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s in spICP-TOFMS: insights from
Monte Carlo simulations†

Raven L. Buckman and Alexander Gundlach-Graham *

Single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) is used to

measure the mass amounts of elements in individual nano and submicron particles. In spICP-TOFMS,

element signals can only be recorded as “particles” if they are above the critical value, which is the

threshold used to distinguish between particle-derived and background signals. If elements in particles

are present in amounts close to or below the critical value, then these elements cannot be quantitatively

measured, and the shape of the measured mass distributions will not be accurate. In addition, recorded

spICP-TOFMS signal distributions are impacted by measurement uncertainty due to counting statistics

inherent to the mass analyzer. Counting noise is most pronounced for elements detected with low signal

levels and can lead to systematic biases in the observed element masses and mass ratios from a particle

event. In turn, spICP-TOFMS data can lead to incorrect conclusions about element composition and/or

size of recorded particles. To better understand how biases and noise can alter the interpretation of

data, we employ Monte Carlo simulations to model spICP-TOFMS signals as a function of measurement

parameters, such as particle size distribution (PSD), multi-element composition, absolute sensitivities

(TofCts g−1), and measurement noise from ion-counting (Poisson) statistics. Monte Carlo simulations

allow for the systematic comparison of known (simulated) element mass distributions to experimental

(measured) data. To demonstrate the accuracy of our model in predicting spICP-TOFMS signal structure,

we highlight the match between data from in-lab measurements and simulations for the detection of

CeO2, ferrocerium mischmetal, and bastnaesite particles. Through Monte Carlo simulations, we explore

how analyte PSDs and other measurement parameters can lead to the determination of biased particle

sizes, particle numbers, element ratios, and multi-element compositions.
Introduction

Single-particle inductively coupled plasma mass spectrometry
(spICP-MS) has become a widely used technique for the deter-
mination of the size and number concentration of inorganic
nanoparticles (NPs).1–4 When a time-of-ight mass spectrometer
is used, the multi-element composition of NPs can be recorded.
In spICP-TOFMS, dilute suspensions of particles are introduced
into the ICP, where they are vaporized, atomized, and ionized.
The resulting ion clouds are transmitted into the TOF mass
analyzer and mass-to-charge (m/z) specic particle-derived
signals are recorded as individual spikes by the TOFMS
detector. Particle-derived signals are typically ∼250–1000 ms in
duration and coincident detection of multiple elements indi-
cates the detection of multi-elemental particles.5–8 In many
spICP-TOFMS studies, multi-elemental ngerprints, mass
distributions, and/or element mass ratios measured from
ersity, Ames, IA, USA. E-mail: alexgg@

tion (ESI) available. See DOI:

2–5811
individual particles are used to distinguish between anthropo-
genic and natural particle types.9–13 However, the determined
element-mass or particle-size distributions obtained from
spICP-TOFMS may not match those of the real (true) particles.
Single-particle ICP-MS measurements are conducted in high-
time resolution with spectral acquisition rates in the milli-
and microsecond regimes. Rapid acquisition rates can lead to
the measurement of seemingly complete size distributions that
can result in inaccurate determination of number concentra-
tion and mean particle size without a priori knowledge, or
secondary conrmation, of the true distribution.14

As with any instrumental method, fundamental noise sour-
ces are present in spICP-TOFMS measurements. In ICP-MS,
some of these noise sources include plasma icker noise,
Johnson (thermal) noise, or the constant ion background.15–19

Previous publications have explored noise sources in spICP-MS
analysis and their impact on the determination of size distri-
butions, element mass quantities per particle, and particle
number concentrations (PNCs).20–25 Of particular interest is the
inuence of ion-detection noise from counting (Poisson)
statistics, which is oen a dominant source of noise in spICP-
TOFMS measurements. Poisson noise is especially important
This journal is © The Royal Society of Chemistry 2024
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to establish accurate critical values and uncertainty in deter-
mined PNCs.24,26–30 In addition to uncertainty in dening critical
values, which are used as a threshold to separate the back-
ground and particle-derived signals, counting statistics from
MS detection can also cause uncertainty and bias in the recor-
ded particle signal distributions. Because the relative standard
deviation (RSD) from a Poisson process decreases as l−1/2,
where l is the average signal, the deviations between observed
and real distributions are expected to be most pronounced for
low-abundance (or low-sensitivity) elements.

Measurement bias and the inuence of Poisson statistics can
be investigated with Monte Carlo simulations.22,23,31 In a chem-
ical context, Monte Carlo simulations rely on repeated random
sampling of a probability distribution to study a chemical or
measurement system; the results are then correlated with
physical and chemical macroscopic properties, or signal
structure.32–37 In previous work Monte Carlo simulations have
been used to characterize spICP-MS signal histograms, and
have been used to model spICP-TOFMS background-analyte
signals and t measured m/z-dependent detector responses to
a compound Poisson distribution.22–25,31 The creation of simu-
lated spICP-TOFMS signals allows us to investigate of limita-
tions and biases of measurements without extensive
characterization, expensive standards, and long analysis times.
Additionally, with Monte Carlo simulations, we can explore the
impact of particle properties such as distribution shape,
median diameter, and element composition, which are other-
wise challenging to vary in real spICP-TOFMS measurements.

Here, we demonstrate the usefulness of Monte Carlo simu-
lations to better understand how biases and noise can alter the
interpretation of spICP-TOFMS data. In our simulation, spICP-
TOFMS signals are modelled as a function of measurement
parameters, such as particle size distribution (PSD), multi-
element composition, mass fraction (w) variability, absolute
sensitivities (TofCts g−1), and critical values (TofCts). We
demonstrate the accuracy of our model in predicting spICP-
TOFMS signal structure with data from in-lab measurements
and simulations of CeO2, ferrocerium mischmetal, and bast-
naesite mineral particles. Through these Monte Carlo simula-
tions, we explore how analyte PSDs and other measurement
parameters can lead to the determination of biased particle
sizes, PNCs, element mass ratios, and multi-element
compositions.

Materials and methods
Monte Carlo simulations

As previously discussed, Monte Carlo methods have been widely
used due to their simplicity and robustness.32 For this proof-of-
principal study, Monte Carlo simulations were developed in-
house in Python (ver. 3.10.9) with VS Code (ver. 1.87.2); an
example of this code is available on our group GitHub page
(https://github.com/TOFMS-GG-Group/MonteCarloSimulations).
Due to the complex nature of particle transport, ionization, and
the plethora of instrument conditions (i.e. torch position, ion
optics, etc.), the simulations were performed under the guise of
several assumptions. The Monte Carlo simulations described are
This journal is © The Royal Society of Chemistry 2024
not used to model particle–plasma interactions or the ionization
process; particle residence time in the plasma and ion cloud
diffusion are also not considered. We assume that all simulated
particles are completely vaporized, mostly ionized, transported
into the MS, and detected with user-dened element specic
sensitivities (TofCts g−1). In each simulated particle type, all
elements are assumed to have some degree of correlation. Simu-
lated spICP-TOFMS signals are derived from particles with a PSD
described by a known probability distribution. Furthermore,
Poisson counting noise from the mass analyzer is regarded as
a major contributor of the ion-signal variance; we do not consider
the pulse-height distribution prole of the detector. A workow
describing the Monte Carlo simulation is shown in Fig. 1.

Generally, the simulations consider seven factors: distribu-
tion shape and spread, median particle diameter (nm), particle
density (g cm−3), elemental composition, mass fraction (w),m/z-
specic absolute sensitivities (TofCts g−1), and m/z-specic
critical values (TofCts). In the Monte Carlo simulations, the
user denes the median particle diameter, the standard devia-
tion, and the PSD as either log-normal or normal; most data we
report here used a log-normal PSD.38 In a log-normal distribu-
tion, the histogram of the log-transform of particle diameters
will appear normally distributed (i.e. Gaussian). However, the
distribution will be right-tail skewed when plotted on a linear
scale, which is a characteristic of a log-normal distribution. The
mean, median, and mode values of a log-normal distribution
are not equal.38 Additionally, for a log-normal distribution the
variability can be expressed multiplicatively; hence, we repre-
sent variability with times/divide (*/) notation rather than add/
subtract (±).38 For example, a log-normal distribution PSD with
a notation of 100*/1.5 would have a median diameter of 100 nm
and 68.3% of the particles would fall between 100/(1.5)1 z
67 nm and 100 * (1.5)1= 150 nm. Likewise, 95.5% of the particle
diameters would be between 100/(1.5)2z 44 nm and 100 * (1.5)2

= 225 nm.
Once the PSD is established, particle diameters are simu-

lated by random sampling J values from the distribution, where
J is the number of particles specied by the user (see Fig. 1). The
mass of each particle is determined by assuming spherical
shape and known (user-dened) density. The mass amount of
an element in a simulated particle is calculated by multiplying
the particle mass (mj) by the mass fraction of element i (wi).
Within the Python script, the user can apply w as xed values or
as distributions (mass fraction variance, Fig. 1). The w distri-
butions are modelled as log-normal with median = wi and
sigma = wi * wRSD, where wRSD is some positive, real number.
Element intensities are calculated by multiplying the element
mass amount per particle by element-specic sensitivities. Each
element intensity is then treated as the lambda (l) value for
a Poisson distribution from which a random variate is selected;
this process mimics the ion-counting process in the mass
analyzer. The simulated ion signals with Poisson noise are then
truncated at element-specic single-particle critical values
(LC,sp,i) because in real spICP-TOFMS experiments only signals
above LC,sp,i are recorded as particle-derived. Critical values and
their role in spICP-TOFMS data analysis have been described
elsewhere.31 Aer Monte Carlo simulation of spICP-TOFMS
Anal. Methods, 2024, 16, 5802–5811 | 5803
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Fig. 1 Particle information is used to randomly generate a PSD with defined median and multiplicative standard deviation. Element mass
amounts are calculated by applying a mass fraction (wi) as either a fixed value or as a distribution of values with set median (~x) and shape (s). Each
element signal (lambda, l) is derived by calculating the product of the element-specific sensitivities (Si), particle mass (mj), and wi. Each element
signal is randomly drawn from a Poisson distribution. Finally, critical value (LC,sp) thresholding is applied to the noise-transformed particle signals
to obtain measured signals.
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signals, the output signals can be expressed as element mass
amounts by dividing the signal by their element-specic sensi-
tivities (Si).
Simulation conditions

To compare our Monte Carlo simulation results with real spICP-
TOFMS data, the TOFMS detection parameters must be equiv-
alent. Here, we set element-specic absolute sensitivities and
critical values according to experimental parameters from
previously collected data (see Table 1).39 In this data, three
cerium containing particle types were measured by spICP-
TOFMS. Dilute suspensions of CeO2, ferrocerium mischmetal,
and bastnaesite particles were introduced into an icpTOF-S2
instrument (TOFWERK AG, Thun, Switzerland) via microFAST
MC autosampler and a PFA pneumatic nebulizer (PFA-ST,
Elemental Scientic, NE, USA) connected via a baffled cyclonic
quartz spray chamber to the injector of the ICP torch. The ICP
was equipped with an online-microdroplet calibration system,
as described previously.40,41 The datasets were processed using
5804 | Anal. Methods, 2024, 16, 5802–5811
“Time-of-Flight Single Particle Investigator” (TOF-SPI), a free-
use particle analysis soware written in LabVIEW (LabVIEW
2018, National Instruments, TX, USA) as previously described.42

Results and discussion
Comparison of experimental and simulated spICP-TOFMS
results

To test our hypothesis that Monte Carlo simulations can be
used to replicate experimental spICP-TOFMS data, we compare
simulated and experimental results39 from the spICP-TOFMS
analysis of three different particle types: CeO2, ferrocerium
mischmetal, and bastnaesite mineral particles. These particles
contain one, two, and ve ICP-TOFMS detectable elements,
respectively. Mass fractions of the detectable elements in these
particles are provided in Table 1, and PSD parameters for the
Monte Carlo simulations are provided in Table S1.† Simulated
particle-type characteristics and distribution parameters were
initially tested based on literature reported diameters and mass
fractions.43
This journal is © The Royal Society of Chemistry 2024
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Table 1 Measurement parameters used for Monte Carlo simulations of three Ce-containing particle types

NP name
Density
(g cm−3) Element w

Sensitivity
(TofCts g−1)

Critical value
(TofCts)

CeO2 7.22 Ce 0.814 2.78 × 1017 3.93
Ferrocerium 6.50 Ce 0.677 2.97 × 1017 14.54

La 0.323 2.80 × 1017 14.09
Bastnaesite 5.12 Ce 0.390 2.89 × 1017 10.35

La 0.196 2.72 × 1017 7.64
Nd 0.170 1.50 × 1017 6.92
Pr 0.058 3.34 × 1017 5.78
Nd 0.004 3.36 × 1017 3.18
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In Fig. 2, we provide results from the simulation of spICP-
TOFMS signals for 10 000 CeO2 particles with a PSD of 42*/
1.4 nm in comparison with experimental spICP-TOFMS results.
We simulated particles with a log-normal size distribution
because it provided consistency with the other particle types
and is a well-established PSD shape in the literature.38,44–46 A
detailed description of the statistical evaluation of similarity
between the experimental and simulation results is provided in
the ESI.† Briey, a Mood's median test demonstrated that the
medians of the simulated and experimental distributions were
not signicantly different from one another at the 95% con-
dence level (c2 = 2.44, p = 0.118); a box and whisker plot for the
comparison of both data types is provided in Fig. 2B. The match
between the mass distributions of Ce from the Monte Carlo
simulations and the spICP-TOFMS measurements demon-
strates that the simulations can replicate spICP-TOFMS data for
the analysis of single-metal particles.

The spICP-TOFMS analysis of ferrocerium mischmetal
particles, which are produced by striking a BIC® lighter, shows
particles primarily composed of Ce and La.39,43 Here, we simu-
lated spICP-TOFMS responses for particles with a composition
of approximately 67% Ce and 33% La from a log-normal PSD of
32*/1.4 nm. Mass fraction distributions of Ce and La were
simulated with a wRSD = 0.50 (see Table S2†). We found that
Fig. 2 (A) Histogram comparison of experimental (grey) and simulated (
identical critical masses (0.014 fg, XMass

C,sp,Ce), as indicated by the vertical bl
distribution of the simulated (left) and experimental (right) data for CeO2

This journal is © The Royal Society of Chemistry 2024
element ratios in simulated spICP-TOFMS signals do not match
experimental results without including w variability (see
Fig. S2†). In Fig. 3, we plot comparisons of the experimental and
simulated mass amounts of Ce and La, which are statistically
similar. As shown in Fig. 3A and B, the recorded mass distri-
butions from spICP-TOFMS analysis of Ce and La in ferroce-
rium mischmetal particles do not have an outward appearance
of log-normal distributions, especially when compared to the
results shown for CeO2 particles. In our Monte Carlo simula-
tion, the majority of Ce and La signals from particles are not
detectable because they are below the critical values. Only
signals from particles with mass amounts in the upper-tail of
the PSD produce large enough signals to be detected by spICP-
TOFMS. In high-time resolution measurements, such as those
obtained by spICP-TOFMS, the upper-tails can produce
a seemingly complete PSDs that will lead to an overestimation
of the mean particle diameter and underestimation of the
number concentration.14 Truncation of the signal distributions
and, in turn, the inaccurate determination of element mass
distributions is a common artifact of spICP-MS analysis.14,47

This artifact can lead to systematic errors in the determination
of PSDs and particle composition.14

In Fig. 3C and D, we plot the mass ratios of Ce : La as
a function of the mass of Ce and the correlation of Ce and La
orange) spICP-TOFMS data of CeO2 nanoparticles. Both datasets have
ack line. Additionally, a box and whisker plot comparing the lognormal
particles in (B).

Anal. Methods, 2024, 16, 5802–5811 | 5805
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Fig. 3 A comparison of the mass data obtained through measurement of ferrocerium particles via spICP-TOFMS (grey) and Monte Carlo
simulations (orange). The mass distributions of Ce (A) and La (B) were compared and showed statistically similar distributions. The relationship
between the mass ratio of Ce to La (RCe:La) and the mass of Ce, in both acquisition types, is shown (C). Also shown here is the correlation of Ce to
La (D) with a ratio of 2.1.
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from the Monte Carlo simulations and experimental spICP-
TOFMS measurements. Mass ratios of detected elements
within particles measured by spICP-TOFMS can expose distin-
guishable particle-type specic trends.39,43,48 Previous publica-
tions demonstrated that the mass ratios of Ce to La in
ferrocerium particles converge to a value of 2.1. As seen, both
the central tendency and the spread of the mass ratios of the
simulated spICP-TOFMS data reasonably match that of the
experimental data; there are a few outliers in the experimental
spICP-TOFMS data that are attributed to greater particle
heterogeneity than simulated.

Bastnaesite particles detected by spICP-TOFMS have
elemental signatures that contain Ce, La, Nd, Pr, and/or Th.39,43

Without a priori knowledge of the pristine nature of the bast-
naesite sample, one might conclude that the different recorded
element signatures reect more than one particle type. For our
simulation, wemodelled bastnaesite particles with a log-normal
PSD of 35*/1.7 nm and wRSD = 0.15 (see Tables 1, S1, and S2†).
In Fig. S3 and S4,† we provide comparisons of the mass distri-
butions and elemental correlations for all elements in the
measured and simulated bastnaesite particles. As demon-
strated in Fig. 4A, Monte Carlo simulations result in diverse
palette of elemental signatures, though only a single particle
type is simulated. Like the analysis of Ce and La from ferroce-
rium, with Monte Carlo modelling, we nd that all the
5806 | Anal. Methods, 2024, 16, 5802–5811
detectable elements in bastnaesite particles (i.e. La, Ce, Pr, Nd,
and Th) are only partially detected because most bastnaesite
particles are not large enough to produce spICP-TOFMS signals
above LC,sp,i values. This is apparent in the right-skewed mass
distributions of each element both with experimental and
simulated spICP-TOFMS data (see Fig. S3†).

In our Monte Carlo simulation results, 54% of particles had
enough mass to have at least one element above its respective
LC,sp value, and just 11% of events had sufficient signal to yield
the complete LaCePrNdTh signature (see Fig. 4A). Of detectable
particles events, most are characterized by ve different
elemental signatures with varying frequencies: Ce, LaCe,
LaCeNd, LaCePrNd, or LaCePrNdTh. Importantly, the number
of elements detected per particle is correlated to the total mass
of the particle. In Fig. 4B, we plot the histogram of the true
simulated Ce mass distribution along with the cumulative
distribution functions of six unique elemental ngerprints.
From Fig. 4B, it is apparent that as the true mass of the particle
increases (indicated by the mass of the major element Ce), the
number of recorded multi-elemental particles also increases.
Particle size is one of several factors that can contribute to the
fragmented nature of the bastnaesite elemental ngerprints. In
spICP-TOFMS, the sensitivity and critical values dictate the
minimum detectable mass, i.e. the critical mass (XMass

C,sp,i) for each
element. However, with Monte Carlo simulations, we also
This journal is © The Royal Society of Chemistry 2024
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Fig. 4 Sunburst plot (A) illustrating the different elemental signatures obtained from the simulated bastnaesite data. In (B), the true mass
distribution of Ce in the simulated particles (grey). Additionally, the cumulative distribution functions of various multi-elemental fingerprints as
a function of increasing Ce mass, shown in (B).
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demonstrate that compositional heterogeneity of the particles
also contributes to the fragmented elemental signatures
detected by spICP-TOFMS. The ability to analyze elemental
ngerprints before and aer spICP-TOFMS detection is
a unique feature of utilizing Monte Carlo simulations and aids
us to better characterize recorded particle data.
Bias in spICP-TOFMS measurements

The number of detectable events in spICP-TOFMS depends on
the PSD, the w of elements within a particle, the elemental
sensitivities, and the background signal levels. In Fig. S5,† we
plot diameter and mass distributions for particles with size
distributions of 35*/1.7 nm, 35*/1.3 nm, and 60*/1.3 nm;
simulation conditions for these studies are outlined in Tables 1
and S4.† Due to the cubic relationship between diameter and
mass, the range of the mass distribution is much greater than
that of the size distribution. For example, particle diameters
from a log-normal PSD of 35*/1.3 nm span half an order of
magnitude, between 15 and 76 nm (P2.5–P97.5), but the mass
distribution spans over two orders of magnitude, from 0.01 to
1.2 fg. Similarly, the range of diameters from a PSD equal to 35*/
1.7 nm spans approximately one order of magnitude (7 to 170
nm), but the mass distribution spans across more than four
orders of magnitude (1 × 10−3 to 12.8 fg). Thus, relatively small
changes in median and sigma parameters for a log-normal
distribution have a dramatic impact on the mass of the simu-
lated particles. Differences in element mass fractions further
expands the range of element mass amounts in particles and
indicates that spICP-TOFMS instruments and measurements
need to have a large linear dynamic range. In Fig. 5, we provide
the results of simulated spICP-TOFMS-determined element
mass distributions and compare these detected distributions to
the true simulated mass distributions for Ce in modelled
bastnaesite particles. We simulated these particles with log-
normal size distributions of 20*/1.3 nm, 35*/1.3 nm, 35*/
1.7 nm, and 60*/1.3 nm; other simulation conditions are
described in Table S4.† For each highlighted simulation, the
critical mass of Ce (XMass

C,sp,Ce) is 0.036 fg.
This journal is © The Royal Society of Chemistry 2024
The shape of the observed spICP-TOFMS data depends on the
particle distribution median and spread, relative to the critical
mass of Ce, as demonstrated in Fig. 5. For example, if the
median Ce mass is smaller than XMass

C,sp,Ce, such as in Fig. 5A, only
the upper-tail of the size distribution can be recorded; thus, the
observed distribution does not provide a comprehensive picture
of the true mass distribution of Ce within the simulated parti-
cles. In this case, the median of the observed mass distribution
will be signicantly higher than that of the true distribution,
therefore, the measurement is biased toward recording larger
masses. On the other hand, when the median Ce mass is at, or
above XMass

C,sp,Ce, then the observed distribution more closely
reects the true distribution shape, as in Fig. 5B–D. However, the
observed distributions in 5B and 5C still show skewed shapes
but could be misinterpreted to be complete distributions with
high number concentrations of the small observed particles.14

The spICP-TOFMS-determined mass distribution of the
60*/1.3 nm particles best matches the true mass distributions
because the lower 95.5% condence boundary is nearer to the
critical mass. For these particles, the lower condence boundary
is 60/(1.3)2= 35.5 nm, which is equivalent to 0.047 fg of Ce—10 ag
more than XMass

C,sp,Ce. In Fig. 5B and C, we compare spICP-TOFMS
results obtained for particles with the same median mass, but
different shape parameters (sigma, s). As seen in 5C, for the
distribution with the larger shape parameter, less of the truemass
distribution is measurable by spICP-TOFMS; however, the shapes
of the mass distributions are similar. When the median of
the element mass distribution is near the critical mass of the
spICP-TOFMS measurement, the observed distributions are
distorted. This incomplete measurement of elemental mass
distributions could bias measures of central tendency such as the
mean or median and lead to false conclusions regarding the
shape of the PSD. On the other hand, to have accurate
spICP-TOFMS measurement of mass distributions, the critical
mass should be near the lower condence boundary of the true
mass distribution.

To assess the bias in the measures of central tendency and
detected PNCs as a function of PSD, we simulated a series of
Anal. Methods, 2024, 16, 5802–5811 | 5807
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Fig. 5 Comparison of the spICP-TOFMS-observed (blue) versus true (red) distributions from Monte Carlo simulations with log-normal
distributed bastnaesite particles with various medians and multiplicative standard deviations, labelled accordingly in (A)–(D). The critical mass for
each panel is the same (0.036 fg, XMass

C,sp,Ce) and is shown as the green, vertical line.

Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/2

7/
20

25
 3

:1
5:

20
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
spICP-TOFMS data from bastnaesite particles with log-normal
PSDs and median diameters ranging from 1 to 200 nm (see
Table S4† for simulation details). No mass fraction variation in
the simulated particles was applied. Through comparing known
parameters of the particle populations to those from the
simulated spICP-TOFMS data, we quantify the bias expected for
the measurement. In Fig. 6, we plot the percent recovery of mass
and number of particles, the detected and true median masses
of Ce (in fg), the absolute error (%) of the mean and median
masses of Ce, and the detected mass fractions of each element
as functions of the simulated median diameters (in nm).

As seen in Fig. 6A, as the median diameter of the particles
increases, so too does the number of observable particles and
the mass recovery; this trend follows the log-normal cumulative
distribution function as would be expected by scanning the
range of the PSD (see Table S5† for t parameters). In the cases
where fewer than 50% particles are above LC,sp,i, only the upper-
tails of the PSDs are recorded by spICP-TOFMS. A majority of
the particle distribution is not detected until the true median
mass is greater than the critical diameter based on the detection
of Ce (XDiam

C,sp,Ce z 35 nm). Along with underestimation of the
particle number, the mean and median masses of the particle
populations are overestimated. In Fig. 6B, we plot the observed
and true median of the particle populations (see also Fig. S6†).
5808 | Anal. Methods, 2024, 16, 5802–5811
In Fig. 6C, we plot the absolute error of the determined median
and mean masses i. Until the observed mass of an element (or
the equivalent diameter) is above the critical level, the observed
median and mean masses are substantially overestimated and
will be reported, generally, to have values near the critical level.
Even when the true median diameter equals the critical diam-
eter, the median and mean determined masses are biased by
∼80% and 50%, respectively. When the median mass of the
particles increases to ∼5 times that of the critical mass
(5XMass

C,sp,Ce = 0.180 fg Ce, 56 nm equivalent), the errors in median
and mean Ce mass decrease to below 10%. For error below 1%,
the median mass needs to be ten times XMass

C,sp,Ce, i.e. 0.360 fg. In

terms of diameter, 10XMass
C,sp,Ce is equivalent to

ffiffiffiffiffi

103
p

XDiam
C;sp;Ce or

2.14XDiam
C,sp,Ce, which is 75 nm for the data in Fig. 6. For spICP-

TOFMS, measured mass distributions will only be accurate
when∼95% of the distribution is above the critical mass. This is
analogous to a two-sided detection limit,49 but with the shape of
the PSD as the “detected” distribution and XMass

C,sp,Ce as the false-
positive cutoff. As a rule of thumb, we suggest that the critical
mass should be an order of magnitude lower than the deter-
mined median or mean to avoid measurement bias. However,
this rule is difficult to generalize because particle populations
may have different PSD shapes and, in-turn, different optimum
median mass-to-critical mass ratios.
This journal is © The Royal Society of Chemistry 2024
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Fig. 6 For the simulated case study of bastnaesite particles (A) the percent recovery of mass and number of particles, (B) observed and true
median Ce masses, (C) the absolute error of the observed median and mean mass of Ce, and (D) the observed mass fraction of simulated
elements plotted as a function of simulated median diameter. An absolute error between 1 and 10% is highlighted in pink and error less than 1% is
shown in green.
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The systematic bias of spICP-TOFMS measurements also
extends to the measurement of element mass ratios within
individual particles. In particular, if the mass of a minor
element i is at or lower than the critical mass of that element,
XMass
C,sp,i, then there are two options: either that element is not

detected, or it is detected with an elevated relative abundance.
When the element is not detected, then the abundance of the
major element will be exaggerated. Conversely, when the
element is detected, only the upper tail of the Poisson-
distributed noise will be recorded, and the major-to-minor
element mass ratio will appear too low. Together, this will
lead to biased detection of recorded element abundances, as
shown in Fig. 6D for the detection of elements in bastnaesite
particle populations with increasing median diameters, and
broad spread in determined ratios. In Fig. S6,† we plot all
observed ratios of Ce : La for particles with median diameters of
25, 50, 100, and 200 nm. As the median diameters of the particle
populations increase, the bias in the element ratio decreases.
When all the medians of all element masses are above ∼10
times their respective XMass

C,sp,i values, error in observed element
mass fraction is below 5% for all elements. As seen, bias in the
mass fraction of the least abundant elements is most
pronounced.

An additional study was conducted to explore the impact of
increasing the PSD dispersion on the measures of central
tendency (see Tables 1 and S4†). Bastnaesite particles were
This journal is © The Royal Society of Chemistry 2024
simulated according to a log-normal PSD with a median
diameter of 35 nm and variable multiplicative sigma values
between 0.01 and 1 as the distribution shape parameter. In
Fig. S7,† we demonstrate the changes in distribution shape, the
percent recovery of particles and mass, and compare the
detected mean and median masses of Ce to the true mean and
median values as a function increasing shape parameter. We
also calculate the absolute error (%) for the mean and median
masses of Ce and show dispersion of the mass fractions of each
simulated element. We provide a detailed discussion of the
inuence of the dispersion of the PSD of recorded signal
distributions in the ESI.† Broadly, we nd that error in recorded
median and mean values increases with a broader distribution
because only the upper 50% of the Cemass is detected when the
mean diameter is 35 nm (XDiam

C,sp,Ce z 35 nm). However, the error
in determined element ratios follows the opposite trend: as the
PSD gets broader, more large particles are detected and the
observed element ratios in these particles are more accurate.

Conclusions

Here, we demonstrated the usefulness of Monte Carlo methods
to simulate particles detected by spICP-TOFMS. spICP-TOFMS
signals were modelled as a function of particle and measure-
ment parameters, such as particle size distribution, multi-
element composition, absolute sensitivities, and critical
Anal. Methods, 2024, 16, 5802–5811 | 5809
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values. As a base case, Monte Carlo simulations were able to
produce data that accurately reected spICP-TOFMS analysis of
single- and multi-elemental particles. The accuracy of our
model in predicting spICP-TOFMS signal structure was
demonstrated by highlighting the match between data from in-
lab measurements and simulations of CeO2, ferrocerium mis-
chmetal, and bastnaesite mineral particles. A case study was
also performed to investigate the inuence of changes in
particle distribution shape and median parameters on the
detected elemental mass distributions. These results demon-
strated that the observed distributions are drastically different
from the true distribution when the majority of the particles fall
around or below the critical levels. Important and oen re-
ported metrics such as median particle diameters, will largely
be overestimated unless the critical masses and detected
element distributions are well resolved.

Monte Carlo simulations provided the exclusive opportunity
to freely explore particle distributions (shapes, medians, vari-
ances, etc.) and instrument conditions (absolute sensitivities
and critical values) that would be impossible in the lab. The
modelling is also rapid: several experiments can be conducted
within the matter of a few minutes on a desktop computer. The
use of Monte Carlo simulations afforded a unique opportunity
to understand how Poisson noise and critical value thresh-
olding dictates trends in mass ratios and measures of central
tendency. Monte Carlo simulations could also serve as a tool to
look beyond what is measurable in a spICP-TOFMS experiment:
throughmatching measured and simulated signal distributions
researchers could gain insight into the true nature of the analyte
particles measured. Monte Carlo simulations are expected to
serve as an aid to understand the nature of detected particle
signals and the original distribution of particles. We believe
that such Monte Carlo simulations could be applied to spICP-
TOFMS studies in areas such as isotopic analyses, machine
learning training, or measurement validation.

Data availability

The Monte Carlo simulation code and associated spICP-TOFMS
data are available at https://github.com/TOFMS-GG-Group/
MonteCarloSimulations.
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