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Efficacy of tyrosine kinase inhibitors examined by a
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deep wavelet scattering-based multivariate
analysis framework†
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HER2 is a crucial therapeutic target in breast cancer, and the survival rate of breast cancer patients has

increased because of this receptor’s inhibition. However, tumors have shown resistance to this thera-

peutic strategy due to oncogenic mutations that decrease the binding of several HER2-targeted drugs,

including lapatinib, and confer resistance to this drug. Neratinib can overcome this drug resistance and

effectively inhibit HER2 signaling and tumor growth. In the present study, we examined the efficacy of

lapatinib and neratinib using breast cancer cells by Raman microscopy combined with a deep wavelet

scattering-based multivariate analysis framework. This approach discriminated between control cells and

drug-treated cells with high accuracy, compared to classical principal component analysis. Both lapatinib

and neratinib induced changes in the cellular biochemical composition. Furthermore, the Raman results

were compared with the results of several in vitro assays. For instance, drug-treated cells exhibited (i) inhi-

bition of ERK and AKT phosphorylation, (ii) inhibition of cellular proliferation, (iii) cell-cycle arrest, and (iv)

apoptosis as indicated by western blotting, real-time cell analysis (RTCA), cell-cycle analysis, and apopto-

sis assays. Thus, the observed Raman spectral changes are attributed to cell-cycle arrest and apoptosis.

The results also indicated that neratinib is more potent than lapatinib. Moreover, the uptake and distri-

bution of lapatinib in cells were visualized through its label-free marker bands in the fingerprint region

using Raman spectral imaging. These results show the prospects of Raman microscopy in drug evaluation

and presumably in drug discovery.

Introduction

Breast cancer (BC) is the second most common cancer and the
main reason for cancer-related deaths in women worldwide.
Globally, an estimated 2.26 million new cases and 680 000
deaths were recorded in 2020.1 Although significant advances
have been made over the past few decades in the prevention,

diagnosis, and treatment of breast cancer, it remains a major
global health problem.2 More importantly, distant (metastatic)
recurrence is a significant clinical issue and is responsible for
the majority of BC deaths,3 where the five-year survival of
patients with localized BC is 99% but decreases to 27% when
diagnosed with late-stage disease.1

Depending on the severity and stage of the cancer, different
therapies can be used to treat breast cancer. Surgery, radiation
therapy, chemotherapy, and hormone therapy are the most
popular forms of treatment. In recent years, targeted therapy
has emerged as a potentially effective form of treatment.4

Targeted therapy aims to block or inhibit the specific mole-
cules and pathways that promote tumour growth and pro-
gression, offering improved treatment outcomes and fewer
side effects compared to traditional chemotherapy. This type
of therapy has demonstrated significant promise in the treat-
ment of breast cancer.4,5

The well-known role of the epidermal growth factor recep-
tors (EGFR or HER family) in the growth and proliferation of
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cancer cells makes them one of the most important targets in
cancer therapy6,7 The HER receptors have an extracellular
ligand-binding domain, transmembrane domain, and an intra-
cellular tyrosine kinase (TK) domain. When a ligand binds to
the HER proteins, these receptors homo- or hetero-dimerize,
which activates downstream signalling pathways that encou-
rage cell division, growth, and inhibit apoptosis.8 HER2 does
not have a known ligand, but the other HER proteins prefer it
as a dimerization partner. Besides, HER2 overexpression or
amplification causes abnormal dimerization and signalling. In
these “HER2-positive” tumours, the effectiveness of HER2-tar-
geted drugs is most apparent.

Trastuzumab was the first humanized monoclonal antibody
(mAb) developed to target HER2-positive breast cancer.
Although it showed remarkable success in the treatment of
HER2-positive breast cancer, a substantial number of patients
develop therapeutic resistance and disease relapse.9,10 After
that, pertuzumab mAb was developed and approved by the
Food and Drug Administration (FDA) in the U.S.A. for the treat-
ment of HER2-positive breast cancer at a high risk of recur-
rence in combination with trastuzumab and
chemotherapy.11–13

Lapatinib, a small-molecule tyrosine kinase inhibitor (TKI),
is a reversible dual receptor kinase inhibitor that binds to the
cytosolic ATP-binding pocket, a competitor to ATP. It binds
non-covalently to the EGFR and the HER2 receptor, putting
the receptor in an inactive conformation.14,15 Lapatinib is used
in combination with capecitabine or letrozole, chemothera-
peutic agents, for late stages of breast cancer with meta-
stasis.16 In vitro studies suggested that lapatinib overcomes
trastuzumab resistance mediated by the upregulation of the
insulin-like growth factor 1 receptor (IGF1R).17 Furthermore,
neratinib, a second-generation TKI, targets EGFR, HER2, and
HER4, inhibiting the receptor autophosphorylation.18

Therefore, it blocks the downstream signals and leads to cell
cycle arrest and apoptosis.19 It is reported that neratinib inhi-
bits cellular growth in trastuzumab-resistant cell lines and is
synergistic with trastuzumab.19,20 Neratinib is approved by the
FDA to be used as the extended adjuvant treatment of patients
with HER2-positive breast cancer after completing trastuzu-
mab therapy. It overcomes the trastuzumab and lapatinib re-
sistance and acts in combination with trastuzumab.20,21 In
addition, the FDA approved neratinib in combination with
capecitabine for patients with advanced or metastatic HER2-
positive breast cancer.

Raman microscopy has been utilized in numerous biologi-
cal, therapeutic, and drug discovery applications, as well as in
other fields.22–26 It has enormous potential for differentiating
between various cell types and ultimately can screen for cancer
cells.27–29 Besides, Raman microscopy has been applied to
study cell–drug interactions. For instance, the effectiveness of
numerous anti-cancer drug candidates and medications,
including antibodies, small-molecule inhibitors such as TKIs,
and chemotherapeutic agents, has been studied using Raman
micro-spectroscopy.30–36 Moreover, the literature is well docu-
mented with label-free distribution of small molecule inhibi-

tors or drug carriers, including functional groups such as an
alkyne or nitrile, or isotopic labelling (deuterium) in cells by
Raman microscopy.30,37–39 Based on the fact that these func-
tional groups show Raman bands in the silent region of the
cell spectrum (1800–2800 cm−1), they can be employed as
label-free markers. However, few reports showed the potential
of Raman imaging for monitoring small molecule inhibitors
in cells using Raman bands in the fingerprint region
(600–1800 cm−1).31,40,41

Recently, there has been growing interest in the potential of
machine learning (ML) in the analysis of Raman spectroscopy
for a wide range of applications.22,42,43 Principal component
analysis (PCA) and clustering techniques are examples of unsu-
pervised models that have been used in ML applications.
Others have used supervised learning techniques like partial
least-squares (PLS), linear discriminant analysis (LDA),
support vector machine (SVM), and deep learning techniques.

In the present study, we used Raman micro-spectroscopy in
combination with a deep wavelet scattering-based multivariate
analysis framework for the first time to examine the potency
and effectiveness of lapatinib and neratinib on breast cancer
cells. This approach was successful in discriminating between
control cells and drug-treated cells with high accuracy, com-
pared to PCA. Lapatinib or neratinib induced large spectral
changes in the Raman spectra upon cell treatment with
different doses of the drugs. Both lapatinib and neratinib
showed suppression of ERK and AKT phosphorylation, growth
inhibition, cell cycle arrest, and apoptosis, as indicated by the
in vitro assays. These findings imply that a cellular response to
TKI such as cell cycle arrest and apoptosis is the reason
behind the observed Raman spectral alteration in the cells fol-
lowing TKI treatment. Additionally, the Raman bands of lapati-
nib in the fingerprint region were used to track its label-free
distribution inside cells. The current findings show Raman
micro-spectroscopy’s capability for screening anticancer drugs
and suggest that it has potential for drug discovery.

Experimental section
Cell culture

SK-BR-3 breast cancer cell line was purchased from the
American Type Culture Collection (ATCC). The passaging of
the SK-BR-3 cells was performed in Dulbecco’s Modified Eagle
Medium (DMEM). Cells were washed with phosphate-buffered
saline (PBS) to remove dead cells; after this 3 ml of trypsin–
EDTA were added for 3 to 5 minutes to the cells. After the incu-
bation time, the detachment of the cells was checked under
the microscope and 7 ml of DMEM was added. The suspension
was transferred into a Falcon tube and centrifuged for
3 minutes at room temperature and 1500g. The supernatant
was sucked from the tube and the pellet was resuspended in
10 ml fresh DMEM. Finally, around 1 ml of cells was diluted to
the final volume of 10 ml DMEM in a new Petri dish. Cells
were incubated until it reached a confluence of around 80% at
37 °C under a 5% CO2 atmosphere in an incubator.
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For the Raman measurements, 5 ml of DMEM was added to
the slides in six-well plates and a variable number of cells (ca.
70 µl) were added during a splitting on the slides. Cells were
then incubated at 37 °C under a 5% CO2 atmosphere until
they reached a confluence of around 60%. At this juncture, the
media in the wells was discarded and fresh media with
different concentrations of drugs or without treatment
(control) were added. The drugs used in the experiments are
lapatinib and neratinib, each in three different concentrations
of 0.1, 0.5, and 1 µM. The drugs were incubated for 16 h in the
incubator. After that, the media was sucked away, and the
untreated and treated cells were fixed with 4% paraformalde-
hyde (PFA) for 15 min at room temperature. Then, PFA was dis-
carded, and the slides were washed three times with PBS and
finally stored in PBS at 4 °C until the measurements.

Confocal Raman micro-spectroscopy

For the Raman micro-spectroscopic imaging, the WITec alpha
300AR confocal Raman microscope was used as described in
previous studies.30,44–46 Two excitation sources, a frequency-
doubled Nd-YAG laser of 532 nm (Crystan Laser, Reno, USA)
and a single-frequency diode laser of 785 nm (Toptica
Photonics AG, Munich, Germany), were used. The lasers and
the Zeiss microscope were connected to each other through
the wavelength-specific single-mode fiber. An achromatic lens
collected the laser beam which passed through the holo-
graphic band-pass filter. The Nikon NIR APO (60×/1.00NA)
water immersion objective was used to focus the beam on the
sample. The microscope had a piezoelectrically driven micro-
scope scanning stage, which has an x–y-resolution of 3 nm
and a z-resolution of 0.3 nm. The sample was placed on the
microscope scanning stage and covered with PBS.

Raman back-scattered radiation was collected through the
water immersion objective and passed into the holographic
edge filter into the multimode fiber (50 µm diameter). Then,
the beam was passed into the 300 mm focal length monochro-
mator which incorporated a 600 mm−1 grating blazed at
500 nm. The spectra were detected with a back-illuminated
deep-depletion charge-coupled device (CCD) camera operating
at −60 °C. Before the sample measurement, the spectrograph
and the laser intensity were calibrated to get a high measure-
ment precision and a high signal-to-noise ratio. Raman
imaging measurements were conducted by raster scanning the
laser beam over the cells and getting a full Raman spectrum at
each pixel with an integration time of 0.5 seconds per pixel
and a pixel resolution of 500 nm.

Around 50 SK-BR-3 cells per treated/untreated cohort and
concentration were measured for the evaluation of lapatinib
and neratinib using 532 nm excitation wavelength.

Deep wavelet scattering-based multivariate analysis framework

In this work, we investigated the potential of deep wavelet scat-
tering networks in uncovering discriminatory features from
Raman spectra. A deep wavelet scattering-based multivariate
analysis framework is presented for the analysis of Raman
spectra. Fig. 1 shows the building blocks of the proposed

framework. At the core of the proposed framework is a deep
wavelet scattering network. A wavelet scattering network is a
deep architecture that can extract deep low-variance
features.47–50 Wavelet scattering networks share several appeal-
ing properties with convolutional neural networks (CNNs)
such as multi-scale representation, non-linearity, and sparsity.
Furthermore, wavelet scattering networks use predefined
wavelet and scattering filters. This makes them appealing in
resource-aware applications that are constrained in data or
computational resources. Next, a task-aware low-dimension
representation was obtained from the wavelet scattering space
using the minimum redundancy maximum relevance (MRMR)
algorithm.51 Principal component analysis (PCA) and indepen-
dent component analysis (ICA) were then applied to the low-
dimensional scattering-based representation.

Deep wavelet scattering network (DWSN)

A DWSN was constructed by iteratively repeating three basic
operations. These are namely convolution with a wavelet filter,
applying a non-linearity operator, and averaging using the
scaling function. Complex Morlet wavelets were used to con-
struct the wavelet scattering network. Let x be an input 1D
Raman spectrum signal. Let ψ and φ be the mother wavelet
and scaling functions used to build the network’s filter banks.
φJ is a low-pass filter used to introduce invariance at scale J.
{ψjk}jk∈Λk

is the filterbank constructed by dilating of the mother
wavelet. Λk is the family of wavelet filters with octave resolution
Qk. In the proposed framework, the wavelet scattering network
was constructed using two layers with 8 wavelets per octave in
each layer. The mth order scattering coefficients are then
defined as in eqn (1).

Smx ¼ x*ψ j1

���
���*ψ j2

���
��� . . . . . . *ψ jm

���
���*φJ

n o
j1[Λi

; i ¼ 1; 2; . . .m ð1Þ

The final scattering matrix is then calculated by aggregating
the scattering coefficients from all the orders as given in eqn
(2) where l is the maximal decomposition order.

Sx ¼ fSmxg0<m<l ð2Þ
A scattering-based embedding of the Raman spectra is then

obtained by aggregating the scattering coefficients into a one-
dimensional vector.

Task-aware low dimensional scattering-based representation

The scattering representation is redundant and over-
complete.48,49 Hence, next, a smaller subspace of the scatter-
ing space is learnt using the MRMR algorithm.51 The MRMR

Fig. 1 Scattering-based multivariate analysis framework for Raman
spectra.
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algorithm aims at finding the optimal subset of feature space
that has maximum relevance with respect to the response vari-
able y and minimum redundancies. The algorithm ranks the
features using the mutual information quotient (MIQ) defined
in eqn (3), where Vx is a measure of the relevance of the
feature y to the response variable c. Wy is a measure for the
redundancy of the feature y and I(y, c) is the mutual infor-
mation between the feature y and the response variable c.

MIQ ¼ Vy

Wy
ð3Þ

Vy ¼ Iðy; cÞ ð4Þ

Wy ¼ 1
Sj j
X
z[S

Iðy; zÞ ð5Þ

Scattering-based multivariate analysis

Having discovered the low dimensional discriminative sub-
space in the scattering domain, the final step is to uncover
hidden modes of variations in the wavelet scattering domain.
This is done by applying PCA in the scattering sub-space.

Scattering principal component analysis (scattering PCA)

PCA is a multivariate analysis method that is commonly used
in the analysis of Raman spectra. Despite its ability to produce
compact representations, using standard PCA on Raman
spectra inherently suffers several limitations. For instance, in
the case of a limited training set, the sample covariance matrix
estimated by PCA becomes a poor estimator of the true covari-
ance matrix. This inherently increases the model’s sensitivity
to outliers. Moreover, the degree of freedom of a PCA-based
representation is limited by the number of training samples.
Hence, rather than direct application of PCA on raw Raman
spectra, we applied the PCA on the low-dimensional scattering
representation obtained in section 3.2. This helps alleviate the
limitations of traditional PCA related to becoming poor estima-
tors in the case of limited training data, inherent higher
model scale sensitivity, and inherent global nature of the dis-
covered PCA variation modes.

Applying PCA in the scattering domain can be viewed as a
Gaussianization process where linear transformation is
applied in the scattering domain to the axes of maximal var-
iance. Only the first K − 1 principal components are relevant
where K − 1 is less than the original dimensionality of the scat-
tering embedding space and less than the training dataset.

Data preparation and pre-processing

The original data constitute a 3D tensor of the Raman spectra
at each pixel of the specimen collected. Prior to evaluating the
proposed multivariate analysis framework, several pre-proces-
sing steps have been conducted. Cells were extracted from
each specimen and labelled as being either control drug-free,
lapatinib-treated, or neratinib-treated. Fig. S1 (ESI†) shows
examples of the cell cropping process. The average Raman
spectrum over the pixels for each cell is then calculated and

given the appropriate label. The Raman spectra were subjected
to several standard pre-processing steps as illustrated in
Fig. S2 (ESI†). This includes cosmic-spike removal, automated
autofluorescence background subtraction using the Vancouver
algorithm,52 normalization, baseline correction, and selection
of the region of interest between 500 to 1800 cm−1 and 2800 to
3100 cm−1.

Scattering subspace selection

A low-dimensional sub-space was extracted from the Raman
embedding space using the method described above. Fig. S3
(ESI†) shows the output of applying the MRMR algorithm in
the scattering embedding space. Fig. S3† suggests that the
dimension of the inherent sub-space of interest is less than
200. Fig. S4 and Table S1 in the ESI† provide further insights
into the impact of the dimensionality of the scattering embed-
ding sub-space on the subsequent multivariate analysis and
classification stages. The reported results in Fig. S4 and
Table S1† are for the case of control vs. neratinib-treated cells
with doses of 1.0 µM concentration. Fig. S4† shows the
extracted scattering-PCA components from sub-spaces with
dimensions of 8, 16, 150, and 400. Table S1† compares the
average classification accuracy obtained for scattering sub-
space of dimensions 8, 16, 150, and 500. It is evident that the
discriminability of the framework starts to decrease once the
sub-space dimension goes beyond the inherent relevant sub-
space discovered in Fig. S3.† Based on the abovementioned
insights, we have selected the dimensionality of the scattering
embedding space to be 16 × 1, resulting in a considerable
reduction in the memory and computational requirements of
subsequent stages.

Results and discussion

Breast cancer cells were first well characterized by several
in vitro assays. Then the efficacy of TKIs was investigated using
a combination of Raman micro-spectroscopy and ML.

Cellular response to lapatinib and neratinib by RTCA

To determine whether SK-BR-3 breast cancer cells respond to
lapatinib and neratinib or not, a label-free xCELLigence RTCA
technology was used. This technology is a real-time, non-inva-
sive method, and impedance-based detection of cell viability.53

RTCA monitors cellular proliferation, migration, and invasion
by observing the growth, shape, and damage of the cell over an
extended period of time. In this approach, gold electrodes are
used to measure the changes in the impedance induced by
adherent cells. The impedance signal expressed in the cell
index value increases over time as cells divide reflecting cell
proliferation, while it decreases when cells die and detach
from the well surface. The kinetics of SK-BR-3 cellular prolifer-
ation and response to different concentrations (0.1, 0.5, and
1.0 µM) of lapatinib (panel A) and neratinib (panel B), as well
as cells without drug treatment (control, black traces) were
assessed by the xCELLigence platform as displayed in Fig. 2
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(see also the ESI†). The used drug concentrations in the
present study are slightly smaller and higher than detected
lapatinib (1.47–11.5 µg mL−1) and neratinib (5.8–143.3 ng
mL−1) concentrations, respectively, in the plasma of patients
diagnosed with HER2 positive metastatic breast cancer or solid
tumours, after treatment with a single oral dose of either lapa-
tinib (1250–1500 mg d−1) or neratinib (200–400 mg d−1).54–58

In Fig. 2, the cell index value of the control SK-BR-3 cells
(black traces) increased over time implying that cells still pro-
liferate. The cell index value for cells treated with lapatinib
(panel A, red trace) indicated that cells were still growing but
the cell index values were lower than those of the control and
decreased to around 1.5 after 80 hours of cell incubation with
lapatinib. This means that lapatinib reduces the proliferation
of cells. In contrast, cells treated with the same concentration
of neratinib (panel B, red trace) steadily detached from the
plates, and the cell index values remained near 0.5.

Furthermore, the cell index values of lapatinib-treated cells
(panel A, 0.5 and 1.0 µM) and neratinib-treated cells (panel B,
0.1–1.0 µM) slightly decreased and then almost remained
without a significant change near 0.5 but not increased signifi-
cantly as in the control nor decreased to near zero as in the
case of cells treated with higher drug concentrations.31 The
RTCA is used to investigate the cytotoxic/cytostatic effect of
different drugs on cells. Cytotoxic compounds induce cellular
necrosis, apoptosis, or cytostasis.59 Cytostatic compounds
interfere with cell division or growth. By treating SK-BR-3 cells
with different concentrations of lapatinib and neratinib, the
concentration-dependent cell response is observed. Overall,
neratinib and lapatinib show in most of the concentrations a
cytostatic effect by interfering with the cell-cycle machinery
leading to growth arrest.60 Therefore, the results indicate that
SK-BR-3 cells responded to lapatinib and neratinib and thus,
we used in the Raman and other in vitro assays cells treated
with 0.1–1.0 µM of these drugs for less than 30 hours of incu-
bation (16–24 hours). This is because the respective cell
indices demonstrate values between 0.6 and 1.0, implying that
cells are viable under these conditions.

Furthermore, the cell viability assay, MTT assay, was per-
formed as shown in Fig. S5 in the ESI,† and the results indi-
cated that neratinib seems to be more cytotoxic at lower con-
centrations. The MTT assay also validates the rather cytostatic
effect of 0.1 µM lapatinib and an increased cytotoxic effect
with higher lapatinib concentrations. In addition, the MTT
assay in combination with the RTCA demonstrates that the via-
bility of cells treated with a low concentration of 0.1–1 µM of
both drugs is very high between 80 and 100% after 16 h.
Therefore, concentrations of 0.1–1 µM of both drugs were used
in the experiments of the present study.

Moreover, the cell cycle analysis (Table S2 in the ESI†) was
performed and the treatment of SK-BR-3 human breast cancer
cells with different concentrations of lapatinib and neratinib
(0.1–1.0 µM) resulted in a significant reduction in the G2/M
phases and an increase in the G1 phase. These results demon-
strate clearly that both drugs induce a cell cycle arrest in the
G1 phase. The RTCA and the cell cycle results show that the
drugs have a cytostatic effect on the cancer cells in the first
24 hours.

Apoptosis assay

In the apoptosis assay, two types of cells are monitored: the
apoptotic cells and the necrotic cells. During the apoptosis,
phosphatidylserine is translocated from the inner to the outer
plasma membrane of cells, exposing it to the extracellular
environment.61 Annexin V coupled to fluorescein is used to
detect the phosphatidylserine in this assay.62 Necrotic cells are
detected by red fluorescent PI, which binds to free nucleic
acids in cells, therefore, marking dead cells.63 SK-BR-3 cells
were stained not only with PI but also with Annexin V. Table 1
shows that in the untreated cells around 8% of cells were apop-
totic and less than 1% were necrotic cells. On the one hand,
treatment of SK-BR-3 cells with either lapatinib or neratinib
almost did not lead to significant necrosis since the assay
shows that there are always less than 1% necrotic cells, in com-
parison with untreated cells. On the other hand, cells under-
went apoptosis when treated with either 0.1 µM lapatinib or
neratinib, leading to around 17%. At a higher concentration
(1.0 µM), around 25% and 18% apoptotic cells were detected
in the case of neratinib- and lapatinib-treated cells,
respectively.

The apoptosis assay shows that the apoptosis rate of cells is
more than doubled after the treatment with either of the

Fig. 2 RTCA of untreated SK-BR-3 cells (control) and cells treated with
lapatinib (A) and neratinib (B). The panels show the control cells in black,
cells treated with 1 µM drug in blue, cells treated with 0.5 µM drug in
green, and cells treated with 0.1 µM drug in red.

Table 1 Apoptosis assay of SK-BR-3 cells treated with two different
concentrations lapatinib and neratinib

Concentrations of
drugs in µM

Apoptotic
cells in %

Necrotic
cells in %

Dead
cells in
%

Control — 7.8 0.6 1.4
Neratinib 0.1 17.1 0.3 0.8

1.0 25.4 0.9 2.0
Lapatinib 0.1 17.3 0.3 0.7

1.0 18.3 0.3 0.7
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drugs. These results correlate with the RTCA results especially
in the first 16 h (Fig. 2) because the cell indices in the RTCA
decreased by around a maximum of 20% of the initial indices
before treatment. Taken together the results of all in vitro
assays suggest that lapatinib and neratinib induce cell cycle
arrest and cell apoptosis after cell treatment with the drug.

Internalization of EGFR and HER2 receptors

The above-discussed assays mainly monitor whole-cell
responses that do not allow a pathway-specific conclusion of
the stated cellular changes. To address the effect of the two
TKIs, lapatinib and neratinib, more specifically, fluorescence
staining and western blotting of the targeted receptors were
conducted. As TKIs, lapatinib and neratinib bind to the intra-
cellular ATP binding site of the EGFR and HER2 receptors and
block their downstream signalling.14–16,18,64 To monitor the
two receptors, which are the targets of the drugs, fluorescence
staining of these receptors was performed. Cells were labelled
with specific antibodies for EGFR and HER2, whereas the
DRAQ-5 dye targeted the nucleus. The fluorescence imaging of
the untreated cells (control), the EGF-treated cells (positive
control), and lapatinib- and neratinib-treated cells are dis-
played in Fig. 3. In these images, EGFR, HER2, and the
nucleus are visualized. In the control cells, EGFR and HER2
are distributed evenly and in high amounts mostly in the outer
cell membrane but also in smaller amounts in the cytoplasm
(panels A and B). After EGF treatment, the EGFR and HER2

receptors were internalized and localized in clusters in the
cytoplasm (panels E and F). This is expected since EGF is a
specific ligand of the EGFR; therefore, the binding leads to an
activation of the receptor and is followed by internalization,
where the receptor gets either recycled or degraded.65,66

The fluorescence imaging of cells treated with different con-
centrations of either lapatinib or neratinib shows a distri-
bution of the receptors in the membrane but also a large
internalization of the receptors in the cytoplasm (Fig. 3(I, J, M
and N) and see also Fig. S6 and S7 in the ESI†), in comparison
with the control. Lapatinib and neratinib bind to both recep-
tors and this leads, without further activation of a ligand, to
an internalization of receptors. Hence, the downstream
signals, which are activated by the receptor phosphorylation,
are presumably blocked leading to an inhibition of prolifer-
ation and cell cycle arrest.

The treatment with lapatinib and neratinib leads to the
internalization of EGFR and HER2 independent of the drug
concentration. As mentioned before, internalization is in part
due to ligand binding, but if compared to control levels of
internalization, drug-treated cells display elevated levels of
internalization. In conclusion, the fluorescence imaging shows
the receptor-specific drug effect as an increased number of
receptor–drug complexes seems to get internalized demon-
strated by receptor clusters in the cells.

Furthermore, western blotting was applied to evaluate the
potency and efficacy of drug candidates by monitoring individ-
ual proteins marked by antibodies and single signal transduc-
tion pathways. The results (Fig. S8 in the ESI†) showed that the
drugs inhibited the phosphorylation of downstream signalling
pathways of EGFR. Therefore, the growth and proliferation of
SK-BR-3 cells were inhibited by the used drug concentrations
as shown by both RTCA (Fig. 2) and western blot results
(Fig. S8†).

Cellular response to lapatinib and neratinib by Raman micro-
spectroscopy

Lapatinib and neratinib were developed to treat HER2-positive
breast cancer in metastatic/advanced forms.67 Neratinib inhi-
bits the receptor autophosphorylation by binding irreversibly
to Cys-773 and Cys-805 in EGFR and HER2 in the ATP binding
pocket, respectively.18 Lapatinib binds reversibly to the cyto-
plasmic ATP-binding site of the kinase, preventing receptor
phosphorylation.14 SK-BR-3 cells were treated separately with
two TKIs, lapatinib and neratinib, and cells were well charac-
terized by several in vitro assays. The results indicated the inhi-
bition of the receptors, cell-cycle arrest, and cell apoptosis.
Raman measurement of the untreated and lapatinib- and nera-
tinib-treated cells was performed under similar experimental
conditions. Around 50 cells of each group were measured.
After the measurement, the data were clustered with HCA to
obtain the average spectra of each cell, which were later
merged to get the mean spectra of each group and the results
are displayed in Fig. 4. The mean spectra of cells (a–d) depict
the same characteristic Raman peaks at 2800–3050 cm−1 with
two prominent peaks at 2935 cm−1 and 2879 cm−1 (C–H-sym-

Fig. 3 SK-BR-3 cells with fluorescence stained EGFR (A, E, I and M),
HER2 (B, F, J and N), and nucleus (C, G, K and O). The figure displays
control cells (A–D) and cells incubated with EGF (E–H) as a positive
control, lapatinib (I–L), and neratinib (M–P). Panels D, H, L, and P display
the overlays of all staining.
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metric stretching vibrations for lipids and proteins), around
1657 cm−1 (amide I), 1448 cm−1 (CH–CH2 bending modes),
around 1340–1250 cm−1 (amide III (C–N stretching, N–H
bending, proteins) and/or PO2 asymmetric stretching), and
1311 cm−1 (CH3 and CH2 twisting or bending of lipids and
collagen).30,33,68,69 Moreover, two smaller peaks are displayed
in the spectra: the peak around 1093 cm−1, which is typical of
the symmetric O–P–O-stretching vibrations of the DNA back-
bone or the C–C stretching of phospholipids and the phenyl-
alanine ring breathing mode around 1006 cm−1.30,68 The bio-
chemical changes upon drug treatment are explored by calcu-
lating the Raman difference spectra for different drug concen-
trations. For this purpose, the mean Raman spectra of drug-
treated cells (b–d) were subtracted from the mean Raman spec-
trum of the untreated cells (a), and the results are displayed in
Fig. 5.

Fig. 5 clearly demonstrates that both drugs with different
concentrations significantly influence the SK-BR-3 cells. The
largest spectral changes can be seen in C–H stretching
vibrations of lipids and proteins (2850–3050 cm−1), amide I
region (around 1650 cm−1), and CH–CH2 bending modes
(1448–1450 cm−1, representing lipids, collagen, and phospholi-
pids).70 A smaller change can be also observed at 1590 cm−1

(CvN stretching vibration) in panel A and at 1612 cm−1 (CvC
stretching vibrations of aromatic rings) in panel B.71–73 On the
one hand, the difference spectra of lapatinib strikingly show
an inverse drug concentration effect, meaning that the
observed biochemical changes increase with decreasing the
concentration of lapatinib. On the other hand, the cellular
response to different concentrations of neratinib is almost
similar. These results suggest differences in the cellular
response to lapatinib and neratinib at least on a cellular level.

SK-BR-3 cells were well characterized by several in vitro
assays, and the results indicated cell-cycle arrest, cell apopto-
sis, and inhibition of the receptors (Tables 1 and S2 and
Fig. S8†). Therefore, it is reasonable to conclude that the
observed Raman spectral changes upon drug treatment
(Fig. 6) reflect the cellular response to the drug, including cell-
cycle arrest, apoptosis, and receptor inhibition.

Scattering-based multivariate analysis

Scattering-based multivariate analysis is conducted by apply-
ing PCA on the low-dimensional scattering subspace for the
Raman spectra of cells in the dataset. PCA aims at extracting
directions of maximum variance within the scattering embed-
ding space. The extracted principal components in the scatter-
ing domain are referred to as scattering principal components
(scattering PC). For the sake of comparison, standard principal
components (PCs) were extracted using the commonly used
PCA-based multivariate analysis of raw Raman spectra. Fig. 6
and 7 (see also Fig. S9 and S10 in ESI†) provide visualization

Fig. 4 Raman mean-spectra of SK-BR-3 cells untreated or treated with
either lapatinib (A) or neratinib (B) in different concentrations. Spectra a
represent the control cells without drug treatment. In panel (A), the
spectra b, c, and d represent the spectra of cells treated with lapatinib
concentrations of 0.1 µM (b), 0.5 µM (c), 1 µM (d), respectively. In panel
(B), the spectra b, c, and d represent the spectra of cells treated with
neratinib concentrations of 0.1 µM (b), 0.5 µM (c), 1 µM (d), respectively.

Fig. 5 Raman difference spectra of SK-BR-3 treated with lapatinib (A)
and neratinib (B). Spectra (a–c) are obtained by subtracting the drug-
treated cells from the untreated cells (control), in which cells were
treated with different drug concentrations of 1 µM (a), 0.5 µM (b), and
0.1 µM (c).

Fig. 6 Scattering PCA multivariate analysis results for control cells and
cells treated with lapatinib at 0.5 µM concentration. Top row: Principal
components (PCs) using standard PCA-based analysis. Bottom row:
Scattering principal components using proposed analysis framework.
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for the discriminating power of the proposed scattering-based
multivariate analysis compared to the standard PCA-based
analysis. Fig. 6 shows the scatter plots for the first three scat-
tering-principal components (ScatPC1, Scat-PC2, Scat-PC3)
compared to the PCs. It is evident that the scattering-based
principal components tend to better differentiate between the
drug-free cells and lapatinib-treated cells. The same obser-
vation can be seen in Fig. 7 for the case of neratinib-treated
cells.

Next, we have evaluated the ability of the scattering-based
multivariate analysis framework to discriminate between
control cells and drug-treated cells. The Support Vector
Machine (SVM) was used as the classifier in all experiments.
Given the limited size of the training dataset, leave-one-out
cross-validation was used to evaluate the accuracies in all the
experiments. Results were compared against commonly used
PCA and independent component analysis (ICA-based) analysis
frameworks. Classification results are summarized in Tables
S3 and S4 in the ESI† for the case of lapatinib- and neratinib-
treated cells, respectively. In the classification experiment,
detecting a control cell is referred to as a negative case, and
detecting a drug-treated cell is referred to as a positive case.
Corresponding confusion matrices are presented in Fig. S11
and S12† for the cases of doses with 0.5 µM and 1 µM concen-
trations, respectively.

Overall, the scattering-based multivariate framework has
demonstrated superior performance in differentiated control
vs. treated cells at different drug doses. In the case of lapati-
nib-treated cells, compared to the PCA-based framework, the
scattering-based multivariate framework has achieved an
improvement in accuracy of 10.42% and 10.71% for the 0.5 µM
and 1 µM concentrations, respectively. Compared to the ICA-
based framework, an average accuracy improvement of 2.1%
was achieved. In the case of neratinib-treated cells, the scatter-

ing-based multivariate framework has outperformed both PCA-
based and ICA-based frameworks with an average accuracy
improvement of 5.7% and 3.75% compared to the PCA-based
and ICA-based frameworks, respectively.

F1-score is also used to assess the overall ability of the
framework to identify drug-treated cases while minimizing
false positives and false negative cases. Compared to the PCA-
based framework, the proposed framework has achieved an
average improvement of 15.63% and 4.87% for the case of
lapatinib-treated and neratinib-treated cells, respectively.
Confusion matrices for the leave-one-out cross-validation
experiments are presented in Fig. S11 and S12 in the ESI.† In
terms of false positive rates (FPR), the proposed scattering
PCA-based framework has achieved an average False Positive
Rate (FPR) of 2.5%, compared to 15% in the case of the PCA-
based framework. In terms of false negative rates (FNR), the
proposed framework has achieved an average false negative
rate (FNR) of 0.775% compared to an FNR of 10.625% in the
case of the PCA-based framework. In conclusion, a scattering-
based multivariate framework was applied here successfully
for the first time on Raman data, and this approach could
differentiate between drug-free cells and drug-treated cells
with high accuracy compared to the classical PCA.

Label-free distribution of lapatinib in cells by Raman spectral
imaging

Label-free Raman micro-spectroscopy has been used tremen-
dously in the last two decades to monitor the uptake and dis-
tribution of drugs or drug carriers in cells. However, it is very
challenging because drugs or their carriers often accumulate
at lower concentrations within cells. It is well documented that
the Raman sensitivity of a drug of interest can be improved
when it contains an alkyne or nitrile functional group, or iso-
topic labelling (deuterium or 13C) because these groups
produce Raman bands in the silent region of the cell spectrum
(1800–2800 cm−1).22,74 Recently, it has been shown that small-
molecule drugs or drug candidates can be visualized in cells
using a Raman marker band in the fingerprint region
(700–1800 cm−1). This is because the small-molecule drugs
have sharp and strong Raman bands in the fingerprint region,
while those of cells are broad bands. For instance, the distri-
bution of tyrosine kinase inhibitors such as sorafenib and
sunitinib was monitored in cells using Raman bands located
at 1028 cm−1 and 1320/1570 cm−1, respectively.31,75 In SRS
imaging study, Fu et al.40 used also the Raman bands of niloti-
nib, chloroquine, and GNF and GNF at 1300 cm, 1370, and
1600 cm−1 to display their distribution in the cells. Besides,
the distribution of doxorubicin and squalene-doxorubicin in
cancer cells was detected through several Raman bands in the
fingerprint region.76

We have previously reported the neratinib distribution in
cells using label-free Raman micro-spectroscopy.37 In the
present study, the uptake and distribution of lapatinib in
breast cancer cells were investigated. The Raman spectrum (a)
of pure lapatinib displays bands around 794, 1002, 1031, 1064,
1135, 1209, 1269, 1295, 1363, 1390, 1443, 1488, 1525, 1578,

Fig. 7 Scattering-based PCA multivariate analysis results for control
cells and cells treated with neratinib at 0.5 µM concentration. Top row:
Principal components (PCs) using standard PCA-based analysis. Bottom
row: Scattering principal components using proposed analysis
framework.
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1611, and 1625 cm−1 as depicted in Fig. 8A. The strong Raman
bands of lapatinib at 794, 1209, 1363, 1390, 1525, 1611, and
1625 cm−1 are possible candidates for visualizing the localiz-
ation of lapatinib in cells. However, the Raman spectrum of
SK-BR-3 cells (c) reveals Raman bands near 1002 cm−1 (ring-
breathing mode of phenylalanine), 1250–1340 cm−1 (amide
III), and ∼1659 cm−1 (amide I) that overlap with lapatinib
Raman bands near 1002, 1611, and 1625 cm−1. Therefore, it is
reasonable to conclude that lapatinib Raman bands at 794,
1209, 1363, and 1525 cm−1 (spectrum a), which have no corres-
ponding bands in the cell spectrum (c), can be used as label-
free marker candidates to visualize the localization within
cells. Xu et al. used the Raman band near 1363 cm−1 to
monitor the distribution of lapatinib in A549 cells by SRS
imaging.41

Fig. 8(B–I) shows the Raman micro-spectroscopic imaging
results for SK-BR-3 cells incubated for four hours with approxi-
mately 10 µM lapatinib. At this concentration, most of the
cells are viable, as confirmed by RTCA (Fig. 2) and the cyto-
toxicity assay (Fig. S5†). Fig. 9B depicts an integrated Raman
intensity image of the Raman band in the range of

1425–1470 cm−1 of SK-BR-3 cells treated with lapatinib, reflect-
ing the different cellular components. Since lapatinib does not
have any Raman bands in this region, panel (B) does not show
any contribution from lapatinib. To monitor the lapatinib dis-
tribution within cells, a Raman intensity image was con-
structed around the 1515–1535 cm−1 band (panel C). The sub-
cellular spatial distribution of lapatinib in SK-BR-3 cells is
obtained in panel (D) by overlaying images (B) and (C). To
confirm that lapatinib is localized within SK-BR-3 cells but not
precipitated on the cell surface, cross-section Raman imaging
of the same cell along the indicated x–z axis was also acquired
as shown in panels (F–H), demonstrating that lapatinib was
internalized within SK-BR-3 cells. The reproducibility of these
results was confirmed as shown in Fig. S13–S15 in the ESI.†
Therefore, Raman micro-spectroscopy shows the lapatinib
uptake and distribution in cells employing Raman marker
bands in the fingerprint region.

The Raman spectral imaging results were analysed utilizing
K-means and the drug cluster and the average Raman spec-
trum of the lapatinib-containing cluster within cells are shown
in Fig. 8(E and I) and 8A (b and c), respectively. The K-means
image shows more lapatinib-containing clusters than the
corresponding integrated Raman intensity image of the lapati-
nib band (1515–1535 cm−1) (panel B). This is because the
K-means clustering assigns each pixel exclusively to a cluster
generating a better-quality image than the univariate Raman
intensity image. It is worth mentioning that K-means of the
Raman spectra were used in this section but not in the scatter-
ing-based analysis.

Fig. 8 (A) The Raman spectra of free lapatinib (a), the average Raman
spectrum of the lapatinib-containing cluster in SK-BR-3 cells shown in
panel (E) (b), the average Raman spectrum of the lapatinib-containing
cluster in SK-BR-3 cells shown in panel (I), and the average Raman spec-
trum of the control cells (d). (B–I) Raman imaging of SK-BR-3 cells
treated with 10 µM lapatinib for 4 h. Raman images reconstructed from
the band’s intensities at 1420–1470 cm−1 (B) and 1515–1535 cm−1 (C).
(D) Overlay of panels B and C. (F–H) Cross-section Raman images along
the x–z axis of the same cells. Scanning positions are indicated by the
white line in panel B. (E and I) represent the distribution of lapatinib (red
structure) in cells. (E and I) Lapatinib-containing clusters obtained by
K-means based on the Raman data shown in panels B and F.

Fig. 9 (A) Lapatinib-containing cluster of K-means based on Raman
data shown in red. (B) Fluorescence image of the same cells that shows
the EGFR (green) and the nucleus (blue). (C) Fluorescence image of the
same cells that shows the HER2 (red) and the nucleus (blue). (D) Overlay
of (B) and (C). (E) Overlay of the lapatinib-containing cluster (red) (A) and
EGFR (green) (B) and the overlaid regions are shown in yellow. (F)
Overlay of the lapatinib-containing cluster (red) (A) and HER2 (green) (C)
and the overlaid regions are shown in yellow and white.
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The average Raman spectrum of the lapatinib-containing
cluster within cells (Fig. 8A (spectrum b and c)) reveals several
Raman bands, similar to those observed for pure lapatinib
(spectrum a), especially those observed at 1002, 1209, 1363,
1525, 1611, and 1625 cm−1. Cellular contribution to the
spectra of the lapatinib-containing cluster (b and c) is detected
as indicated by the Raman bands located at 1002, 1210–1380,
1443, and 1659 cm−1.

Interestingly, the spectra of the lapatinib-containing cluster
(b and c) are different from that of pure lapatinib (a), where
the Raman bands at 794 and 1488 cm−1 of pure lapatinib
(spectrum a) disappeared in the spectra of the lapatinib-con-
taining cluster (spectrum b and c). These results suggest that
lapatinib is metabolized within cells. In contrast, in other
measurements, a small broad band at 794 cm−1 appeared
(Fig. S13 in the ESI†) instead of complete disappearance as
shown in Fig. 8A.

Lapatinib is a dual inhibitor and binds to the intracellular
ATP binding site of the EGFR and HER2 receptors and blocks
their downstream signalling.14–16,18,64 The distribution of lapa-
tinib, EGFR, and HER2 in the same cells was achieved by per-
forming fluorescence imaging of the same cells after Raman
micro-spectroscopic imaging and the results are depicted in
Fig. 9. The K-means of the Raman results showing the lapati-
nib-containing cluster (shown also in Fig. 8E) and fluorescence
imaging of EGFR and HER2 are shown in panels A, B, and C,
respectively. The lapatinib-containing cluster (red) from (A) is
overlaid with the EGFR from (B) and with the HER2 from (C)
and the results are displayed in (E) and (F), respectively. Parts
of lapatinib are colocalized with the target receptors, EGFR
and HER2, as indicated by the overlaid regions shown in
yellow colour in panels (E) and (F). These results imply that
some of the lapatinib binds to EGFR and HER2 receptors,
blocking their phosphorylation and then inhibiting their
downstream signalling and subsequently cellular
proliferation.14–16,18,64

Conclusions

A deep wavelet scattering-based multivariate analysis frame-
work is presented for the analysis of Raman spectra of control
versus drug-treated breast cancer cells. The Raman results
detected large lapatinib- and neratinib-induced differences in
breast cancer cells. The potent effect of lapatinib and neratinib
on breast cancer cells is thus demonstrated by the Raman
micro-spectroscopic results. In addition, the results showed
the discriminating power of the proposed scattering-based
multivariate analysis compared to the standard PCA-based
analysis. The lapatinib- and neratinib-treated SK-BR-3 cells
exhibit reduced cellular proliferation and inhibition of the
phosphorylation of ERK and AKT, as demonstrated by the
in vitro RTCA and western blot assays, respectively.
Furthermore, lapatinib and neratinib have a cytostatic effect
on the cancer cells and induced apoptosis, as demonstrated by
the results of the cell cycle, apoptosis assays, as well as RTCA.

Therefore, the observed Raman spectral changes upon drug
treatment are produced as a result of cell-cycle arrest, apopto-
sis, and receptor inhibition. These results also concur with the
clinical studies as well. Additionally, the results of the Raman
spectral imaging have demonstrated the uptake and label-free
distribution in cells and colocalization of lapatinib with EGFR
and HER2 in cancer cells. These findings reveal that Raman
micro-spectroscopy is capable of detecting drug uptake in the
fingerprint region, as demonstrated in this case with lapatinib.
When the efficacy data for lapatinib and neratinib are com-
bined with their distribution in cells, it expands the ability of
Raman micro-spectroscopy to track drug pharmacodynamics
and pharmacokinetics. This will help with the next stage of
pre-clinical evaluation and drug discovery, which is the evalu-
ation of drugs in an in vivo setting like mouse models.
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