

# Advance your career in science

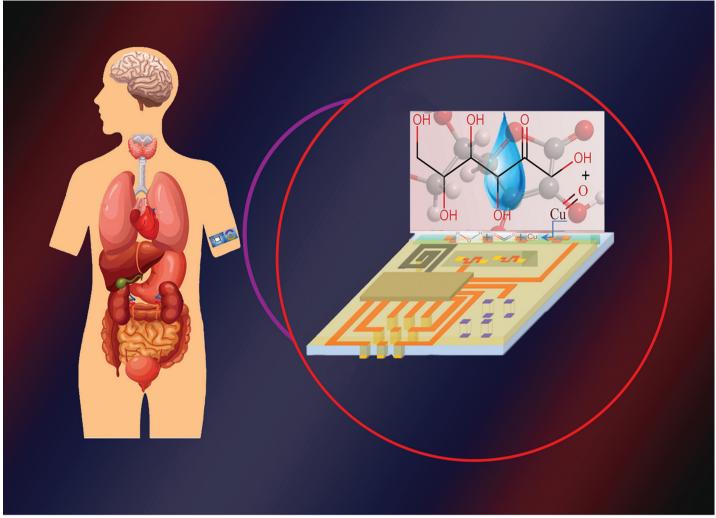
with professional recognition that showcases your experience, expertise and dedication

#### Stand out from the crowd

Prove your commitment to attaining excellence in your field

## Gain the recognition you deserve

Achieve a professional qualification that inspires confidence and trust


### Unlock your career potential

Apply for our professional registers (RSci, RSciTech) or chartered status (CChem, CSci, CEnv)

#### Apply now

rsc.li/professional-development





Showcasing research from Professor M. R. Howlader's laboratory, School of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario.

High performance nonenzymatic electrochemical sensors *via* thermally grown Cu native oxides (CuNOx) towards sweat glucose monitoring

Diabetes, which is the seventh leading cause of death globally, necessitates real-time blood glucose monitoring, a process that is often invasive. A promising alternative is sweat glucose monitoring, which typically uses transition metals and their oxide nanomaterials as sensors. Despite their excellent surface to-volume ratio, these materials have some drawbacks, including poor conductivity, structural collapse, and aggregation. As a result, selecting highly electroconductive materials and optimizing their nanostructures is critical.



