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pact of gelatin capsule variability
on detection of substandard and falsified
pharmaceuticals with near-IR spectroscopy†

Olatunde Awotunde, Jiaqi Lu, Jin Cai, Nicholas Roseboom,
Sarah Honegger, Ornella Joseph, Alyssa Wicks, Kathleen Hayes
and Marya Lieberman *

Portable NIR spectrometers are effective in detecting authentic pharmaceutical products in intact capsule

formulations, which can be used to screen for substandard or falsified versions of those authentic products.

However, the chemometric models are trained on libraries of authentic products, and are generally

unreliable for detection of quality problems in products from outside their training set, even for products

that are nominally the same active pharmaceutical ingredient and same dosage as products in the

training set. As part of our research directed at developing better non-brand-specific strategies for

pharmaceutical screening, we investigated the impact of capsule composition on NIR modeling. We

found that capsule features like gelatin type, color, or thickness, give rise to a similar amount of variance

in the NIR spectra as the type of API stored within the capsules. Our results highlight the efficacy of

orthogonal projection to latent structures in mitigating the impacts of different types of capsules on the

accuracy of NIR chemometric models for classification and regression analysis of lab-made samples. The

models showed good performance for classification of field-collected doxycycline capsules as good or

bad quality when an NIR-based % w/w metric was used, identifying five samples that were adulterated

with talc. However, the % w/w was systematically underestimated, so when evaluating the capsules

based on their absolute API content according to the monograph standard, the classification accuracy

decreased from 100% to 70%. The underestimation was attributed to an unforeseen variability in the

quantities and types of excipients present in the capsules.
1. Introduction

Near infra-red spectroscopy (NIR) is useful in analytical appli-
cations outside laboratory settings because it is cheap, non-
destructive, fast, and versatile.1 The affordability, portability
and ease of use of small NIR spectrometers has further broad-
ened the acceptance of this technology for post-market
surveillance (PMS) of pharmaceutical dosage forms.2–4 Regula-
tory standards for assessing the actual content of the API in
a pill generally rely on high performance liquid chromatog-
raphy (HPLC) assay, which is a costly laboratory technique.5 NIR
has the potential to quickly assess the identity and quantity of
active ingredients in solid dosage forms, which could serve to
ag suspicious pills for HPLC assay, enabling more effective use
of HPLC resources. Because over 80% of pharmaceuticals are
dispensed as solid dosage forms such as tablets or capsules,6
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NIR has been explored extensively to characterize the moisture
content, particle size, polymorphisms, blend uniformity,
concentration, porosity and packing density of solid forms of
active pharmaceutical ingredients (APIs) and pharmaceutical
excipients.7–11 NIR can read through thin containers such as
plastic bags, capsules, or tablet coatings.12 However, the
resulting NIR spectrum contains chemical information from
the API, excipient(s) and the coating or packing material, and
this affects data analysis.13–16

NIR spectra cannot be directly interpreted like IR spectra as
evidence for the presence or absence of expected functional
groups; instead, various chemometric models must be trained
and validated to achieve qualitative identication or quantita-
tive analysis of specic target analytes.17–19 The training of these
chemometric models usually requires access to libraries of
authentic products, although some alternative approaches are
feasible.20,21 When authentic libraries of products are used, NIR
has high specicity to discriminate samples based on minute
differences in spectra.14 Developing a unied database of NIR
spectra for pharmaceutical dosage forms is a huge challenge
because there are thousands of pharmaceutical manufacturers,
each with products that are unique formulations for what are
Anal. Methods, 2024, 16, 1611–1622 | 1611
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nominally the same API and dose of a drug. While countries
with strong regulatory systems are able to limit the inux of
unregistered dosage forms into their markets, in other coun-
tries, inadequate monitoring and strong networks of informal
or grey markets make this impossible.22–25

Gelatin capsules and tablet coatings are known sources of
variability between products that are nominally the same API
and dose, but are produced by different manufacturers. Mainka
et al. studied captopril, hydrochlorothiazide, and sildenal
citrate mixed with various excipients in closed hard shell
capsules made from gelatin or hypromellose via NIR; the
different capsule materials were a major source of variability in
the NIR spectra.26 In a study of generic uoxetine capsules and
ciprooxacin tablets, Storme-Paris et al. reported that NIRs
picked up even slight differences in formulation, such as vari-
ations of 2.5% (w/w) in API or 1.0% (w/w) in excipient; even
coating variations of less than 1% (w/w) of the pill mass were
detected for tablets that otherwise had identical contents.14

Rodionovaa et al. recognized the importance of investigating
pill or capsule coatings before developing statistical models.12

In a study by Caillet et al. various portable spectrometers,
including NIR devices, were tested on both intact and crushed
tablets in a simulated Laotian pharmacy environment. Results
consistently showed distinct spectra between the two tablet
states. Such spectral variations, inuenced by the coatings, can
introduce errors during eld analysis.27–30 For instance, an NIR
device in that study misclassied augmentin (an amoxicillin
and clavulanate combination) as roxithroxyl tablets even
though they represent different active ingredients, probably
because both types of tablets had the same type of coating.31

Capsules are made from solutions of gelatin (porcine,
bovine) or vegetarian equivalents such as hypromellose with
plasticizers such as glycerine or D-sorbitol, coloring agents (iron
oxide pigments, dyes) and opacifying agents such as titanium
dioxide.32 The resulting liquid is formed into capsules and
dried. In addition to variations in the composition of the
capsules, the thickness and moisture content of the dried
capsules can vary from batch to batch, and capsules may be
printed or stamped with product names and logos. These
manufacturing variations are all expected to affect the appear-
ance of the NIR spectrum of the resulting capsules.33 If NIR
chemometric models were trained to recognize the authentic
product in one type of capsule, subsequent batches of product
packaged in other types of capsules could be falsely identied as
substandard and falsied pharmaceuticals (SFPs).

Our overall goal is to develop a robust NIR approach that
probes the quality of pharmaceutical products such as anti-
infectives in eld settings. Anti-infectives are among the most
commonly reported substandard and falsied medical prod-
ucts.34 We were interested in differentiating conforming
formulations from substandard or falsied (non-conforming)
ones in situ in capsules, simulating use of NIR in eld
settings. The chemical and physical variations in the NIR signal
arising from different capsule materials and dilution with
different types of excipients can be seen as a kind of experi-
mental noise, which we sought to minimize through data pre-
treatment. NIR chemometric models commonly start with
1612 | Anal. Methods, 2024, 16, 1611–1622
data pretreatment such as standard normal variate (SNV) and
Savitszky–Golay (SG) methods to optimize prediction accuracy
of machine learning algorithms.10,35–37 We explored the unique
strengths of these data pretreatments in addition to orthogonal
projection to latent structures (O-PLS) in reducing interference
from noise.35,38 We generated data from a diffuse reectance
NIR device to explore the performance of different data pre-
treatments, then applied the pre-treatment methods to
capsules lled with APIs and different diluents. Finally, we
applied the regression algorithm to a set of doxycycline capsules
collected in Kenya and Liberia, then compared the NIR
predictions to the HPLC assay results.

2. Experimental
2.1 Materials

Transparent and uncolored size 00 gelatin capsules were
purchased from NOW, Bloomingdale, IL. Transparent and
uncolored size 3 gelatin capsules were purchased from https://
pharmacapsules.com, Mound House, NV. These uncolored
capsules are 100% bovine gelatin with no additives. Size 00
capsules of varying opacity and colors (Fig. S3†) were
purchased from XPRS Nutra NV, West Jordan, UT. One of the
Nutra capsules (the coral-colored capsule – third from le in
Fig. S3†) was a vegetarian product made from hypromellose
vegetable cellulose; the others were all manufactured from
gelatin.39 Isoniazid (INH) with purity >99%, microcrystalline
cellulose, and a-lactose with purity >99% were obtained from
Sigma Aldrich (St. Louis, MO). Doxycycline hydrate (DOX) with
purity 98% was obtained from Alfa Aesar (Haverhill, MA).

2.2 Lab formulated mixtures and eld collected dosage
samples

Binary mixtures of isoniazid (INH) and microcrystalline cellu-
lose were formulated as shown in Table S1† and binary mixtures
of doxycycline x' and lactose were formulated as shown in Table
S2.† To ensure homogeneity, the components were ground and
mixed together for ∼10 min in a clean mortar and pestle, then
placed in scintillation vials and vortex-mixed for another 5 min.

23 samples of doxycycline dosage forms were collected in
Western Kenya and Liberia from 2016 to 2021. The products
were 100 mg oral dosage forms, mostly in the form of capsules
packaged in blister packs, some with outer cardboard boxes.
Samples were stored at 4 °C. Institutional review board (IRB)
approval for sample collection via covert shoppers was provided
through the University of Notre Dame protocols 17-11-4224
(exp. 2019), and 18-02-4442 (exp. 2026). The samples were
analyzed by HPLC and NIR spectrometer.

2.3 High performance liquid chromatography analysis of the
branded drugs

Assay of doxycycline dosage forms was performed using high-
performance liquid chromatography (HPLC) based on a previ-
ously published method using a waters 2695 separations
module equipped with a waters 2487 UV-vis detector.40,41 Anal-
ysis was conducted isocratically at ambient temperature on an
This journal is © The Royal Society of Chemistry 2024
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XTerra C8 column (150× 4.6 mm, 3.5 mmparticle size) with 70 :
30 of 0.1% triuoroacetic acid to acetonitrile at a ow rate of 1.0
mL min−1. The injection volume was set to 20 mL and the
analytical wavelength was 360 nm. Doxycycline eluted at
3.5 min. Aer completing method validation and establishing
system suitability, nished doxycycline dosage forms were
accurately weighed, crushed, and prepared at a nominal
concentration of 0.5 mg mL−1 in 18 MU water for analysis.41 All
samples were analyzed before expiration. The assay results
showed doxycycline content for single capsules ranged from
48% to 118% of the stated dose (Table S3†).

2.4 SEM and XRF analysis of empty capsules

Scanning electron microscope (SEM) images of capsules were
acquired using a FESEM-Magellan 400 (FEI Company, Hills-
boro, OR). Samples were examined at 5 kV and a working
distance of 4 mm. In preparation for imaging, capsule samples
were cut into at strips and sputter coated with 2.5 nm of Ir.
Sputter coating was performed with an 8004 Desktop High
Resolution Coating System (Ted Pella, Redding, CA).

The gel capsules were tested using an X-200 handheld X-ray
uorescence (XRF) analyzer (SciAps, Woburn, MA). Prior to
analysis, the gel capsules were cut open, attened, and secured
directly above the XRF window. On the XRF instrument, the
‘soil’ analysis mode was used, and the amount of each element
was displayed in units of ppm.

2.5 NIR data acquisition

NIR spectra were acquired on a NIR-M-R2 USB-powered
portable spectrometer using NIRScan Winform soware
(InnoSpectra Corporation, Hsinchu, Taiwan). Spectra were
acquired by averaging 20 scans from 900 nm to 1700 nm with
228 data points (pattern width of 3.51 nm/data point, 20 second
total acquisition time). Ten capsules of each color were each
scanned ten times, with each spectrum generated aer shaking
and repositioning in the instrument cuvette holder, generating
100 NIR spectra of each type were generated. For the authentic
doxycycline samples, single capsules from 9 different blister
packs each scanned 10 times, each time, the capsule shaken
and represented to the spectrometer.

We used a previously described capsule holder to house the
size 00 capsules.20 A new sample holder was designed using
Solidworks® soware (see le named ‘New NIR Cuvette Model
(5 mm Capsule).SLDPRT’ in our GitHub page)42 to accommo-
date the size 3 capsules used for the 100 mg doxycycline dosage
forms. The opening aperture of the designed holder was aligned
with the beam size of the spectrometer to minimize stray light
as discussed in our earlier study (Fig. S9†).43

2.6 Processing and analysis of NIR spectra

NIR data les from NIRScan Winform with header sections
containing sample metadata and 228 wavelength/absorption
data points were merged and formatted for analysis using
excel. The collated data les (ISCE_data_mg.csv, isce_-
conc.csv,DE_Studies_mg_.csv, DE_Studies_conc_.csv, exter-
nal_set_doxy_conc.csv, external_set_doxy.csv,
This journal is © The Royal Society of Chemistry 2024
ALL_EXTERNAL_DE_CAPSULES.csv and ALL_EXTERNAL_DE_-
CAPSULES_cap.csv in our GitHub repository)42 were uploaded
to The Unscrambler X version 10.4 (Camo Soware, Oslo, Nor-
way) or JupyterLab for data preprocessing and analysis.

Standard normal variate (SNV) preprocessing ensures that
each spectrum has a standard deviation of one and a mean of
zero.10,43,44 Savitzky–Golay ltering (SG) was employed for data
smoothing.46,47

Orthogonal projection to latent structures (O-PLS) was used
to eliminate unrelated orthogonal variations (noise) from the
data. O-PLS explores orthogonal projections to suppress or
delete uncorrelated variability in the spectra.35,36 O-PLS was
employed to lter out unrelated variations (or noise) from the
dataset. O-PLS accentuates spectral features that correlate
linearly with the target variable. In contrast, the orthogonal
component captures the uncorrelated variation. The training
spectral data underwent O-PLS transformation using its
respective Y vector. For processing an unfamiliar spectrum, we
utilized the orthogonal projection function from the pyopls
library in Python. Specically, the ‘opls.transform’ function
facilitated orthogonal data transformation without requiring
a Y vector.

Multi-variate data analysis—either support vector machine
regression (SVM-R, (kernel = ‘poly’, gamma = 0.2, C = 1)) or
partial least squares regression (PLS-R, number of latent vari-
ables = 7)—was next applied to model the data. For each data
model, we initiated the process by randomly partitioning the
dataset. In order to determine the optimal parameters, we
varied the number of latent variables (nLVs) and determine
which of these nLVs gave the best performance. Specically, for
the Python code 70% of the spectra were designated for model
training, while the remaining 30% served as a test set to eval-
uate the model's performance post-training. For The
UnscramblerX, cross-validation (leave-one-out) was employed.
Manual or grid search was explored for optimization of the
parameters.

To further ensure robustness in our evaluation, we incor-
porated K-fold cross-validation techniques for both support
vector machine (SVM) and partial least squares regression (PLS-
R) models. For K-fold cross-validation, the dataset is divided
into ‘n_splits’ distinct subsets or “folds”. The models are then
trained on a combination of these folds and tested on the
remaining fold, iteratively. This iterative process aids in
gauging the model's consistency and reliability across diverse
data subsets, presenting a more comprehensive evaluation than
a singular train/test partition.

To optimize the performance of our models, we utilized the
‘GridSearchCV’ function from the scikit-learn library in Python.
This approach allowed us to systematically explore a range of
latent variables for both SVM and PLS-R models. The optimal
model was chosen based on its performance metrics, particu-
larly the cross-validated mean squared error.

All pivotal parameters, congurations, and code imple-
mentations pertinent to the SVM and PLS-R models have been
made publicly accessible in our GitHub repository.42

The key parameters used for SG in UnscramblerX were
second derivative, second order polynomial and 25 smoothing
Anal. Methods, 2024, 16, 1611–1622 | 1613
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points. The key parameters used for SVM-R in UnscramblerX
were radial basis function as kernel type, C-value of 1, epsilon
value of 0.1 and gamma function of 0.00438. The key parame-
ters used for PLS-R in UnscramblerX includes algorithm –

kernel, validation method – cross validation, and optimal
number of latent variables of 7.

2.7 Data and code access

The open-source code as well as the spectra used in this study
are available in our GitHub repository,42 along with a guided
workow in the Jupyter notebook named ‘minimizing capsule
interference on NIR.ipynb’. Spectra of the formulations and the
performance of the developed models before and aer data
pretreatments are displayed in our GitHub repository.42

The pairwise Euclidean distance served as a pivotal metric to
quantify the dissimilarity between individual data points within
our dataset. Originating from the classical Euclidean geometry,
this distancemeasure calculates the straight-line distance between
two points in a multidimensional space, offering a straightforward
and intuitive method to assess the proximity or divergence of
observations.47 By computing the pairwise distances, we were able
to discern patterns, identify clusters, and elucidate relationships
among our samples, thereby facilitating a deeper understanding of
the underlying structure and variability inherent in the data.

3. Results and discussion

This study was directed at the use of NIR for screening the
quality of pharmaceutical dosage forms without the use of
training data derived from authentic products. The goal is to
quantify the API within any brand of the pharmaceutical. To
accomplish this, we systematically formulated binary mixtures
of the API and an excipient such as lactose or cellulose. These
mixtures were then enclosed in different capsule types, and
predictive models were developed from the resulting NIR
spectra. We used these predictive NIR models to evaluate eld
collected samples, comparing the NIR predictions with HPLC
quantication of the API in the eld collected samples.

Initially, we generated NIR spectra from multiple samples of
each distinctive empty capsule type, and then projected the
spectra to principal component space to understand the spec-
tral features of the diverse capsule compositions. Second, we
prepared binary mixtures of APIs with excipients that were
packaged in capsules of different colors. Pairwise Euclidean
distance measurement was used to probe the signicance of
capsule color and composition. We evaluated the ability of the
NIR models to classify the APIs correctly and to identify
substandard lab-made formulations of isoniazid or doxycycline
cut with multiple types of excipients and packaged in multiple
types of gelatin capsules. Finally, we tested the models on
authentic samples of doxycycline in multiple types of capsules.

3.1 NIR, SEM, and XRF characterization of capsules of
varying opacities, compositions, and colors

The spectra generated from doxycycline in ve different colored
capsules showed distinct features, including peak shis and
1614 | Anal. Methods, 2024, 16, 1611–1622
changes in intensity, which suggested that capsule color would
interfere with chemometric data analysis. Data pre-processing
techniques including moving average smoothing, standard
normal variate (SNV) and SNV followed by Savitzky–Golay
ltering, SG (Fig. 1B–D respectively) were explored to minimize
the variations in the spectra. Initially, SNV appeared to remove
more variability than SNV + SG, but it was not clear if this would
be a general result so the effects of a wider range of capsule
colors on NIR spectra was explored using empty capsules.

NIR spectra were generated from fourteen empty size 00
capsules. For bicolor capsules, which include different dyes and
opacifying agent compositions, spectra were generated from
both the body (larger piece) and cap (smaller piece). Principal
component (PC) analysis of the unprocessed NIR spectra
revealed distinct clusters in PC1/PC2 space for each capsule
color (Fig. 2A). NIR is known to be sensitive to sample
morphology and composition (gelatin vs. hypromellose, pres-
ence of TiO2, dyes, inks), so we next investigated capsule
morphology and elemental composition.48 Pharmaceutical
capsules contain opaquing agents, such as TiO2 powder,
designed to scatter light, which can impact the signals from the
NIR instrument.2,7,9,16 Scanning electronmicroscopy with energy
dispersive analysis (SEM EDX) and X-ray uorescence revealed
uneven elemental distribution on a scale of millimeters in the
capsules (Fig. S2 and S3†). This could contribute to the observed
variability in the NIR spectra, based on how the capsule is
presented to the NIR instrument. However, analysis of the
distance metric shows that this source of variability is insig-
nicant compared to the variability from the different capsule
compositions. X-ray uorescence has been used to identify
heavier elements in samples including pharmaceuticals,49 and
we found that all the pharmaceutical capsules contained tita-
nium (0.5–2.0% w/w) along with small amounts of sulfur,
calcium, and potassium (Fig. S3†). These varying elemental
concentrations result from addition of different amounts of
opaqueing agent needed to provide the desired capsule color
and transparency, and from varying degrees of mineralization
of collagen, the raw material that gelatin is derived from.50 Assi
et al. identied titanium(IV) oxide as one of the most common
excipients in antibiotic products (generic and branded tablets
as well as capsules) obtained from 11 different countries.51

Kauffman et al. and Romero-Torres et al. found that capsules
and coatings containing titanium(IV) oxide interfered with
vibrational spectroscopic measurements of API content.30,52,53

However, the clusters in PC1/PC2 space seen in Fig. 2 had no
correlation with the TiO2 content of the corresponding
capsules.
3.2 Orthogonal projection to latent structures (O-PLS)
minimizes undesired variability caused by different colored
capsules

NIR can analyze samples inside some packaging such as vials
that have relatively thick walls, so the impact of a thin gelatin
capsule on the NIR spectrum might be small compared to the
effect of the pharmaceuticals inside the gel capsule. The average
capsule thickness was just 0.125 ± 0.015 mm. However, we
This journal is © The Royal Society of Chemistry 2024
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Fig. 1 NIR spectra of doxycycline in five colored capsules (blue gelatin (B), vegetable cellulose (ER), orange gelatin (O), green gelatin (Gr), and red
gelatin (R)), (A) raw NIR spectra (B) moving average (C) standard normal variate (SNV), (D) SNV + Savitzky–Golay (SG).

Fig. 2 (A) PCA scatter plot of the treated spectra of 18 empty capsule types showing some selected inter-cluster pairwise Euclidean distances (B)
PCA scatter plot and pairwise Euclidean distances of NIR spectra from transparent gelatin capsules holding different APIs (10% acetaminophen/
90% lactose denoted as cluster 1, and 10% acetaminophen/90% ascorbic acid, denoted as cluster 2, and 100% isoniazid denoted as cluster 3).

This journal is © The Royal Society of Chemistry 2024 Anal. Methods, 2024, 16, 1611–1622 | 1615
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found that the capsule-related clustering was still detectable
when the capsules were lled with various pharmaceutical
ingredients. Fig. S4–S6† show PCA analysis of samples of
isoniazid prepared in different colored capsules; the resulting
spectra revealed distinct clusters for samples prepared in
different capsules, even if the samples were of the same
chemical composition, and even aer SNV or SNV + SG trans-
formation. This nding reects the sensitivity of NIR not only to
the actual content of the capsule but also to the container
(capsule/pill coating) housing it.

We compared a common NIR data pre-treatment method –

standard normal variate (SNV), followed by SG smoothing –with
orthogonal projection to latent variables, which is less
commonly used for pharmaceutical analysis.45,54 O-PLS is an
orthogonal projection approach that removes unwanted sour-
ces of variability from spectra,35,36 by removing any features that
are not correlated with the variation in the targets' concentra-
tions. We compared the effects of SNV, SNV-SG, and O-PLS data
pretreatment methods; in each case, the processed spectra were
evaluated by PC cluster analysis. Minimization of the differ-
ences between the capsule compositions would result in
Fig. 3 PCA plots and Euclidian distances for lab formulations containing
lactose, blue = 10% acetaminophen/90% ascorbic acid). The isoniazid w
were housed in transparent gelatin capsules. (A) PCA plot showing O-P
distances for all the 18 capsule types (blue bars) after O-PLS treatment; ar
in transparent capsules. (C) PCA plot showing SNV treated spectra (D) hi
capsule types (blue bars) after SNV treatment; arrows indicate pairwise Eu

1616 | Anal. Methods, 2024, 16, 1611–1622
a single cluster (aggregation of individual clusters). The raw
spectra show nearly complete distinction of each type of
capsule; SNV, SNV-SG and O-PLS each reduced the variability in
the NIR data from different capsule compositions (Fig. S1(iii)†).
The average distance metrics for the clusters were 2.40, 0.017,
and 0.31, showing that SNV-SG and O-PLS were better pre-
processing option.
3.3 O-PLS pre-treatment removes the interference of capsule
type on classication of API type within the capsules

We employed the O-PLS pre-treatment technique on NIR
spectra of several APIs enclosed within capsules of various
colors. Through exploratory data analysis utilizing PCA, we
observed that O-PLS data pre-processing effectively eliminated
undesired sources of variability present in the spectra, allowing
us to focus on the contribution stemming from the API itself
(Fig. 3A and C). Given the differences in excipients and other
formulation factors that can result in overlapping peaks, we
refrained from employing a wavelength selection approach
throughout this study.
different APIs (green = pure isoniazid, red = 10% acetaminophen/90%
as housed in 18 different capsule types/colors; the other formulations
LS treated data (B) histogram of the inter-cluster pairwise Euclidean

rows indicate pairwise Euclidean distances for the different APIs housed
stogram of the inter-cluster pairwise Euclidean distances for all the 18
clidean distances for the different APIs housed in transparent capsules.

This journal is © The Royal Society of Chemistry 2024
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In order to highlight the impact of capsule color on the NIR
data, in contrast to variations in the API and excipient, we
conducted two specic evaluations. We examined pure isoni-
azid samples in capsules of diverse colors, and we examined
a single type of transparent capsule housing pure isoniazid or
binary mixtures of acetaminophen with either lactose or
ascorbic acid. Both O-PLS and SNV pre-processing successfully
clustered the samples based on variations in chemical compo-
sition. Aer O-PLS pre-processing, the isoniazid NIR spectra
were all well resolved in PC space from the acetaminophen/
lactose and acetaminophen/ascorbic acid NIR spectra. The
isoniazid samples exhibited two primary clusters: one corre-
sponding to gelatin capsules of various colors, and the other
associated with vegetable cellulose capsules (Fig. 3A). However,
SNV pre-processing resulted in distinct clusters within the
isoniazid samples (Fig. 3C) due to variations in the capsule
composition, and the acetaminophen/ascorbic acid samples
overlapped with several of the isoniazid samples.

The pairwise Euclidean distance probes how much the
capsule color and composition affect the clustering of the NIR
spectra. It quanties the distance between two data points (or
centroids of the respective clusters) by nding the square root of
the sum of their squared differences in PC coordinates; it
should be noted that the distance is calculated in the rst two
Fig. 4 Partial least squares regression model trained with lab-formula
capsules can predict API concentration of powders presented in different
B) or O-PLS (C and D). INH_100, INH_200, INH_300 & INH_500 are 1
principal component projections of the NIR data, panels (B) and (D) sho

This journal is © The Royal Society of Chemistry 2024
components.55 Fig. 3 shows histogram plots of these distances
for all the different capsule color types housing isoniazid; aer
O-PLS pre-treatment, the average distance metric ranges from
0.0126 to 4.97, much smaller (Fig. 3B) than the range of 0.019–
7.82 seen aer SNV pre-treatment (Fig. 3D). In the SNV pre-
treated data, the Euclidian distance metric between the isoni-
azid, acetaminophen/lactose and acetaminophen/ascorbic acid
clusters averaged 3.95, which is in the range of the distance
metrics seen for different types of capsules; this means that for
SNV pre-treated data, the capsule type is as important a source
of variability as the contents of the capsules. In the O-PLS pre-
treated data, the Euclidian distance metric between the isoni-
azid, acetaminophen/lactose and acetaminophen/ascorbic acid
clusters averaged 3.12, while the distance metric between all the
clusters from different capsule types was below 1.0. This shows
that O-PLS pre-treatment removes most of the variability due to
capsule type without impacting variability due to capsule
contents. The efficacy of the O-PLS pre-treatment here is
consistent with the results for the empty capsules (Fig. S5–S7†).
3.4 O-PLS data pre-treatment removes interference from
capsule type on quantication of the API

Pharmaceutical dosage forms must contain a specied quantity
of API, so we developed an NIR regression model for use in
ted mixtures of isoniazid and microcrystalline cellulose in multicolor
colored capsules; all NIR data was pre-treated by either SNV-SG (A and
4%, 28%, 42% and 71% isoniazid respectively. Panels (A) and (C) show
w both calibration and validation performance.

Anal. Methods, 2024, 16, 1611–1622 | 1617
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detection of substandard dosage forms. The regression model
was trained on mixtures of isoniazid and crystalline cellulose at
different % w/w ratios (Table S1†). Mirroring the ndings
observed in the pure isoniazid samples displayed in Fig. 3,
distinctive clusters corresponding to different capsules as well
as different % w/w ratios were evident in the PC1/PC2 projection
of the data (Fig. S7†). A regression model based on the
untreated data yielded an R2 value of 0.89 (data not shown)
which was deemed low.

Data pre-treatment improved the regression models. Both
the standard normal variate followed by Savitzky–Golay (SNV-
SG) and orthogonal projection to latent structures (O-PLS)
data pre-treatments mitigated the heterogeneity within the
data. Consequently, the resulting clusters became primarily
separated by the % API w/w ratio rather than by capsule color
(Fig. 4A and C). Partial least squares regression (PLS-R) and
support vector machine regression (SVM-R) models were
trained on the SNV-SG or O-PLS treated data and cross-validated
(Fig. 4B and D). The O-PLS pre-treated data exhibited higher
correlation coefficient values for validation (0.97) compared to
the SNV-SG treated data (0.91). The root mean square error
(RMSE) for validation, a metric gauging the accuracy of quan-
titative predictions, also indicated a signicant improvement
for the O-PLS pre-treated data. The RMSE of the PLS-R model
was twice as high for SNV-SG pre-treated data as for O-PLS pre-
treated data (Fig. 4). Similar performance trends were observed
in the SVM-R models. Additional details and the Python version
of this work can be found in the Jupyter notebook and our
GitHub repository.42

We replicated the aforementioned procedures using doxy-
cycline, which is commonly formulated in capsules. Regression
models were trained using NIR spectra derived from laboratory
mixtures of doxycycline and lactose, as outlined in Table S2.†
Promisingly, the regression performance of these models
(Fig. S8†) were comparable to those observed in the isoniazid
models.
Fig. 5 (A) NIR spectra of two branded samples of doxycycline (one that
and talcum powder. (B) Scatter plot showing actual and predicted % w/w
samples in the red box all failed HPLC assay and were found to be adult

1618 | Anal. Methods, 2024, 16, 1611–1622
We applied the doxycycline model, trained on lab-made
mixtures to a group of commercial doxycycline capsules ob-
tained from Kenya and Liberia. Our goal was to see whether the
model trained on 14%, 28%, 42% and 71% mixtures of doxy-
cycline in a lactose matrix could predict doxycycline content in
commercial products. This is a challenging test because the
commercial products come in smaller capsules with different
colors (Fig. S4†) and mostly used microcrystalline cellulose
(rather than lactose) as an excipient.
3.5 There are large variations in the solid concentration of
doxycycline packaged in commercial capsules that meet the
assay standard for API content

When we tried to validate the method using doxycycline dosage
forms, we encountered a new problem. Pharmacopoeial stan-
dards governing API content are based on the cumulative
amount of API present in the dosage unit, with different
manufacturers employing varying quantities of diverse excipi-
ents when formulating these units. Excipients, inactive ingre-
dients within the formulation, contribute substantially to the
total mass of the pill.56,57 The wide range of potential identities
and concentrations of excipients is an inherent limitation to the
utility of NIR spectrophotometers for analysis of real dosage
forms, particularly in low- and middle-income country (LMIC)
settings.

For eld screening of pharmaceutical dosage forms, the goal
is to conrm the identity and amount of the API present in each
capsule. However, due to the limited penetration depth, NIR
does not measure the absolute amount of material in
a capsule—it measures the concentration of the API, usually in
units of %w/w. The assessment of API amount depends on the
total weight of powder inside the capsule and the weight
percentage of the API in that powder (% w/w). For on-site eval-
uations, the weight of powder can be measured using an
affordable milligram balance.58
failed HPLC assay and one that passed HPLC assay), pure doxycycline,
doxycycline in twenty-three commercial samples of doxycycline. The
erated with talc.

This journal is © The Royal Society of Chemistry 2024
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In order to evaluate the likely range of API concentrations
that the NIR method might encounter, we used the monograph
limits for API amount (90–120 mg for a nominal 100 mg dose of
doxycycline) and the measured amount of powder in doxycy-
cline capsules from 23 brands to calculate the range of doxy-
cycline content that would still pass assay. The capsules were
made by six manufacturers in three different countries (India,
Germany, and China) and all were purchased from retail
pharmaceutical stores in Africa. The upper and lower limit of
these 100 mg pill masses were 322 mg and 154 mg. For these
brands, the API concentration of the powder could in theory
range from 28% to 62% w/w without violating the monograph
standard for API content.59 The actual doxycycline content in
the capsules (as calculated from HPLC assay values and pill
masses) ranged from 31 to 51% (Table S3†), except for 5 samples
that did not pass the HPLC assay and had doxycycline content
between 24 and 27%.

When the NIR models were applied to these 23 eld-
collected samples, the predicted concentration of doxycycline
in % w/w (Fig. 5) ranged from 20.3% to 41.6%. Using the
standard that good doxycycline pills should have %w/w API
between 28% and 62%, the ve bad quality samples failed while
the 18 good quality samples passed the NIR screening evalua-
tion. This shows that the HPLC-derived %w/w of API in eld
collected samples can provide a useful benchmark for non-
brand specic NIR models. However, the NIR-estimated
values are systematically underpredicted, probably because
the microcrystalline cellulose and other excipients used in the
eld-collected doxycycline samples were too different from the
lactose used to train the NIR regression models. Pharmaceutical
monographs regulate the absolute quantity of API present in the
dosage units, not the %w/w concentration of the API. When we
used the NIR prediction of % w/w and the amount of powder in
each pill to predict the actual mass of the doxycycline in the 23
dosage forms, the API mass was systematically underestimated.
Only 48% of the 23 samples passed the total API content eval-
uation by NIR, while according to the “gold standard” HPLC
assay, 78% of the 23 samples passed. This problem is likely to
be more serious for dosage forms, like these doxycycline
capsules, that include relatively large amounts of excipients.

4. Conclusion

The O-PLS pre-treatment demonstrated signicant efficacy in
mitigating capsule interferences within our lab-formulated
samples. Its seamless integration into the NIR workow and
its potential for analyzing eld samples underscore its
strengths. However, a notable limitation was its inability to
account for excipient interferences, resulting in the underesti-
mation of API content in eld samples. Monographs do not
specify the exact excipients or the quantity of excipients to be
used in a formulated product, except for requiring use of
pharmaceutical grade excipients. Consequently, manufacturers
use different excipients and different quantities of excipients in
products that are nominally the same drug at the same dosage
level. This variability will be a problem for any NIR models that
are not trained on authentic samples. While our models
This journal is © The Royal Society of Chemistry 2024
exhibited promising accuracy in distinguishing between
genuine and substandard pharmaceuticals, the vast variability
in excipient concentrations and formulations among commer-
cial products presented challenges.60 These complexities,
especially in the context of the capsule's total weight and the
resultant % w/w API, emphasize the need for further research
and renement. Our future efforts will focus on determining
how to select excipients for the lab-based training models that
will give more robust models for analysis of eld collected
samples. Hyperspectral imaging, though effective, is cost-
prohibitive for LMICs.61–64 While using a transmission mode
might mitigate coating interference, many portable devices do
not support this feature, and it requires crushing the pills,
which is difficult in a eld screening scenario. This problem
could also impact NIR models that are trained on authentic
samples if the manufacturers alter the excipient composition or
content, and the model is not updated.
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