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serum samples of prostate cancer
and benign prostatic hyperplasia with 1H-NMR
metabolomics†

Mohammed Zniber, Parastoo Vahdatiyekta and Tan-Phat Huynh *

Prostate cancer continues to be a prominent health concern for men globally. Current screening

techniques, primarily the prostate-specific antigen (PSA) test and digital rectal examination (DRE),

possess inherent limitations, with prostate biopsy being the definitive diagnostic procedure. The invasive

nature of the biopsy and other drawbacks of current screening tests create the need for non-invasive

and more accurate diagnostic methods. This study utilized 1H-NMR (Proton Nuclear Magnetic

Resonance) based serum metabolomics to differentiate between prostate cancer (PCa) and benign

prostatic hyperplasia (BPH). Serum samples from 40 PCa and 41 BPH patients were analysed using 1H-

NMR spectroscopy. PepsNMR was utilized for preprocessing the raw NMR data, and the binned spectra

were examined for patterns distinguishing PCa and BPH. Principal component analysis (PCA) showed

a moderate separation between PCa and BPH, highlighting the distinct metabolic profiles of both

conditions. A logistic regression model was then developed, which demonstrated good performance in

distinguishing between the two conditions. The results showed significant variance in multiple

metabolites between PCa and BPH, such as isovaleric acid, ethylmalonic acid, formate, and glutamic

acid. This research underlines the potential of 1H-NMR-based serum metabolomics as a promising tool

for improved prostate cancer screening, offering an alternative to the limitations of current screening

methods.
1. Introduction

Prostate cancer is a major health concern for men worldwide,
having a profound global impact. The worldwide incidence of
prostate cancer reached 1 414 259 cases in 2020, making it the
fourth most prevalent cancer. In that year, around 375 304
individuals across the globe succumbed to prostate cancer.1

These gures highlight the urgent need for enhanced preventive
measures, early detection, and advanced treatment approaches
to tackle prostate cancer and reduce its severe impact on indi-
viduals. Currently, prostate cancer screening relies on the
prostate-specic antigen (PSA) test and digital rectal examina-
tion (DRE), which possess inherent limitations. One notable
limitation pertains to the utilization of PSA levels in the blood,
which is a widely employed indicator for prostate cancer
screening. However, elevated PSA levels can also result from
various other prostate health conditions, such as benign pros-
tate hyperplasia (BPH) or prostatitis, both characterized by the
enlargement of the prostate gland.2–5 These factors can interfere
with the test, resulting in diminished accuracy, sensitivity, and
eering, Åbo Akademi University, Turku,

tion (ESI) available. See DOI:

f Chemistry 2024
specicity. Moreover, the PSA range of 4 to 10 ng mL−1 presents
difficulties in distinguishing between indolent (slow-growing)
prostate cancer and a metastatic one, thereby casting doubts
on the efficacy of the PSA test.6–8 On the other hand, the invasive
nature of DRE oen discourages patients from undergoing this
test as its sensitivity largely depends on the physician's exper-
tise, leading to considerable variability among different exam-
iners. Moreover, there is a potential risk of DRE failing to detect
early-stage prostate cancer.9,10 Although prostate biopsy is
regarded as the denitive method for diagnosing prostate
cancer,11 it is an invasive procedure that can lead to uncom-
fortable and occasionally inevitable adverse effects. These
effects include pain, fever, hematuria (blood in urine), and in
certain instances, more severe complications such as bleeding,
infection, urinary retention, or sepsis.4,11,12 Misdiagnosing
prostate cancer can have severe consequences, including over-
diagnosis and overtreatment in benign cases or life-threatening
risks in malignant ones. Consequently, there is a pressing need
for novel and reliable screening tests.

In this context, metabolomics emerges as a promising
methodology. This approach, which involves the study of
metabolites, holds the potential to offer insights into disease
mechanisms and provide more accurate diagnostic tools for
prostate cancer.13 Choosing an appropriate analytical method to
monitor variations in metabolites is important. When deciding
Anal. Methods, 2024, 16, 7043–7053 | 7043
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Table 1 Clinical data of the individuals included in the study

BPH group (n = 41) PCa group (n = 40)

Median (range) Median (range)

Age (years) 74.4 (66.2–85.2) 66.2 (48.1–72.3)
BMI (kg m−2) 25.2 (18.7–30.7) 27.1 (21.3–31.3)
Preop PSA (ng mL−1) 3.4 (0.025–35) 7.9 (2.4–30)
Number of cores N/A 14 (3–31)
Positive cores N/A 0 (0–2)
Grade group N/A 3 (2–5)
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on a method, considerations like sensitivity, limit of detection,
resolution, and sample compatibility with the equipment are
crucial. Gas or liquid chromatography coupled with mass
spectrometry (GC-MS or LC-MS) and proton nuclear magnetic
resonance (1H-NMR) stand out as common techniques in
metabolomics. Each of these methods offers distinct advan-
tages and challenges.14–16 For instance, 1H-NMR is non-
destructive, rapid, reproducible, and highly automatable.17–21
1H-NMR is capable of detecting compounds that are less
detectable in LC-MS. Moreover, it can also be used for quanti-
tative analysis and enables the identication of several metab-
olites in a single experiment. However, despite these
advantages, NMR-based metabolomics faces signicant chal-
lenges. One major limitation is the high instrument cost and
complexity associated with traditional high-resolution NMR
spectrometers, which restricts their widespread adoption in
clinical settings. While benchtop NMR offers a more affordable
alternative, it still requires further development to match the
capabilities of its high-resolution counterparts.22 Additionally,
the sensitivity and resolution of NMR techniques are oen
inadequate for detecting low-abundance metabolites, which
limit its effectiveness in quantifying a broad spectrum of
metabolites simultaneously.23,24 Furthermore, NMR suffers
from peak overlap and interpretation difficulties in 1D spectra,
thus complicate metabolite identication and quantication.
Some of these issues can be mitigated by using 2D NMR tech-
niques, which provide better spectral resolution and more
accurate data.25 Therefore, the development of more advanced
tools and workows can help overcome challenges associated
with spectral pre-processing and interpretation, making it
easier to achieve accurate and reliable results.25

In this study, we investigated the potential of 1H-NMR to
discriminate prostate cancer and benign prostatic hyperplasia
using serum samples. We employed 1H-NMR to acquire meta-
bolic proles, followed by pre-processing to enhance data
quality. To unveil, underlying patterns in the data, exploratory
data analysis was performed using Principal Component Anal-
ysis (PCA). Drawing on these insights, a supervised model based
on logistic regression was built to establish a robust classica-
tion model. Additionally, we identied potential metabolites
and compared their relative concentrations to gain deeper
insights into the two studied groups of samples.

2. Materials and methods
2.1 Study design and participants

This research adhered to the ethical guidelines established by
the Finnish National Advisory Board on Research Ethics (TENK)
and adhere to the general principles set out in the Declaration
of Helsinki. The study protocol was approved by the Ethics
Committee of the Hospital District of Southwest Finland (3/
1801/2013). All participants who were suspected of having
prostate cancer (PCa) due to elevated PSA levels or physical
examination consented in writing before participating in the
study. The study included a total of eighty-one patients, con-
sisting of forty individuals with pathologically conrmed PCa
and forty-one patients with BPH. Table 1 displays the clinical
7044 | Anal. Methods, 2024, 16, 7043–7053
characteristics of the individuals involved in the study. All
serum samples were obtained perioperatively from patients
undergoing transurethral resection of the prostate (TURP) for
BPH or robot-assisted laparoscopic prostatectomy (RALP) for
PCa at Turku University Hospital (TYKS) between 2021 and
2022. Aer an overnight fast, blood samples were collected
during the aforementioned procedures (RALP and TURP) under
general or spinal anesthesia. Explicitly, blood samples were
taken using a peripheral cannula placed routinely for intrave-
nous infusion during operation. Next, samples were centrifuged
for 12 min at 3800–4000 rpm at room temperature. Serum
samples were then collected and stored in a−80 °C freezer prior
to the NMR experiment.
2.2 1H-NMR spectroscopy

2.2.1 Reagents. All chemicals used for NMR experiments
were analytical grade. Sodium (3-trimethylsilyl)-2,2,3,3-
tetradeuteriopropionate (TSP) was obtained from Alfa Aesar.
Sodium chloride (NaCl), deuterium oxide (D2O), sodium phos-
phate monobasic (NaH2PO4), and sodium phosphate dibasic
(Na2HPO4) were purchased from Sigma-Aldrich.

2.2.2 Measurement. Serum samples were thawed at room
temperature, transferred into Eppendorf tubes, and then
centrifuged for 10 min at 3000 rpm to remove any possible
precipitates. Aliquots of 300 mL serum samples were then mixed
with phosphate buffer (0.2 M Na2HPO4/0.04 M NaH2PO4 of pH
7.4, 0.8% w/v NaCl, 1 mM TSP, and D2O) to a nal volume of 600
mL. Next, samples were vortexed and then the supernatant was
transferred into 5mmNMR tubes. Lastly, the tubes were capped
and labelled prior to NMR acquisition. NMR experiments were
carried out using a 600 MHz NMR spectrometer (AVANCE III,
Bruker, Germany) equipped with a liquid nitrogen cooled
Prodigy TCI (inverted CryoProbe) at 298 K. Line-broadening
effect coming from proteins and lipids was minimized using
a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence with
a xed receiver-gain value. The delay time, oen referred to as s
(tau), between the p-pulses determines how effectively the
sequence can suppress unwanted signals while maintaining the
integrity of metabolite signals. This parameter is crucial
because different metabolites exhibit different T2 relaxation
times. If the delay time is too short or too long relative to the T2
of the metabolites of interest, it may either over-suppress the
metabolite signals or fail to adequately suppress the signals
from proteins and lipids.26
This journal is © The Royal Society of Chemistry 2024
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2.3 Statistical analysis

2.3.1 Data preprocessing. PepsNMR (Package Extensive
Pre-processing Strategy for NMR data), a statistical soware
package written in R, was employed to perform pre-processing
of the raw FID data using a fully automated preprocessing
pipeline (Fig. 1).27

2.3.2 Data analysis. PCA was used to explore the binned
spectra with the aim of looking for hidden patterns among the
two studied groups (PCa and BPH) using PLS Toolbox version
9.0. Discriminant analysis was also carried out in Python with
the use of logistic regression (LR) to discriminate PCa from
BPH. ASICS (Automatic Statistical Identication in Complex
Spectra), an R statistical package which is based on a library of
pure metabolites spectra, was used for metabolites identica-
tion and relative quantication. The identication of metabo-
lites is achieved by comparing the spectra of the mixture to the
pure spectra.28 The Kruskal–Wallis test was utilized to compare
the relative concentrations of metabolites in PCa and BPH.
3. Results and discussion
3.1 Data preprocessing

The raw FIDs were imported into R, resulting into two datasets
containing the complex FID signals and the Bruker acquisition
parameters. Fig. S1† illustrates the real part of the FID signal,
which is a complex time domain signal comprising all the
information in an NMR spectrum, yet it is challenging to
interpret the information in this format. Fig. 2A and B displays
a zoomed-in view of the FID, both before and aer the removal
of the group delay, which is also referred to as the death time.
The death time is around 5 ms with very small intensities before
the actual FID starts.27 In other words, the group delay intro-
duces a 1st order phase error, which can be corrected by
removing the group delay from the FID. To remove the vari-
ability of solvent (water) residuals from the spectrum, which can
obscure informative signals from other interesting compounds,
the FIDs are then preprocessed using a Whittaker smoother.
The estimated solvent residuals signal, along with the FID
Fig. 1 Preprocessing flow chart.

This journal is © The Royal Society of Chemistry 2024
signal both before and aer its removal, are displayed in Fig. 2C
and D. More insightful data about the target molecules is
revealed by eliminating these residuals. Apodization is another
crucial step that is used to enhance the signal-to-noise ratio and
minimize artifacts, ensuring that the nal spectrum accurately
represents the underlying data. Zero lling is also applied to the
FIDs before Fourier transformation. This process involves
padding the time-domain data with zeros, which increases the
number of data points in the frequency domain, thereby
improving the resolution and allowing for more accurate peak
identication.27,29

The FIDs are then converted into spectra in the frequency
domain with the help of Fourier transform (Fig. 3A), which
offers a typical solution for converting the complex signal into
a complex spectrum. This is done by extracting and trans-
forming each signal into peaks in a spectrum with precise
intensities, positions, and widths which depend on the ampli-
tude of the signal, frequency, and relaxation time. The obtained
spectra can still have a 0th order phase error of a certain angle
40 which is independent of the spectral frequencies. This step is
resolved by automatically nding an optimal 40 which shis the
spectrum into its pure absorptive mode (Fig. 3B). Consequently,
the NMR spectra are referenced with TSP (Fig. S2†), a common
reference compound whose chemical shi is conventionally set
to 0 ppm. This issue is achieved by detecting the peak of TSP in
each spectrum and shiing its chemical shi to 0 ppm. Fig. 3C
and D displays an NMR spectrum before and aer baseline
correction which was performed using asymmetric least
squares (AsLS) smoothing which allows exible baseline esti-
mation with rapid and reproducible results. This step guaran-
tees the removal of artifacts using a suitable approach with the
purpose of improving the warping efficiency. NMR spectra
might still have negative values at particular frequency values
even aer phase and baseline correction. These values must be
set to zero as they cannot be explained properly. Next, the
spectra are then globally aligned. This step removes variations
in experimental conditions (e.g., pH, temperature, or concen-
tration), peak shis, or misalignment between identical peaks
Anal. Methods, 2024, 16, 7043–7053 | 7045
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Fig. 2 Zoomed FID with group delay (A), after group delay removal (B), FID spectrum with (C) and without solvent residuals signal (D).

Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Se

pt
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 1
2:

34
:1

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
from different spectra. The warping technique integrated in
PepsNMR enhances the resemblance between peaks using
shis, stretches and/or compressions along their horizontal
axis. Fig. 3E and F illustrates an NMR spectrum before and aer
binning or bucketing, a data reduction technique used to
reduce the m original spectral intensities (32 768 data points)
into n predened buckets (81 buckets) using rectangular inte-
gration. The high dimensions of the data and small shis of
peaks can hinder multivariate analysis. This step evokes a trade-
off between correcting the small remaining deviations in shis
of peaks, decreasing the total number of features, and keeping
the whole spectral information. Region removal was employed
to cut off the region (4.5–5.1 ppm) where the water resonance
residuals are located. Finally, each spectrum was normalized by
quantile normalization which attempts to achieve the same
distribution of feature intensities across all spectra.30
3.2 Analysis on buckets

3.2.1 Principal component analysis. The preprocessed
spectra were imported into the PLS Toolbox, mean centered and
columns with all zeros were removed. PCA was then applied to
explore the potential hidden patterns present in the data.
Fig. 4A shows that the rst ve principal components (PC1–
PC5), 43.57, 22.59, 8.95, 5.94, 4.37% respectively, explained the
total variance, respectively. Also, their cumulative percentage of
7046 | Anal. Methods, 2024, 16, 7043–7053
variance is 85.43%. Fig. 4B displays the score plot between PC1
and PC7, the main components separating the two studied
groups. It can be observed that the BPH samples are grouped in
the positive values of PC1 and the negative values of PC7, while
PCa samples are surrounding the BPH samples in these two
components. Fig. 4C and D show the loadings of PC1 and PC7
versus the original variables (buckets).

3.2.2 Model development. The data was split into training
and testing sets with a test size of 25%. A logistic regression
model was then trained on the training set using a repeated
cross validation (CV) approach with a number of repetitions of
one hundred and a number of splits of ve. Next, the testing set
was used to predict the output classes and evaluate the perfor-
mance of the model using a confusion matrix. Tables 2 and 3
show the average confusion matrix and classication report of
the logistic regression model using the above-mentioned CV
approach and testing set. The misclassication rates or error
rates are around 14.3% in CV and testing set and was calculated
as the number of all incorrect predictions divided by the total
number of predictions. Additionally, important information
about accuracy, precision and recall can also be obtained from
Table 3, these metrics are essential to assess the robustness of
the classication model. The average recalls or non-error rates
are 87% and 85.5%, precisions are 86.5% and 86% and accu-
racies are 87% and 86% in cross-validation and testing
This journal is © The Royal Society of Chemistry 2024
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Fig. 3 Frequency domain signal (spectrum) after Fourier transform (A) and (B) after zero-order phase correction. NMR spectrum before (C) and
after the estimation and (D) removal of the baseline (in red). NMR spectrum before (E) and after bucketing (F).
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indicating that the model performed well on the training and
testing sets.

3.3 Analysis on relative concentrations

Table 4 presents data on 31 metabolites, among which 12
showed a p-value of less than 0.05 while the other 19 displayed
an even stronger signicance with a p-value of less than 0.0001.
These 19 metabolites (Fig. 5 and S3†), highlighted in bold,
provide strong evidence against the null hypothesis. A p-value of
less than 0.0001 suggests that, under the null hypothesis, the
probability of observing such extreme differences in relative
This journal is © The Royal Society of Chemistry 2024
concentrations by chance alone would be less than 0.01%,
indicating strong statistical signicance. However, it is worth
mentioning that statistical signicance does not necessarily
imply practical signicance or real-world relevance. Among
them, lactate which showed a signicant increase in PCa
compared to BPH similar to other studies that reported this
result in tissue samples.31,40 Myo-inositol was found to be
decreasing towards the progression of the disease. Similarly,
several studies reported a decreased level of this compound in
PCa compared to non-cancer specimens in biopsy, expressed
prostatic uid, and urine supernatant.31 Levels of glutamate,
Anal. Methods, 2024, 16, 7043–7053 | 7047
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Fig. 4 Variance explained (%) versus PCs (A), score plot of PC1 versus PC7 (B), loadings of PC1 (C) and PC7 (D) with the buckets colored in red
black for BPH and PCa samples, respectively.

Table 2 Confusion matrix of LR obtained in cross-validation

Actual

Predicted

BPH PCa

Training set BPH 19 3
PCa 4 23

Testing set BPH 8 1
PCa 2 10
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formate and acetoacetate were found to be signicantly
increased in the patients with cancer when compared with
benign groups, consistent with another study where serum
samples from BPH and PCa (Gleason score 5 and 7) were used to
Table 3 Classification report calculated from Table 1

Precisio

Training set (cross-validation) BPH 0.84
PCa 0.89

Testing set BPH 0.89
PCa 0.83

7048 | Anal. Methods, 2024, 16, 7043–7053
identify biomarkers using gel electrophoresis and NMR.37 The
levels of acetone also increases in serum of PCa patients and it
is in agreement with its increase in urine.54 A signicant
decrease of ethanolamine in PCa compared with BPH was also
observed in this study as well as in tissue samples.49,50 Besides,
creatine was found to be decreasing in serum of PCa patients as
well as in tissue samples.55 Spermidine decreased in serum of
PCa patients compared to BPH, however its regulation in other
biological samples such as tissue is not clear. Additionally,
various studies reported its decrease and increase in tissue.45,56

Methylguanidine was also identied in serum as well as in urine
samples.57 It was characterized by a singular peak around
2.85 ppm and was one of the top twenty metabolites discrimi-
nating PCa and BPH according to their variable importance in
projection (VIP). Glycerophosphocholine was also increased in
n Recall Accuracy F1-score

0.87 0.87 0.86
0.87 0.87 0.88
0.80 0.86 0.84
0.91 0.86 0.87

This journal is © The Royal Society of Chemistry 2024
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Table 4 Significant metabolite biomarkers found in the serum of PCa and BPH groups

No. HMDB ID Metabolite Regulation (PCa vs. BPH) p-Value References

1 HMDB0000190 Lactate [ 0.001 31
2 HMDB0000718 Isovaleric acid [ 0.000 32 and 33
3 HMDB0000086 Glycerophosphocholine [ 0.045 31
5 HMDB0000622 Ethylmalonic acid [ 0.000 34
6 HMDB0000532 N-Acetylglycine [ 0.031 35
7 HMDB0000232 Quinolinic acid [ 0.005 36
8 HMDB0000060 Acetoacetate [ 0.000 35
9 HMDB0000148 L-Glutamic acid [ 0.000 37 and 38
10 HMDB0000159 L-Phenylalanine [ 0.005 38 and 39
11 HMDB0001659 Acetone [ 0.000 40
12 HMDB0000300 Uracil [ 0.024 31 and 41
13 HMDB0000715 Kynurenic acid [ 0.001 41
14 HMDB0000142 Formate [ 0.000 37
15 HMDB0000002 1,3-Diaminopropane Y 0.000 N/A
16 HMDB0000034 Adenine [ 0.047 42 and 43
17 HMDB0001257 Spermidine Y 0.000 44 and 45
18 HMDB0000510 2-Aminoadipic acid [ 0.000 46
19 HMDB0000064 Creatine Y 0.000 40
20 HMDB0000211 Myo-inositol Y 0.000 31
21 HMDB0000687 L-Leucine [ 0.004 31 and 47
22 HMDB0000056 Beta-alanine Y 0.000 N/A
23 HMDB0000085 2-Deoxyguanosine [ 0.000 48
24 HMDB0000097 Choline chloride Y 0.000 N/A
25 HMDB0000182 L-Lysine Y 0.000 47
26 HMDB0000149 Ethanolamine Y 0.000 49 and 50
27 HMDB0000201 O-Acetyl-L-carnitine Y 0.000 51
28 HMDB0001522 Methylguanidine Y 0.000 N/A
29 HMDB0000177 L-Histidine Y 0.000 47
30 HMDB0000641 L-Glutamine Y 0.033 31 and 47
31 HMDB0000904 L-Citrulline Y 0.002 52 and 53
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the serum of PCa patients compared to the BPH ones, consis-
tent with ndings in prostate cancer tissue.58,59 Isovaleric acid
levels were observed to be elevated in prostate cancer (PCa)
samples compared to benign prostatic hyperplasia (BPH) cases.
This increase may be associated with the characteristic odor or
could potentially be indicative of other conditions, including
PCa.32,33 Ethylmalonic acid levels were found to be higher in PCa
samples. Additionally, ethylmalonic acid, 5-hydroxymethyl-2-
furoic acid, and pyroglutamic acid have been identied as
biomarkers capable of distinguishing between PCa cases with
prostate-specic antigen (PSA) levels below 4.0 ng mL−1 and
those with PSA levels above 4.0 ng mL−1, demonstrating high
sensitivity and specicity.34 Quinolinic acid was also found to be
signicantly higher in serum as well as in urine from PCa
compared with BPH patients.36 Levels of phenylalanine were
also increased in the serum of PCa compared with BPH in the
same way in the blood of patients diagnosed with bone
metastasis compared to healthy volunteers.38 Similarly, adenine
was found to be increasing in PCa compared to BPH.60 Uracil
was also increased in serum as well as tissue61 of PCa compared
with BPH. In the same way, kynurenic acid displayed a signi-
cant increase in serum of PCa as well as urine compared to
BPH.41 Histidine and lysine were decreased in the serum of PCa
compared with BPH. The changes of these metabolites were
more noticeable in tissue samples than serum and urine.47
This journal is © The Royal Society of Chemistry 2024
Unlike leucine that showed an increasing level in PCa. Similar
results were reported,31 in contrast to other studies that re-
ported a decreasing levels of leucine.47 Glutamine was found to
be decreasing in serum of PCa patients and it is in agreement
with other studies.31,47 Citrulline was also found to be
decreasing in PCa.52,62 N-Acetylglycine was increase in the case
of PCa compared with BPH as well as in lethal prostate cancer
versus matched case controls.35 O-Acetyl-L-carnitine levels were
also found to be lower in PCa compared to BPH. This nding
aligns with results from another study, which reported higher
levels of O-acetyl-L-carnitine in individuals without cancer.
These observations suggest a potential protective role for O-
acetyl-L-carnitine against PCa.51 Other metabolites were also
found to be different in the two studied groups include choline
chloride, 1,3-diaminopropane and 2-deoxyguanosine. Notably,
the oxidized form of 2-deoxyguanosine, known as 8-hydroxy-20-
deoxyguanosine, has been found to be associated with PCa.48

While the statistical analysis of our data has identied a set of
metabolites that exhibit strong evidence against the null
hypothesis, it's important to note that their reliability may face
challenges when subjected to validation studies utilizing
samples from diverse geographical or clinical sites. These
ndings are based on the analysis of a specic dataset, and their
practical signicance in real-world clinical settings remains to
be established. We recognize the need for cautious
Anal. Methods, 2024, 16, 7043–7053 | 7049
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Fig. 5 Box plots showing the highly significantly different metabolites in PCa and BPH.
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interpretation and the importance of validating these results in
subsequent studies.

Metabolic pathway analysis conducted through Metab-
oAnalyst has identied signicant alterations (p < 0.05) in seven
pathways in PCa, highlighting substantial metabolic changes
that are intricately linked with the development and progres-
sion of disease. These pathways include beta-alanine metabo-
lism glycerophospholipid metabolism, arginine and proline
metabolism, butanoate metabolism, pantothenate and CoA
biosynthesis, glutathione metabolism phenylalanine, tyrosine
and tryptophan biosynthesis (Fig. 6), suggest a metabolic
change that is characteristic of cancerous cells. These alter-
ations reect the increased metabolic demands of proliferating
cancer cells, which oen undergo shis in energy production,
biosynthesis, and redox balance to sustain rapid growth. For
instance, the upregulation of pathways like glycer-
ophospholipid metabolism and glutathionemetabolismmay be
indicative of enhanced membrane biosynthesis and an
7050 | Anal. Methods, 2024, 16, 7043–7053
increased need for antioxidant defense mechanisms, respec-
tively, both of which are critical for cancer cell survival and
proliferation. Moreover, the signicant changes in metabolites
such as lactate, which is elevated in many cancers due to the
Warburg effect, and amino acids like L-glutamic acid and L-
phenylalanine, underscore the altered amino acid metabolism
that supports the biosynthetic and bioenergetic needs of cancer
cells. These metabolic shis are not just a consequence of
cancer but may actively contribute to the oncogenic process by
promoting cell survival, growth, and metastasis.63

3.4 Comparison of serum and urine results64

In this section, we compared ndings from our previous urine
analysis64with the current serum analysis, both conducted on the
same patient cohort. Purposes of both works are to identify
metabolites differentiating PCa from BPH and to explore the
similarities and differences between the metabolic proles of
these two biological uids. Acetone was consistently elevated in
This journal is © The Royal Society of Chemistry 2024
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Fig. 6 Pathway analysis conducted with MetaboAnalyst 6.0 identified
seven significant metabolic pathways.
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both serum and urine, suggesting a systemic alteration in lipid
metabolism associated with PCa. Uracil increased in serum but
decreased in urine, while L-citrulline showed the opposite trend,
reecting different metabolic mechanisms in these two uids.
Similarly, 2-aminoadipic acid increased in serum but decreased
in urine, indicating distinct regulatory mechanisms depending
on the biological uid. Pathway analysis revealed signicant but
differing alterations in cancer-relatedmetabolic pathways. Serum
showed changes in glycerophospholipid and glutathione
metabolism, while urine exhibited alterations in glyoxylate
metabolism and the TCA cycle. These differences underscore the
complex nature of cancer metabolism, with distinct processes
occurring at the systemic level versus the local or excretory level.

4. Conclusion

In an attempt to screen PCa, 1H-NMR-based metabolomics was
employed to highlight the metabolic differences in serum
samples between PCa and BPH. The methodology includes
spectral preprocessing, encompassing 81 NMR buckets, then
underwent analysis via PCA, aiming to underline specic
variables/buckets that held potential in distinguishing between
PCa and BPH. Further analysis using a supervised logistic
regression model, subjected to both CV and testing evaluations,
yielded impressive average recalls of 87% and 85.5%, precisions
of 86.5% and 86%, and accuracies of 87% and 86%, respec-
tively. These metrics indicate robustness and potential appli-
cability of the model to new and unseen data. Furthermore, this
study unveiled several potential biomarkers via an untargeted
1H-NMR metabolomics approach. Future studies with larger
sample sizes are essential for further validation.
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