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Dynamic video recognition for cell-encapsulating
microfluidic droplets†
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Droplet microfluidics is a highly sensitive and high-throughput technology extensively utilized in bio-

medical applications, such as single-cell sequencing and cell screening. However, its performance is

highly influenced by the droplet size and single-cell encapsulation rate (following random distribution),

thereby creating an urgent need for quality control. Machine learning has the potential to revolutionize

droplet microfluidics, but it requires tedious pixel-level annotation for network training. This paper investi-

gates the application software of the weakly supervised cell-counting network (WSCApp) for video reco-

gnition of microdroplets. We demonstrated its real-time performance in video processing of microfluidic

droplets and further identified the locations of droplets and encapsulated cells. We verified our methods

on droplets encapsulating six types of cells/beads, which were collected from various microfluidic struc-

tures. Quantitative experimental results showed that our approach can not only accurately distinguish

droplet encapsulations (micro-F1 score > 0.94), but also locate each cell without any supervised location

information. Furthermore, fine-tuning transfer learning on the pre-trained model also significantly

reduced (>80%) annotation. This software provides a user-friendly and assistive annotation platform for

the quantitative assessment of cell-encapsulating microfluidic droplets.

Introduction

Microfluidic chips integrate biochemical operating units,
regulate the fluid flow through microchannels, and create the
lab-on-a-chip or micro total analysis system (μTAS).1 Their
vast applications are seen in gene sequencing, in vitro diagno-
sis, and health monitoring.2 Droplet microfluidics is one of
the most sensitive and high-throughput technologies for
injecting immiscible fluids into microfluidic chips,3 generat-
ing uniform droplets,4 encapsulating biological contents (e.g.
nucleic acids, proteins or cells), and subsequently manipulat-
ing and detecting droplets.5,6 It has been successfully
implemented in many fields, including biomedicine, indus-
trial chemistry, and environmental science.7 Numerous appli-
cations have been developed, such as the digital droplet poly-
merase chain reaction (ddPCR),8 single-cell sequencing,9

digital enzyme-linked immunosorbent assay (dELISA),10

material synthesis,11 drug delivery12 and high-throughput
screening.13 Since 2015, various single-cell sequencing tech-
niques, including Drop-seq,14 indrop15 and scRNA-seq,16

have been used to deconstruct cell populations and infer

gene relationships by encapsulating a single cell into a micro-
droplet. Instead of manual analysis and tedious counting,
growing advances in droplet microfluidics have created an
urgent requirement for quality control of uniform droplets
encapsulating a single cell.

Passive generation of homogeneous droplets has been pro-
posed using different techniques,17 while most microfluidic
droplets are generated in the handcrafted polydimethyl-
siloxane (PDMS) chip.18 For optimal reproducibility and
robustness, flow-focusing structures have been widely used to
generate microdroplets and encapsulate single cells.
However, the Poisson random distribution limits the number
of encapsulated cells per droplet with a theoretical maximum
of 36.78% droplets containing only one cell.19 Although
several active droplet methods have been proposed to break
this limit,17 it is still of great significance for real-time moni-
toring and control of the single-cell encapsulation rate.

In addition, various dynamic factors related to the gene-
ration process can also significantly affect the final perform-
ance of microdroplets,20 such as fluid stability (bubbles) which
affects the diameter uniformity and solution dispersibility (cell
adhesion or sedimentation) which affects the encapsulation
rate. For instance, a 3% deviation in diameter leads to an 8.5%
deviation in the quantitative results of ddPCR and dELISA.21

Encapsulation rate is essential in determining the delivery
efficiency.22 More importantly, the single-cell encapsulation
rate or the co-encapsulation rate of single cells and encoding

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d4an00022f
‡These authors contributed equally: Yuanhang Mao and Xiao Zhou.

Department of Automation, Tsinghua University, Beijing, 100084, China.

E-mail: zcheng@mail.tsinghua.edu.cn

This journal is © The Royal Society of Chemistry 2024 Analyst, 2024, 149, 2147–2160 | 2147

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 3
:3

9:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://rsc.li/analyst
http://orcid.org/0000-0001-8197-5560
https://doi.org/10.1039/d4an00022f
https://doi.org/10.1039/d4an00022f
https://doi.org/10.1039/d4an00022f
http://crossmark.crossref.org/dialog/?doi=10.1039/d4an00022f&domain=pdf&date_stamp=2024-03-19
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4an00022f
https://pubs.rsc.org/en/journals/journal/AN
https://pubs.rsc.org/en/journals/journal/AN?issueid=AN149007


magnetic/gel beads in one microdroplet greatly affects the
efficiency of cell/microbial screening and the reliability of
single-cell sequencing.19 It is also the reason for developing
post-processing algorithms to remove empty droplets23 and
double cell droplets24 or designing new structures to improve
the encapsulation rate.25 In conclusion, computational and
intelligent methods for evaluating dynamic droplet uniformity
and quantifying encapsulated cells are highly desired.

To independently distinguish both droplets and encapsu-
lated cells in microscopic images, two-stage object recognition
methodologies were preferentially applied.26,27 In the first
stage, potential droplet candidates are created by morphologi-
cal analysis,28 e.g. edge-feature extraction with Hough trans-
form (HT),29,30 background models, and connected com-
ponent analysis,31 to find the circular contours of the droplet
foreground and segment their borders by masks. These
methods are effective for transparent and separable droplets,
but struggle with opaque and adherent droplets. In the second
stage, researchers investigated droplets containing particles by
measuring the grayscale deviation32 and standard deviation
(SD) of the distance between the contour and the gravity
center.26 However, these morphological approaches are
strongly limited by image quality. Machine learning tech-
niques are also being developed to identify encapsulated cells
and categorize droplets (see Table 1). Random forest was
implemented to identify beads within droplets.27 To categorize
encapsulating droplets, handcrafted features were also fed into
a support vector machine (SVM)33 and convolutional neural
networks (CNNs).34,35 However, these traditional classifiers
and morphological approaches cannot count the cell quantity
in each droplet. Influential object detectors, e.g. You Only
Look Once (YOLO), have also been applied to classify droplets
and detect cells showing significant improvements.36,37 We
have noticed that the primary distinction between single-cell
and multi-cell encapsulation is the cell quantity rather than
the divergence of cell-like properties and have recently devel-
oped a weakly supervised cell-counting network (WSCNet) for
image recognition.38–41 Different from fully supervised learn-
ing (e.g. YOLO) that requires cell-level labels, e.g. cell popu-
lation or precise location,37,42 WSCNet utilized droplet-level
labels (empty, single-cell, and multi-cell encapsulation) to
prevent tedious annotation.

Furthermore, several studies have concentrated on cell-
encapsulating droplets utilizing microscope videos captured
by a high-speed camera,31,32,43 while most droplets generated
in microchannels are transparent and separable. With the

dynamic recognition of video frames, real-time control of
droplet generation and cell encapsulation can be realized to
improve the diameter stability and single-cell rate and finally
realize high-throughput droplet sorting.35–37 Therefore, we
believe that it is critical to design user-friendly application
software with a graphical user interface (GUI) to facilitate the
quantitative assessment of both the droplet images and
videos. To address this need, we propose a new application
software of the weakly supervised cell-counting network
(WSCApp), which is designed for video recognition of cell-
encapsulating microfluidic droplets. WSCApp integrates our
original WSCNet model38 (for droplet classification, cell count-
ing, and cell location) with traditional classifiers (for droplet
classification) to enhance detection accuracy. Furthermore, we
also designed dark-field and bright-field segmentation algor-
ithms (optional) for different imaging conditions. To evaluate
the generalizability of the models, our methods were systemati-
cally verified on different droplets encapsulating six types of
cells/beads, which were collected from various microfluidic
structures. We also summarized the advantages of our
methods over previous work, as shown in Table 1 (detailed in
ESI Table S1†), with a micro-F1 score > 0.94. Compared to fully
supervised learning frameworks, WSCApp’s use of pre-trained
models and the transfer learning strategy has also improved
the labelling efficiency (triple droplet-level labels) and further
reduced manual annotation (>80%). Quantitative experimental
results on intricate data also indicated that our approach can
not only accurately distinguish droplet encapsulations, but
also locate each cell.

Working principle
Principle of droplet generation and cell encapsulation

Anna et al. proposed flow-focusing structures to generate
microdroplets for the first time.50 In this geometry, the dis-
persed phase is subjected to both the pressure and shear force
of two symmetrically continuous phases and breaks into
microdroplets. As the dispersed and two continuous phases
continue to enter the intersection, the fracture process occurs
periodically. Given its ability to generate small droplets at high
frequency and throughput, the flow-focusing structure is cur-
rently widely used.

One of the most commonly used methods for single-cell
droplet encapsulation involves diluting cells into the dis-
persed phase prior to droplet formation.19 The fundamental

Table 1 Comparisons of different approaches for cell-encapsulating microfluidic droplets

Method Droplet application Tested types Detection output Cell location Precision Ref.

Methodology Cell sorting 1 Droplet category Yes 85% 28
Handcrafted CNN Cell sorting 3 Droplet category No 90% 35
YOLO v4-tiny Cell sorting 3 Droplet category/cell quantity Yes 92% 36
YOLO v3/v5 Cell encapsulation 1 Droplet category/cell quantity Yes 91% 37
WSCApp Cell encapsulation 6 Droplet category/cell quantity Yes >94% This work
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idea is to sufficiently dilute the cell suspension so that only
one cell appears in a single droplet (ESI Fig. S1†). Assuming
that there are λ cells per microdroplet (CPD, cell density
divided by droplet volume), the following formula can be
used to obtain the Poisson probability of k cells per
microdroplet:

ρðkÞ ¼ λk

k
expð�λÞ: ð1Þ

Droplet recognition, classification and cell counting

We have developed comprehensive application software
named WSCApp with a GUI for dynamic recognition of cell-
encapsulating microfluidic droplets. WSCApp enables objec-
tive and automatic statistical analysis of droplet quality and
cell quantity. The two-stage object recognition methodology
is utilized by WSCApp as shown in Fig. 1. The droplet propo-
sals are first segmented, and then, the proposals are fed to
optional detectors to remove false positive droplets, categor-
ize droplets, and further count the cell population.

In the first stage, to increase the generalization of detection
in both droplet images and videos, we create both dark-field
and bright-field droplet recognition algorithms, which are
optional on WSCApp, for different illumination scenarios. We
have recently developed a novel morphological approach
named adaptive scale template matching (ASTM)40 to generate
proposals of opaque and adherent droplets for static micro-
scopic images. Considering the video characteristics in which
most droplets are clearly separated and transparent, in this
study, we designed a bright-field algorithm that utilized
contour extraction followed by HT (CEHT).

In the second stage, WSCApp integrates both conventional
classifiers and our WSCNet38 for droplet classification, cell
counting and location, respectively. Firstly, widely studied
CNN-based classifiers are applied as baseline methods for
droplet classification. Secondly, WSCNet was used to estimate
the number of cells within each droplet to categorize droplets
according to the number of encapsulated cells. Additionally,
WSCNet offers location prediction for each cell, which is more
comprehensible and rational than a traditional classifier. Cell
localization is also critical for subsequent verification and ana-
lysis of the characteristics of each cell. To enhance the soft-
ware’s real-time performance, the code was reconstructed into
the C++ code for arithmetic acceleration. Please refer to ESI
Note 1† for further details.

Assistive annotation and transfer learning using interactive
WSCApp

Currently, most machine learning algorithms assume that the
feature distribution of training and test data is similar, but
this is often not feasible for different droplet data collected by
different laboratories. Given the large differences between
imaging systems, microfluidic chips, experimental conditions,
and cell types, the standard procedure for applying algorithms
is usually to relabel all data from scratch, which is very time
consuming and limited by the quantity and quality of the

available data. Finally, networks need to be retrained to ensure
accuracy.

To further mitigate the burden of data annotation, we inves-
tigated pre-trained models and transfer learning strategies in
this study, as shown in Fig. 2. First, we trained both classifiers
and WSCNet using the static droplet image we had collected
experimentally38 and integrated them into WSCApp. Second,
we applied WSCApp directly to new droplet data and provided
initial annotation. Third, the annotation results could be
viewed and modified directly on the GUI for assistive annota-
tion. Fourth, we retrained classifiers or WSCNet models with
triple droplet-level labels. If the target domain data were

Fig. 1 Overview of our proposed software for image and video reco-
gnition of cell-encapsulating droplets. (a) The input for this application
software includes both droplet images and videos with or without
encapsulated cells. (b) The illustration of application software (WSCApp)
containing droplet segmentation (two orange boxes) and droplet
classification (two blue boxes). Adaptive scale template matching
(ASTM) and contour extraction followed by Hough transform (CEHT)
segmentation algorithms were designed for dark-field (low grayscale)
and bright-field (high grayscale) imaging conditions, respectively. To dis-
tinguish and categorize droplets by the number of encapsulated cells,
both traditional CNN-based classifiers and the weakly supervised cell-
counting network (WSCNet) were integrated into WSCApp for droplet
classification, cell counting, and cell location, respectively. Both seg-
mentation and classification algorithms are optional to improve the
accuracy and generalization. (c) WSCApp output recognized droplets
marked with empty, single-cell, and multi-cell encapsulations (red, blue,
and green circular masks, respectively). The WSCNet model can not
only distinguish droplet encapsulations but also count and locate each
cell. The scale bar represents 100 μm.
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insufficient, transfer learning could be used to transfer knowl-
edge to a new scenario,44 fine-tuning the initial model weights
to improve classification and recognition performance. Lastly,
we compared and validated the generalization capability of the
algorithm on complex data collected from the literature (ESI
Table S2†).

Results and discussion
Pre-trained model results on droplet datasets

By performing microfluidic experiments and image acqui-
sition, we collected static images of encapsulating droplets for
pre-training both the WSCNet model and traditional classi-
fiers. Droplet video datasets were collected for the validation of
assistive annotation and transfer learning on WSCApp soft-
ware. The classifiers and WSCNet model were applied directly
to the new video dataset, and preliminary annotations were
provided. Representative results of droplet segmentation and
classification are shown in Fig. 3.

After comparative analysis, the ASTM algorithm has proven
to be superior in segmenting highly adherent and opaque dro-
plets in dark-field images. The CEHT method, on the other
hand, displays excellent performance in detecting transparent
droplets on bright-field images. They showed recall values
exceeding 95% and 98% for 21k dark-field and 11k bright-
field droplets, respectively, which well demonstrated the detec-
tion performance of the two algorithms in their specific scen-
arios. Conversely, the ASTM algorithm leads to false negative
droplets in bright-field images, with less than 10% of droplets
being segmented (ESI Fig. S2 and S3†), which is also the
motivation behind the design of bright-field algorithms for
this study. In addition to good performance on bright-field
images, CEHT can also be applied to dark-field images to
some extent, achieving 95% recall and 93% accuracy and indi-
cating a low number of false positives and negatives. The main
distinction between the two processing algorithms lies in
whether the droplets are connected after binarization and
filling and whether each droplet possesses distinct edges.
Therefore, CEHT has a wider scope of application and can be

Fig. 2 An illustration of assistive annotation and transfer learning using
the interactive WSCApp proposed in this paper. (a) Pre-train CNN-based
classifiers or WSCNet on static droplet images that we have experi-
mentally collected. (b) Select the pre-trained models on WSCApp, apply
them directly to new droplet data, and obtain the initial annotation. (c)
View and modify triple droplet-level labels visually on the GUI. (d) Use a
transfer learning strategy to retrain classifiers or WSCNet and fine-tune
model weights to the new feature distribution. (e) Utilize the new model
and conduct more independent testing.

Fig. 3 Representative results of detected droplets by directly applying
WSCApp software that is pre-trained on our static images. (a)
Representative images of ASTM and CEHT segmentation on dark-field
droplets and bright-field droplets. Only droplet segmentation is per-
formed on the above two images to visualize the results. (b)
Representative results of the size distribution of 4135, 2286 and 3981
droplets, respectively. The mean radius and the coefficient of variation
(CV) are shown. (c–f ) Representative results of droplet segmentation
and classification on droplet frames of different videos with encapsu-
lated cells or beads. The white and black arrows denote false negative
and false positive for classification, respectively. (g) Ablation study of
CEHT with contour extraction (CE) or Hough transform (HT), respect-
ively. (h) CEHT recognition rate under different IoU thresholds on
different datasets.
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used as a preliminary attempt in the case of undemanding
recognition rate requirements.

Second, in addition to automatically displaying droplet stat-
istics, such as mean diameter and SD value, on the message
window, WSCApp also generates recognized text files that
contain the droplet position and category for classifiers and
the WSCNet model, or the cell number and position only for
the WSCNet model. We collected 4135, 2286 and 3981 droplets
from approximately 20 images in three independent experi-
ments. Their diameter distribution is plotted in Fig. 3(b) with
mean radius and CV values. The CVs of 3.5–4.6% indicate
good monodispersity and uniformity in droplet size. Further
parameters of Fig. 3(b) are listed in ESI Table S3.†

Next, the GUI allows immediate review, sequential browsing
of images or video frames, and automatic loading of the
corresponding annotation files. CEHT’s excellent performance
further reduces the manual workload on droplet segmenta-
tion, as shown in Fig. 3(c–f ), while less than 3% of droplets in
video datasets need to be remarked with circular contours. To
verify the effectiveness of CEHT, ablation studies were con-
ducted comparing CEHT to contour extraction (CE) or HT
solely. As shown in Fig. 3(g) and ESI Table S4,† CEHT generally
showed a good balance between a high recognition rate (recall
≥98%) and a high IoU threshold, outperforming CE or HT
alone. It is further noted that CE is prone to false positives but
shows an accurate contour. HT hardly leads to false negatives,
but the recognized contour is easily deviated from the true
position. Our CEHT algorithm combines the CE’s accurate
positioning with HT’s high recognition rate. Finally, their com-
bination significantly enhances the segmentation perform-
ance, as CE shows only 88% recognition rate and HT reduces
the average IoU of all droplet proposals by 7%, as shown in ESI
Fig. S4 and S5.† Moreover, CEHT could detect more than 89%
droplets (except 76% and 79% for video 1 and video 2) at an
IoU threshold of 0.80 (relatively strict criterion for object
location) in droplet segmentation, as shown in Fig. 3(h) and
ESI Fig. S5.† Therefore, we have designed two complementary
algorithms, ASTM and CEHT, for droplet segmentation on
both bright and dark field images.

Concerning droplet classification, it can be concluded that
the pre-trained model obtained on static images shows unsa-
tisfactory accuracy for dynamic video frames, with the repre-
sentative results shown in Fig. 3(c–f ). This phenomenon aligns
with our expectations, as it can be caused by different imaging
systems, microfluidic chips, and continuous (oil) and dis-
persed (cell types) phases. Classification models need to be
retrained with updated annotations. Consequently, we
designed the GUI in WSCApp to enable the visualization of
annotation results and reconfirmed droplet labels directly
within the software. We have manually modified the video
annotations for further training and evaluation. It is worth
noting that only three droplet-level labels, including empty,
single-cell, and multi-cell encapsulation (0, 1, >1), are adopted
in this study to avoid tedious and cell-level annotation. To
complete the data modification, we merely selected the droplet
category and clicked anywhere in the droplet area that should

be changed. We completed the full data annotation on videos
1–7 and only performed approximately 1000 mouse clicks on
1695 video frames with 10 584 droplets using assistive annota-
tion. Compared to conventional annotation from scratch, we
used a pre-trained model to provide initial annotation, thus
saving 97% and ∼40% of annotation workload on droplet seg-
mentation and classification. The unsatisfactory classifiers or
WSCNet models are further trained with manually modified
labels with weakly supervised information (triple labels) to fit
the feature distribution and achieve cell counting and
location.

Qualitative results of retrained models from scratch

Both the CNN-based classifier and the WSCNet model were
retrained from scratch, with the data splitting shown in the
Materials and methods section, and tested on a GeForce RTX
3060Ti GPU using the Pytorch platform with a 50-epoch
patience level for early stopping. The loss function, accuracy,
and recall values for the validation set were calculated at each
epoch throughout the training.

After training, the performance of different models was
evaluated on data they had never encountered before. To visu-
alize the WSCApp output, the representative results of droplet
classification, cell counting, and cell location are demon-
strated in Fig. 4 with droplet data collected from various micro-
fluidic chips. It can be qualitatively concluded that the pro-
posed CEHT segmentation algorithm and the retrained classi-

Fig. 4 Representative results of droplet classification, cell counting and
cell location on droplet data collected from various microfluidic chips.
(a) Representative frames of droplets segmented and classified using the
ResNet18 classifier. (b) Representative results of droplet classification,
cell counting and cell location obtained using our WSCNet model. The
predicted cell location is indicated as a yellow dot. All droplets were
divided into empty, single-cell, and multi-cell encapsulations (red, blue,
and green circular masks) according to the number of encapsulated
cells. The white and black arrows denote false negative and false posi-
tive, respectively.
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fier can accurately detect most droplets and provide accurate
information about the droplet category, as shown in Fig. 4(a).
At the same time, it can be concluded that the previous
problem of misclassification of pre-trained models is greatly
improved, as models have been retrained to fit the new feature
distribution. Except for a few incomplete droplets located at
the edge, most droplets can be correctly detected and classi-
fied by our software.

Compared to other classification-based algorithms, our
WSCNet model can not only distinguish droplet encapsulations
but also locate each cell, while the maximum pixel and integral
of the density map represent the cell location and amount,
respectively. The predicted cells are highlighted with yellow dots
in Fig. 4(b). It was observed that most of the cell positions, as
well as the number of cells, are accurate when compared to their
ground truth. WSCNet learns to recognize cell characteristics
from the difference between empty and single-cell droplets and
then applies the learned knowledge to multi-cell droplets
without any supervised location information. In addition, com-
paring the WSCNet model with ResNet18 and other classifi-
cation networks, it was found that the WSCNet model showed
superior precision and F1 scores, as it identified fewer false
negative and false positive droplets, as shown in ESI Fig. S6.† It
is also observed that most existing approaches have achieved
comparable performance in recognizing empty droplets, while
our counting-based method exhibited better performance in
recognizing cells, especially in multi-cell encapsulating droplets.

To further evaluate WSCApp performance on multi-cell
encapsulating droplets, we collected a publicly accessible
dataset of droplets with encapsulated PC3 cancer cells for vali-
dation. Therefore, we have also retrained the WSCNet model
on the new dataset. Considering the different categories (this
dataset has four categories), we labelled 14k droplets for
WSCApp training and testing. Image recognition of 128 inde-
pendent test images of PC3 cancer cell-encapsulating droplets
was finally segmented by CEHT and classified using the
WSCNet model, with representative results shown in Fig. 5
and ESI Fig. S7.† It is obvious that after retraining from
scratch WSCNet could precisely detect and count most cells,
even when there were up to six cells in one droplet, and clas-
sify droplets according to cell quantity. Because a multi-cell
droplet encapsulation contains at least two cells inside,
WSCNet can learn to count the cell population from precise
labels (empty and single-cell droplets) and imprecise labels
(multi-cell droplets). It is important to note that WSCNet could
also locate cells, as indicated by yellow dots in Fig. 5, by
searching the local maxima on the density map instead of any
location information in the network training. This not only
increases the interpretability of our proposed algorithm, but
also enables the further use of cell localization for character-
istic analysis and monitoring of each cell.

Generalization and quantitative performance of cell
recognition on multiple datasets

Furthermore, we comprehensively analyzed the recognition
results of independent tests, which involved 2335 cancer cell-

encapsulating droplets (video 8) and explored the generaliz-
ation capability of WSCApp software. The performance of a
classifier can be thoroughly described by precision, recall, and
F1 score. It is concluded that the micro-F1 score of the LeNet-5
classifier on this dataset was 94.4%. The multiclass confusion
matrix was also applied as an additional tool to compare
model predictions with ground truth labels on the test set for
statistical analysis. The confusion matrix in Fig. 6 shows the
model performance of both the LeNet-5 classifier and the
WSCNet model in predicting the correct class for the segmen-
ted droplet candidate. It is seen that both the classifier and

Fig. 5 Representative results of detected droplets with encapsulated
mammalian cells detected using the WSCNet model. Image recognition
of 128 independent test images (2335 droplets from video 8) of PC3
cancer cell-encapsulating droplets segmented and classified using the
WSCNet model. The droplets from video frames in (a–l) were divided
into empty, single-cell, and multi-cell encapsulations (red, blue, and
green circular masks) according to the encapsulated cell quantity.

Fig. 6 Multiclass confusion matrixes displaying the classification per-
formance of different categories. Confusion matrixes for independent
testing of mammalian cell-encapsulating droplets are plotted using the
LeNet-5 classifier (a) and the WSCNet model (b) for image recognition.
The horizontal axis represents the predicted droplets, while the vertical
axis represents the ground truth droplets. The colour bar on the right
shows the color-map with percentage predictions where the darkest
colour indicates the maximum predictions.
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WSCNet achieved comparative performance on the back-
ground and empty droplets, while WSCNet performed better
in the classification of single-cell (98.2% vs. 84.9%) and multi-
cell (95% vs. 90%) encapsulating droplets, which is consistent
with a previous study.38

The confusion matrix in Fig. 6(b) shows the performance of
our WSCNet in droplet classification for the different numbers
of encapsulated cells. It is shown that only a small number
(74) of droplet labels are predicted as the wrong class (see ESI
Fig. S8† for model failures). Furthermore, most of the predic-
tions are correctly predicted with the appropriate category.
Because the functions of our WSCNet algorithm are basically
consistent with the YOLOv3/v5 model, the literature data can
be directly used for WSCApp training, validation, and indepen-
dent testing. The results of the YOLO algorithm, which is
0.97 mean average precision (mAP) @ 0.5 IoU, can be used for
qualitative comparison. It is worth noting that the micro-F1
score of the WSCNet model (98.1%) is superior to that
reported in the original literature.37 Although the mAP metric
is not directly applicable to our region-CNN models, we still
observed that our WSCNet model shows better accuracy than
the YOLO model used in the previous study37 in the detection
of empty (570 vs. 560), single-cell (657 vs. 634) and multi-cell
(1027 vs. 988) encapsulations. Therefore, compared to YOLO,
our WSCNet model is more light weight with better classifi-
cation accuracy.

Table 2 summarizes the quantitative classification perform-
ance of the WSCNet method and various CNN-based classifiers
on eight independent test datasets, including droplets encap-
sulating mammalian cells, yeast cells, and microspheres.
Despite some exceptions, the micro-F1 scores of both CNN-
based classifiers and the WSCNet model on these datasets
were higher than 0.94, indicating high accuracy in droplet
classification. In particular, for the classification of 10 μm
microspheres in video 2, all models achieved the ideal per-
formance after CEHT segmentation. Overall, Resnet18 appears
to be the preferred choice (of the models we tested) with all
micro-F1 scores > 0.94. First, its structure is not complex and
its training and inference time (<22 ms) is relatively low, as
shown in ESI Table S2.† Second, when the difficulty of the
dataset increases, such as cells being difficult to identify due
to high transparency, Resnet18’s accuracy is much better than

other classifiers. The shallow CNN-based classifiers, such as
Lenet-5, can also achieve high recognition accuracy (≥0.945)
with additional benefit from fast model training and infer-
ence, making it particularly useful for large-scale videos.
Finally, our WSCNet model achieved >98% accuracy in 5 out of
8 datasets, demonstrating the performance improvement of
cell counting networks for droplet classification tasks.
Representative results of droplet segmentation and cell classifi-
cation on the validation and independent test datasets are
shown in ESI Fig. S7 and S8.† We show a qualitative evaluation
of cell location performance by printing the visualized location
of each cell on video frames.

The multiclass confusion matrix was also utilized to
analyze the classification performance across multiple data-
sets, as shown in Fig. 7 and ESI Fig. S9.† If the predicted label
matches the true label, it is defined as a true positive and
appears on the diagonal of the confusion matrix. As shown in
Fig. 7, it can be concluded that the majority of predicted cat-
egories, which exceeds 96% in most cases, are true positives,
demonstrating the high accuracy of WSCApp in classifying
different droplets. The confusion matrixes also showed the
comparative performance of the classic ResNet18 classifier
and the WSCNet model in predicting the category for the seg-
mented droplet candidates. The classifier and WSCNet dis-
played a similar performance on the background and empty
droplets, while the latter outperformed on all classifications of
single-cell and multi-cell encapsulating droplets. Compared to
the ResNet18 classifier, the WSCNet model exhibited higher
classification accuracy due to its adoption of a weakly super-
vised learning strategy for counting cells, which is more com-
prehensible and rational than a conventional classifier.
Therefore, it can output the position and number of cells as
shown in Fig. 6 and ESI Fig. S8.† The fractions of droplets con-
taining zero, one, or multiple cells determined from WSCNet
predictions are in good agreement with hand counting, as
shown in ESI Fig. S10.†

However, training classifiers and the WSCNet model from
scratch on datasets of unbalanced categories, specifically
videos 1, 5, 6, and 7 (see ESI Table S2† for category distri-
bution), also resulted in overfitting the training data and
underperformed on a partial class of the test data, as shown in
ESI Fig. S9(d) and (g).† This is largely due to the limited quan-

Table 2 The micro-F1 score evaluation results show classification performance on different test datasets and models, including training from
scratch with a 100% training sample and transfer learning with a 20% training sample. The bold and blue fonts indicate the best and second-best
performance, respectively
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tity and quality of available frames, as videos 2–4 with more
frames and balanced categories showed better performance.
Notably, videos 5 and 6, containing only empty droplets and
single-cell encapsulating droplets, did not yield optimal results
with the WSCNet method, likely due to its inability to fully
extract cellular localization information from multi-cell encap-
sulating droplets. This also explains why the performance of
the WSCNet model on these two datasets is unremarkable.
Despite this, both quantitative experimental results and con-
fusion matrixes confirmed that our approach can not only dis-
tinguish droplet encapsulations (micro-F1 score > 0.94) but
also locate each cell without any supervised location
information.

Transfer learning for dynamic video recognition

To verify the effectiveness of transfer learning and to under-
stand the amount of labeled data required for the algorithm
to achieve adequate accuracy, we conducted a control experi-
ment. The results of classifiers trained from scratch with a
100% training sample were first recorded and then com-
pared with those of transfer learning using a 20% training

sample while their pre-trained models were previously
trained on our static images. As shown in Table 2, the
micro-F1 score evaluation results demonstrated the classifi-
cation performance on all independent tests of video data-
sets by ResNet18 and MoblieNet classifiers. It can be con-
cluded that through transfer learning, WSCApp software
requires only a small number (20%) of training samples to
achieve performance that is close (slightly lower) to that of
training from scratch with all samples. In particular, the
ResNet18 model, after transfer learning, has achieved com-
parative classification accuracy with other classifiers trained
from scratch.

Transfer learning involves fine-tuning the pre-trained
model weights on a small number of newly annotated datasets
and conducting independent tests. We further conducted para-
meter experiments to explore the impact of varying the
number of training video frames on performance. Fig. 8 shows
the comparative results of transfer learning and training from
scratch by different models. We can clearly draw a conclusion
that in the range of a small number of training samples, e.g.
2–10 frames, transfer learning models consistently outperform
models trained from scratch because most solid lines are

Fig. 7 Multiclass confusion matrixes displaying the classification per-
formance on different datasets. Confusion matrixes of independent test
video 2, video 3, and video 4 are plotted using the ResNet18 classifier
(a–c) and the WSCNet model (d–f ) for video recognition, respectively.
Both the ResNet18 classifier and the WSCNet model were retrained
from scratch. The vertical axis represents the true category of droplets,
while the horizontal axis represents the predicted category of droplets.
The color bar on the right shows the color-map with percentage predic-
tions where the darkest color indicates the maximum predictions.

Fig. 8 Comparative results of transfer learning and training from
scratch show classification performance with different numbers of train-
ing samples. Micro-F1 scores for independent tests under different train-
ing frames are plotted on video 3 (a) video 1 (b), respectively. Different
colors represent the different CNN-based classifiers, including ResNet18
(blue), ResNet50 (green), LeNet-5 (red), and MobileNet (yellow). The
solid and dashed lines indicate training from scratch and transfer learn-
ing, respectively.
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much higher than dashed lines, indicating better performance
for transfer learning. However, as the number of training
annotations increases, both methods gradually improved the
model effectiveness and incorporated artificial experience into
the machine learning model. The classification accuracy of the
model trained from scratch also gradually improved, approach-
ing that of the transfer learning model, which is also consist-
ent with expectations.

Therefore, when another specific model trained on a
similar system is available, e.g. static droplet images, transfer
learning has been explicitly verified to be beneficial for
improving neural network performance for limited data sets.
We have summarized several micro-F1 score results on the
comparisons for transfer learning and training from scratch,
as shown in Table 3. On three datasets, both methods showed
a trend of improving performance on increasing training
samples, while transfer learning achieved better accuracy.
Notably, on the first two datasets, transfer learning was per-
formed using only 12 frames, and its performance was almost
as good as that of training from scratch on all available
samples, which are 64 and 586 frames, respectively. This result
also suggests that transfer learning fine-tuning on the pre-
model can significantly reduce sample annotation workload,
e.g. by approximately 80% and 90% for both videos. Overall,
this suggests that transfer learning can be an efficient method
for improving labelling efficiency. Furthermore, this technique
is particularly relevant for the recognition of droplet encapsu-
lation, as the high-level information remains the same regard-
less of the experimental conditions used to generate droplets
or encapsulated cell types.

In addition, transfer learning can be used to transfer knowl-
edge to a new scenario to enhance recognition performance if
the target domain data are insufficient. As an illustration of
this strategy’s utility, we demonstrate its use in the recognition
of cell-encapsulating droplets by directly applying the
ResNet18 classifier, which was fine-tuned on video 3, to inde-
pendently test video 2 and video 4 without retraining. In these
videos, either the cell type or microfluidic chip parameters are
different. Despite the huge variation in content morphology,
pre-trained models using transfer learning significantly
improved detection and classification accuracy on the test

dataset, as seen in Fig. 9. The confusion matrix in Fig. 9(a)
indicates that the true positive for empty and single-cell dro-
plets is 100%. Only 2 and 126 multi-cell droplets were missed
or misidentified (1425 droplets in total) on video 2. This favor-
able performance is attributed to the similar distribution of
microsphere features in both videos. When the recognized
objects change, from microspheres in pre-trained models to
algae cells for independent testing, the recognition accuracy
decreases, but it is still better than that without transfer train-
ing. This is because the micro-F1 score of the fine-tuned
ResNet18 classifier for video 4 is 70%, while that without
transfer learning falls below 40%.

For new cell-encapsulating droplets that differ signifi-
cantly in experimental and imaging conditions, large data
annotations are usually required for accurate training.
However, transfer learning on our pre-trained WSCApp only
required a fraction of the initial annotation to achieve com-
parable accuracy for new droplet data. In summary, we
demonstrated the application of WSCApp to various droplet
data by using pre-trained models and the transfer learning
strategy to improve the labelling efficiency and reduce
manual annotation.

Conclusions

In this study, we have illustrated the design of application soft-
ware as well as the function and performance of recognition
algorithms. A novel executable program integrated with
different classifiers and weakly supervised algorithms, namely
WSCApp, was designed to recognize cell-encapsulating dro-
plets from droplet videos and systematically verified by
different datasets. Additionally, we have developed both dark-
field and bright-field recognition algorithms, which are
optional on WSCApp depending on the illumination scenarios,
to enhance accuracy and generalization. Next, we compared
and validated the generalization capability of different algor-
ithms on video data collected from the literature to evaluate

Table 3 The micro-F1 score evaluation results of transfer learning and
training from scratch by CEHT and ResNet18 algorithms. The bold font
indicates the best performance

Different parameters
Video
1

Video
3

Video
8

4 labeled frames for training from
scratch

0.682 0.395 0.502

4 labeled frames for transfer learning 0.908 0.874 0.722
8 labeled frames for training from
scratch

0.713 0.927 0.606

8 labeled frames for transfer learning 0.922 0.945 0.769
12 labeled frames for training from
scratch

0.935 0.927 0.836

12 labeled frames for transfer learning 0.941 0.954 0.867

Fig. 9 Multiclass confusion matrixes showing the classification per-
formance of the pre-trained ResNet18 classifier. Confusion matrixes for
independent tests of video 2 (a) and video 4 (b) are plotted using the
ResNet18 classifier fine-tuned on video 3. The ResNet18 classifier was
pre-trained on video 3 with transfer learning. The vertical axis represents
the true category of droplets, while the horizontal axis represents the
predicted category.
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their classification performance. Finally, assistive annotation
and transfer learning strategies were employed to improve the
recognition efficiency and reduce manual annotation.

WSCApp can not only categorize droplets by encapsulated
cell populations, but also locate cells without any supervised
location knowledge, showing an advantage over CNN-based
classifiers. Cell localization can be applied to subsequent
monitoring and detailed analysis of each cell in future studies.
It was also proved that the integrated droplet detection and
classification software, WSCApp, is feasible for video reco-
gnition of single-cell or multi-cell encapsulating droplets. This
software is essential to anticipate precise control settings and
achieve the desired encapsulation rate. In addition, this video
recognition method can allow for a feedback loop so that
droplet-based sorting can be achieved according to recognized
image results. The entire software is efficient, flexible and
user-friendly, making it a comprehensive platform for quanti-
tative evaluation of encapsulating microfluidic droplets.

Materials and methods
CNN-based imaging recognition

We proposed computational application software, namely
WSCApp, with different recognition algorithms and CNN-
based models to evaluate droplet quality (size and distri-
bution) and further recognize the encapsulated cell (amounts
and position). This image and video analysis tool with a user-
friendly GUI can fleetly provide dynamic identification of cell-
encapsulating microfluidic droplets. WSCApp uses the two-
stage object recognition approach, as shown in Fig. 1, to
achieve objective and automatic statistical analysis of many
droplets and cells. The droplet candidates are first segmented
and then fed to CNNs that are used to filter out false positive
droplets, categorize droplets, and perform cell counting.

For monitoring microfluidic droplets, there are usually two
modes: one is video recording of droplet generation in the
microfluidic channel, and the other involves capturing static
images after droplet generation, as shown in Fig. 1(a).
Considering the differences in motion and illumination, the
grayscale values inside the droplets are higher (bright-field) or
lower (dark-field) than in the dispersed phase. Therefore, as
shown in Fig. 1(b), we designed both ASTM and CEHT
methods for dark-field and bright-field scenarios, respectively.
For adhesive and opaque droplets, ASTM40 adopts a three-step
approach to achieve droplet segmentation: (1) adaptive scaling
based on the matching response map between the circular
template and the image foreground; (2) greedy search to detect
droplet candidates; (3) non-maximum suppression filter to
remove redundant concentric circles. For separate and trans-
parent droplets, the final segmentation of droplet proposals
was produced by CEHT combining the results of two parallel
methods: (1) after filtering and thresholding, edge operators
are used to detect the droplet edge; (2) HT transforms 2D
feature extraction into searching for a point in the high-dimen-
sion space determined by the radius and center coordinates of

the circle. Both algorithms and key parameters are optional or
modifiable in WSCApp, e.g. kernel size and minimum and
maximum radius, to improve the accuracy and generalization
of droplet segmentation. For a more detailed introduction to
the design of the two algorithms, please refer to ESI Note 2
and Fig. S2, S3.†

In the second stage, WSCApp integrates both conventional
classifiers and our WSCNet model for droplet classification,
cell counting and location, respectively. Firstly, CNN-based
classifiers are used as the baseline methods for classifying dro-
plets. We applied a light weight seven-layer LeNet-5 for assis-
tive annotation and then integrated LeNet-5,45 ResNet18,46 and
MobileNet47 into the software for comparison. Secondly,
WSCNet was used to estimate the number of cells, categorize
droplets, and provide position prediction for each cell. The
WSCNet consists of classification and counting branches: the
former serves as a filter to remove false positive droplet candi-
dates, and the output of the latter branch is a grayscale density
map, in which the maximum pixel and the integral of pixel
values represent the cell location and amount, as shown in
Fig. 1(c), respectively. For a more detailed introduction to the
design of CNN-based classifiers and WSCNet models, please
refer to ESI Note 3.†

The user interface of WSCApp is developed in C++ program-
ming language and based on Qt, as shown in Fig. 2, enabling
fast and iterative design. WSCApp integrated the functions of
file selection, arithmetic parameter setting, switching of algor-
ithms and models, automatic droplet/cell detection (invoking
recognition algorithms and CNN-based models, respectively),
view visual recognition, manual post-recognition correction,
performance statistics, and saved modified annotations.
Further application details for the proposed software are
described in ESI Note 1.†

Dynamic video recognition for cell-encapsulating droplets

WSCApp provides a user-friendly GUI platform for quantitative
evaluation of both images and videos of cell-encapsulating
droplets, as demonstrated in Fig. 2. Since a video can be con-
sidered as a continuous sequence of images, we can apply the
image processing methods to video recognition with enhanced
real-time performance by code refactoring. VideoCapture and
other relevant OpenCV methods were applied to generate
frame images corresponding to the video, which would be
detected and identified sequentially by WSCApp. Next, the
VideoWriter method was used to regenerate a video, which
shares the same size and frame rate as the original video, with
recognized droplets.

In addition, users could select a single video/image or
directly load a folder containing multiple videos/images.
WSCApp can automatically recognize both static images and
dynamic videos with optional segmentation and classification
methods. WSCApp directly outputs the recognized image or
video, outputs the recognized text file (including frame
number, droplet center point coordinates (X, Y), diameter, cat-
egory; cell number, position), and displays statistical infor-
mation, such as diameter mean, SD value, single cell encapsu-

Paper Analyst

2156 | Analyst, 2024, 149, 2147–2160 This journal is © The Royal Society of Chemistry 2024

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/2
3/

20
25

 3
:3

9:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4an00022f


lation rate, etc., on the message window. To detect and control
droplet encapsulation, the inference time is expected to be
fast, preferably in real time, as there are many droplets that
need to be detected in real scenarios. Following detection and
classification based on optional algorithms and models, the
test dataset of droplet frames was run through WSCApp for
inference and the consumption time was recorded.

Experimental platform and droplet dataset for pre-training

We have constructed a microfluidic droplet generation plat-
form, comprising microfluidic chips, a multichannel syringe
pump, an inverted microscope, a USB camera, and a computer
using the proposed algorithms to generate microfluidic dro-
plets and monitor the droplet quality and cell quantity. Three
microfluidic chips with different flow-focusing structures were
applied to generate droplets, while bacterial cells were simul-
taneously encapsulated. Microfluidic chips were replicated by
standard soft photolithography, fabricated in PDMS, and
placed on the stage of an inverted microscope for recording.

Syringe pumps injected the dispersed and continuous
phases into the corresponding inlets. A mixture of mineral oil
(3% w/w EM90 and 0.1% v/v Triton-100 dissolved in
M5310 mineral oil) or a mixture of fluorinated oil (1% dSURF
surfactant dissolved in Novec 7500 fluorinated oil) was used as
the continuous phase to validate the generalization ability of
the algorithm on intricate data collected from different geome-
tries and materials. The representative images of cell-encapsu-
lating droplets are demonstrated in Fig. 1(a) and 2(a).
Following the same method used in our previous study,38

more than 1245 static images of encapsulating droplets were
collected with a resolution of 640 × 480 and a mean of 167 dro-
plets per image. They were further labelled for the pre-training
of both the WSCNet model and traditional classifiers in this
study.

Microfluidic droplet datasets collected from the literature

We further verified WSCApp with intricate droplet data col-
lected from various microfluidic structures. Instead of generat-

ing droplets with encapsulated mammalian cells using our
microfluidic system, limited by policy restrictions on medical
laboratories, we spared no effort to find related publications
that share similar data of cell-encapsulating droplets. The
main data supporting the results are available in this article as
well as its ESI.† HL60 and K562 cells encapsulated in droplets
were collected from ref. 22. The beads and cells co-encapsulat-
ing droplets were collected from the ESI of ref. 48. The con-
trolled encapsulation data were collected from the literature.49

The yeast encapsulation data were collected from the Website
of Laboratory of BioChemistry at https://www.lbc.espci.fr/
home/gallery/microfluidic-movies/. The dataset of PC3 cancer
cell encapsulating droplets37 was also evaluated using
WSCApp and compared with its YOLO models.

The numbers of droplets or frames for different categories
in each dataset are summarized in Table 4 and ESI Table S2.†
Depending on the dataset quantity, all video frames were ran-
domly divided into a training set, a validation set, and a test
set in ratios of 8 : 1 : 1 or 6 : 2 : 2. There were four different cat-
egories of droplets that needed to be recognized: background,
empty, single-cell, and multi-cell droplets. Background
samples were collected by randomly selecting areas of the non-
droplet backgrounds in equal quantities to the other three cat-
egories. The training procedure did not include any cell posi-
tion or exact quantity of multiple cells; just these three droplet-
level labels were provided.

Assistive annotation and transfer learning on new datasets

We demonstrate the application of WSCApp to various droplet
data by using pre-trained models and transfer learning strat-
egies to improve labelling efficiency and reduce manual anno-
tation. We first trained both classifiers and WSCNet on the
static droplet images we had experimentally collected as base
models (pre-trained models), as shown in Fig. 2, and inte-
grated them into WSCApp for assistive annotation to avoid lab-
elling new datasets from scratch.

Second, we deployed WSCApp directly to the new droplet
dataset and provided preliminary annotation. Next, the GUI

Table 4 The category summary of different droplet videos for network training

Purpose

Dataset/content All

Traininga (droplets/frames)
Inference

Ref.Train Validate Test

Images/yeast cells 208k/1245 166k/993 21k/126 21k/126 This study
Video 1/HL60 and K562 537/108 317/64 109/22 111/22 22
Video 2/10 μm microspheres 1425/201 1136/160 142/20 147/21 48
Video 3/10 μm microspheres 5332/733 4264/586 524/73 544/74
Video 4/mt+ and mt− algae cells 2540/351 2025/280 256/35 259/36
Video 5/9.9 μm microspheres 236/80 141/48 47/16 48/16 49
Video 6/HL60 cells 514/112 306/67 103/22 105/23
Video 7/yeast cells 1203/300 964/240 120/30 119/30 Website
Video 8/PC3 cancer cells 14 916/643 10 452/412b 2129/103 2335/128 37

aDistribution of the empty, single-cell and multi-cell encapsulating droplets for network training. The non-droplet background was randomly col-
lected in equal quantities for all categories. b The amount of training data is triple after data augmentation according to the original literature.
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allowed immediate review, automatically loading the corres-
ponding annotation files and manually reconfirming the
annotation results for retraining. Fourth, classifiers or WSCNet
models were trained again with manually modified data using
weakly-supervised information (triple droplet-level labels) to fit
the feature distribution. In addition, transfer learning could
be used to transfer knowledge to a new scenario.44

We applied transfer learning to improve algorithmic accu-
racy with less annotation. Transfer learning involves fine-
tuning the pre-trained model weights on a small number of
annotated new datasets and conducting independent tests.
The pre-trained models, trained on the original dataset as the
relevant source domain, were stored with their structure and
weights. The weights of network layers of the training models
were fine-tuned to fit the new feature distribution. Both classi-
fiers and WSCNet models (with and without transfer learning)
were trained on the training set and their performance was
evaluated against the test set.

Finally, we compared and validated the generalization capa-
bility of different algorithms on video data collected from the
literature to evaluate their recognition and generalization per-
formance. At the end of this study, we also trained final CNN-
based classifiers and WSCNet on all the data to allow research-
ers to fine tune models for new images/videos of cell-encapsu-
lating droplets.

Network implementation and evaluation metrics

In the first stage, we set the ASTM threshold σ, the small con-
stant γ, and the weight ω of the WSCNet model to 0.98, 0.001
and 1, respectively. The Canny edge detector threshold and the
center detection threshold of the HoughCircle function in
OpenCV are set to 60 and 18, respectively, for CEHT. We use a
bounding circle Interaction over Union (IoU) to evaluate the
accuracy of droplet positioning, which is derived from the IoU
of bounding boxes in object detection. The number of droplets
that has an IoU result greater than a threshold θ is illustrated in
ESI Fig. S4.† This metric is used to measure the degree of corre-
lation between predicted and actual droplets, and a higher IoU
represents a more stringent requirement on the correlation. The
diameter deviation of the droplet distribution was calculated by
the coefficient of variation (CV). In the second stage, we use the
Adam optimizer for training machine learning models.

We further evaluate our algorithm using three different
metrics. First, widely adopted recall and precision, computed
by eqn (2), are used to assess CNN-based classifiers and the
WSCNet model in the classification of droplet proposals.
Second, the multiclass confusion matrix is used as an
additional tool to evaluate the model performance. Third, con-
sidering the unbalanced number of categories, the perform-
ance of WSCApp in detecting droplets and classifying encapsu-
lated cells is then measured using metric micro F1, pooling
per-sample classifications across all classes (background,
empty, single-cell, and multi-cell droplets), and computed by
eqn (3). To compare different classification-based and count-
ing-based strategies, the F1 score (harmonic mean of precision
and recall) and inference time are also considered.

Precisionmicro ¼
Pn

i¼1
TPi

Pn

i¼1
TPi þ

Pn

i¼1
FPi

Recallmicro ¼
Pn

i¼1
TPi

Pn

i¼1
TPi þ

Pn

i¼1
FNi

ð2Þ

F1micro ¼ 2� Precisionmicro � Recallmicro

Precisionmicro þ Recallmicro
ð3Þ

Fourth, the exact number and location of cells in each
droplet can be provided by our WSCNet, which can give
precise information about encapsulated cells. To demonstrate
this function, we print the visualized location of each cell on
the original video frames.

Data availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request. The
code is available on GitHub at the following link https://
github.com/Loyage/WSCNet2 (accessed after 20th Nov., 2023).
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