, B. Zhou, J. Xu, Q. Yang, T. Zhou, Y. Qiu, G. Chen, G. I. N. Waterhouse and K. Yan, *ACS Energy Lett.*, 2022, 7, 3370–3377.
- 27 L. Najafi, B. Taheri, B. Martín-García, S. Bellani, D. Di Girolamo, A. Agresti, R. Oropesa-Nuñez, S. Pescetelli, L. Vesce, E. Calabrò, M. Prato, A. E. Del Rio Castillo, A. Di Carlo and F. Bonaccorso, ACS Nano, 2018, 12, 10736–10754.
- 28 Z. Zhao, J. Wu, Y.-Z. Zheng, N. Li, X. Li, Z. Ye, S. Lu, X. Tao and C. Chen, *Appl. Catal.*, *B*, 2019, **253**, 41–48.
- 29 G. Chen, P. Wang, Y. Wu, Q. Zhang, Q. Wu, Z. Wang, Z. Zheng, Y. Liu, Y. Dai and B. Huang, *Adv. Mater.*, 2020, 32, e2001344.
- 30 J. Yang, A. Acharjya, M.-Y. Ye, J. Rabeah, S. Li, Z. Kochovski, S. Youk, J. Roeser, J. Grüneberg, C. Penschke, M. Schwarze, T. Wang, Y. Lu, R. van de Krol, M. Oschatz, R. Schomäcker, P. Saalfrank and A. Thomas, *Angew. Chem., Int. Ed.*, 2021, **60**, 19797–19803.
- 31 Q. Huang, Y. M. Guo, J. X. Chen, Y. B. Lou and Y. X. Zhao, New J. Chem., 2022, 46, 7395-7402.
- 32 Y. Zhang, Z. Sun, Z. Wang, Y. Zang and X. Tao, Int. J. Hydrogen Energy, 2022, 47, 8829–8840.
- 33 S. A. Shah, I. Khan and A. Yuan, Molecules, 2022, 27, 3289.