

EES Batteries

Exceptional research on batteries and energy storage

Part of the EES family

Registered charity number: 207890

Showcasing research from Dr. Stefan Glöggler's team, NMR Signal Enhancement Group, Max Planck for Multidisciplinary Sciences, Göttingen, Germany.

Parahydrogen-enhanced pH measurements using [1- 13 C] bicarbonate derived from non-enzymatic decarboxylation of [1- 13 C] pyruvate-d₃

Non-invasive magnetic resonance methods to measure pH offer a new approach for early diagnosis of diseases characterized by acid-base imbalances. We present an optimized preparation of an hyperpolarized $H^{13}CO_3^{-/1^3}CO_2$ pH sensor *via* non-enzymatic decarboxylation with H_2O_2 of [1-¹³C]pyruvate-d₃. Unprecedented degrees of ¹³C signal-enhancements of purified [1-¹³C]pyruvate-d₃ were obtained using parahydrogen allowing for a secondary reaction to release the pH sensor. *In vitro* validations demonstrated accurate pH calculations. Our results highlight the efficiency of a pH sensor generated in less than one minute, with remarkable polarization, and biocompatibility suitable for future *in vivo* studies.

As featured in:

See Stefan Glöggler *et al., Analyst,* 2024, **149**, 5022. Image designed and illustrated by Hartmut Sebesse, MPINAT MediaService

