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Ultra-sensitive detection of PFASs using surface
enhanced Raman scattering and machine learning:
a promising approach for environmental analysis†
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The contamination of per- and polyfluoroalkyl substances (PFAS) in drinking water presents a significant

concern and requires a simple, portable detection method. This study aims to demonstrate the

effectiveness of Raman and surface-enhanced Raman scattering (SERS) spectroscopies for identifying and

quantifying various PFASs in water. Experimental Raman spectra of different PFASs reveal unique

characteristic peaks that enable their classification. While direct SERS measurements from silver nanorod

(AgNR) substrates may not exhibit distinct PFAS characteristic peaks, the presence of PFAS on SERS

substrates induces noticeable spectral changes. By integration with machine learning (ML) techniques,

these SERS spectra can be used to successfully differentiate and quantify PFOA in water, achieving a limit

of detection (LOD) of 1 ppt. Modifying the AgNR substrates with cysteine and 6-mercapto-1-hexanol

enhances the differentiation and quantification capabilities of SERS-ML. Despite alkanethiol molecules

affecting spectral features, PFAS and PFOS concentrations produce observable spectral variations. A

support vector machine model achieves 93% accuracy in differentiating PFOA, PFOS, and references,

independent of concentration. A support vector regression model further establishes LODs of 1 ppt for

PFOA and 4.28 ppt for PFOS. By removing spectra with concentrations lower than LODs, the classification

accuracy is improved to 95%.

Introduction

The per- and polyfluoroalkyl substances (PFASs) are a diverse
class of over 3000 chemicals in use since the 1950s in industrial
and consumer products.1 They came under regulatory and
scientific scrutiny in the last two decades due to high
bioaccumulation and persistence in the environment, as well as
toxicity. The most common analysis of PFASs in environmental
samples is liquid chromatography with mass spectroscopy.2–4

This is a laboratory-based technique with low sensitivity and high
cost. Recently, new emerging PFAS detection methods based on
fluorescence spectroscopy, and the electrochemical method have
been investigated.3,4 Though some new capabilities have been
achieved in fluorescence detection, such as sub-ppt level of limit
of detection (LOD),5 and the ability to differentiate

perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid
(PFOS),6 many challenges remain, especially in terms of high
sensitivity detection with desired LOD, the ability to detect and
differentiate multiple PFAS species, and field applicability.

Surface-enhanced-Raman scattering (SERS) spectroscopy is a
very promising technology to address the challenges of PFAS
detection. When the analyte molecules are attached to specially
designed plasmonic nanostructures, their Raman signal
amplitude can be enhanced 106 to 1010 times.7 Such a
phenomenon has even been shown to achieve single-molecule
detection.8 The vibrational spectroscopic features in SERS
spectra can give molecular fingerprints for target molecules,
allowing one to achieve high specificity without using
fluorescent tags. Fang et al. used cationic dyes like ethyl violet
and methyl blue to co-incubate with PFOA and PFOS from
firefighting foams.9 Such a strategy allowed for greater loading
of targeted fluorosurfactants on the graphene oxide (GO) mixed
with colloidal silver nanoparticles (NPs), reaching an LOD for
PFOA of 50 ppb (i.e., 5 × 104 ppt). Jet-printed silver NPs and
graphene on Kapton as SERS substrates achieved an extremely
low LOD of both PFOA and PFOS of 0.5 ppt.10 Park et al.
fabricated silver nanograss substrates covered with self-
assembled p-phenylenediamine nanoparticles to detect PFOA
and obtained an LOD of 1.69 nM (0.53 ppt) in distilled water.11
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Feng et al. synthesized Ag NP/Au@Ag core–shell nanorod SERS
substrates, demonstrated their ability to detect PFOA,
perfluorohexanoic acid (PFHxA), and potassium
perfluorobutanesulfonate (PFBS), and achieved an LOD of 0.1
ppm (i.e., 1 × 105 ppt).12 All these studies show the great
promise of using SERS for highly sensitive PFAS detection.

However, there are three challenges associated with SERS-
based PFAS detection. First, high-enhancement SERS substrates
are required to provide adequately strong signals for the desired
limits of detection. Second, the affinity of PFAS molecules to the
designed SERS substrates must be strong enough to
demonstrate good SERS signals. Different substrates may have
better or worse affinities with different analytes depending on
their interactions. Finally, the SERS spectra from different PFAS
molecules must be distinguishable. Many PFAS molecules have
remarkably similar molecular structures, which can result in
similar SERS or Raman spectra.

The solution to the first challenge is the creation of specific
reproducible nanostructures to enhance plasmonic effects. We
have shown that the silver nanorod (AgNR) arrays fabricated by
oblique angle deposition can serve as excellent SERS
substrates.13–16 The SERS enhancement factor can reach as high
as ∼109; the SERS intensity variation from substrate to substrate
and from deposition batch to batch is less than 10%.17 The
substrates can be produced on a large scale. Many different
devices, such as multiwell SERS substrate array for multiplexing
detection, flow cells, and fiber sensors, have been developed for
point-of-care applications.18–21 The AgNR substrates can be
integrated with a portable Raman analyzer and a tablet and can
be used in the field.22,23

For the second challenge, the ability of PFAS molecules to
bond to the AgNR can be improved by taking advantage of
their functional groups. The lipophobic/hydrophobic nature
of the fluorocarbon tail and the different nature of the other
functional groups of a PFAS molecule could interact
differently on a charged surface. Functionalizing the AgNR
surface to be positively or negatively charged may change the
adsorption properties of the PFAS molecules, potentially
improving sensitivity. In addition, in PFAS sorbent studies, it
is well-known that different absorbent materials, such as
carbonaceous materials and inorganic oxides (silica, alumina,
hematite, etc.), have different PFAS absorption capabilities.4

The coating of these materials on AgNR substrates can also
be used for improving the differentiation accuracy for PFASs.

Since many PFAS molecules have similar chemical bonds,
except for the number of carbon atoms, it is expected that the
SERS spectra of these PFAS molecules are highly similar. This is
the source of the third challenge. Since the SERS spectra can be
viewed as multi-variant data, the differentiation and
quantification of targeted PFASs can benefit from modern
machine learning algorithms (MLAs).24–26 Various classic MLAs,
such as principal component analysis (PCA), partial least square
discriminant analysis (PLS-DA), k-nearest neighbor (KNN),
random forest (RF), etc., have been applied to SERS spectra for
bacteria and virus identification, disease diagnosis, and forensic
analysis.25–27 For example, Wu et al. demonstrated the use of

PCA to visualize the cluster of 27 bacteria pathogens based on
their SERS spectra,23 and Rebrošová et al. achieved 100%
classification accuracy in distinguishing 16 types of
staphylococcal species using PCA and SVM.28 Our recent studies
demonstrate the capacity of SVM to effectively classify and
quantify 11 different bacterial endotoxins29 and 13 different
respiratory viruses.30 It is expected that these algorithms should
also exhibit notable efficiency in distinguishing different PFASs
based on their SERS spectra.

The goals of this work are to show that (1) the Raman spectra
of different PFAS molecules, even with the same functional
groups but different carbon chain numbers, are able to be used
to differentiate the PFAS in solution; (2) the integration of SERS
and machine learning (ML) can be used to differentiate and
quantify various PFAS in water; (3) the use of thiol modified
SERS substrates can improve the differentiation and
quantification capabilities of the SERS-ML method. With the
MCH-modified AgNR substrates and using an SVM, we achieved
a 93% accuracy in differentiating PFOA, PFOS, and the
reference, regardless of their concentrations. Furthermore,
employing a support vector regression (SVR) model allowed us
to determine LODs of 1 ppt for PFOA and 4.28 ppt for PFOS.

Experimental section
Materials

The silver and titanium used for deposition were purchased
from Kurt J. Lesker. The AgNR substrates were prepared on
Thermo Fisher Scientific glass microscope slides. MCH
(6-mercapto-1-hexanol) and cysteine were all bought from
Sigma-Aldrich. PFOS was purchased from ChemCruz at 97%
purity. PFOA was acquired from Sigma-Aldritch at 95% purity.
Perfluorodecanoic acid (PFDA) was obtained from Fisher
Scientific. Perfluoronanoic acid (PFNA) was received from
Cambridge Isotope Laboratories. Sylgard 184 Silicone Elastomer
Base and Sylgard 184 Silicone Elastomer Curing Agent used to
fabricate PDMS gel wells were purchased from Dow.

AgNR substrate fabrication

Glass microscope slides were cut into 0.5 inch × 0.5 inch
square pieces. Followed by a standard cleaning procedure,
AgNRs were deposited onto these glass slides in an electron
beam deposition system using the OAD configuration; details
can be found in.31,32 Before SERS measurements, the AgNR
substrates were cleaned by argon plasma for 90 seconds. A
polydimethylsiloxane (PDMS) gel layer containing 4 wells (2 ×
2, with a well radius of 2 mm and a depth of 1 mm) was
molded onto the cleaned AgNR substrates.33 Fig. 1a
illustrates the geometry of the AgNR array SERS substrate,
and Fig. S1 in the ESI† is a representative electron
micrograph of the fabricated SERS substrate.

Raman measurement of PFAS

1 mg powder of four different PFASs (PFDA, PFNA, PFOS, and
PFOA) was placed on the cleaned Si wafer for the Raman
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measurement. A confocal Raman microscope (Renishaw,
InVia) with a 785 nm excitation laser was used for all the
Raman and SERS measurements. The laser power was set to
171 mW at the sample position with a 20× objective lens and
10 s acquisition time.

Direct SERS measurement of PFAS in methanol from AgNR
substrates

Five different PFASs (hexafluoropropylene oxide dimer acid
(HFPO-DA), PFDA, PFNA, PFOS, and PFOA) were diluted to
103 ppt in methanol. 2 μL of each sample was dropped onto
AgNRs substrate and air-dried at 20 °C for the SERS
measurement. The laser power was set to 0.855 mW at the
sample position with a 20× objective lens and 10 s
acquisition time. 120 SERS spectra were obtained for each
sample. To explore the quantification capability of SERS, 100,
101, 103, 106, 107, and 108 ppt concentrations of PFOA in
methanol were also prepared, and the corresponding SERS
spectra were measured under the conditions mentioned
above.

SERS measurement from alkanethiol molecule modified
AgNR substrates

As discussed in the introduction, to improve the affinity of
PFAS molecules to AgNR substrate, it may be advantageous to
put a self-assembled thiol molecule layer on the surface to
change the surface charge as shown in Fig. 1b. It is
envisioned that when PFAS molecules are dispensed on the
thiol-modified surface, they will be aligned in a certain way
according to electrostatic interaction, as shown in Fig. 1c.
Here, we employed two thiol molecules: cysteine and MCH.

20 μL of the 200 μM cysteine solution was pipetted into an
AgNR well and incubated for 1 hour. After incubation, the
wells were rinsed with DI water more than 3 times and then
air-dried. Then, a droplet of 2 μL of 103 ppt PFOS, PFOA,
PFNA, PFDA, and HFPO-DA in methanol was dispended in
the cysteine-modified well. After drying for 1 minute, the
corresponding SERS spectra were measured under the same
conditions.

Based on the results shown in Fig. S2 in the ESI,† since
the MCH concentration of 150 μM gave the most consistently
high peak intensity, it was selected as the MCH
functionalization concentration. 20 μL of the 150 μM was
used to modify the AgNR well following the same procedure
as cysteine modification. After MCH functionalization, the
PFOA concentrations of 109, 108, 107, 106, 105, 104, 103, 102,
101, 100, and 10−1 ppt, and PFOS concentrations of 4.28 ×
106, 4.28 × 105, 4.28 × 104, 4.28 × 103, 4.28 × 102, 4.28 × 101,
4.28 × 100, 4.28 × 10−1, and 4.28 × 10−2 ppt, diluted in DI
water, respectively, were applied on MCH-modified AgNR-
wells. To obtain better statistics, 20 μL solutions of each
concentration were dispensed to 3 AgNR-wells on separated
substrates and different well-locations. For PFOA in MCH,
three different substrates were used to collect the spectra.
From each substrate, 60 spectra were collected from a single
well for each concentration. For PFOS in MCH, seven
different substrates were used to collect the spectra. For
concentrations of 4.28 × 105, 4.28 × 103, 4.28 × 101, 4.28 ×
10−1 ppt, and the reference, 60 spectra were collected from a
single well for each concentration. For concentrations of 4.28
× 106, 4.28 × 104, 4.28 × 102, 4.28, 4.28 × 10−2 ppt, a total of
60 spectra were collected from three wells from three different
substrates (20 spectra per well). The data from the three wells
were added to the dataset to reduce substrate-related variance
in the model prediction. One of our recent publications
indicates that the piece-to-piece difference between the
substrates is within 10%.34 For all the above measurements,
DI water-treated wells were used as a reference.

SERS spectra pre-treatment

Prior to analysis, all SERS spectra were processed by a
standardized spectral preprocessing procedure, which included
de-spiking, baseline removal, and area normalization. Unless
otherwise specified, the baseline removal method employed in
this study was WiRE by Renishaw, a widely used commercial
baseline correction method based on polynomial fitting.

Machine learning training

For data visualization, t-distributed stochastic neighbor
embedding (t-SNE) was employed.35 The MLA, SVM, was used
for spectral classification,36 while the SVR was utilized for
spectral quantification.37 All implementation was coded in
Python 3.8.6, using scikit-learn version 1.0.2.38 It is noted that
the specific kernels and parameters were carefully selected
and are detailed in the corresponding sections for clarity.

Results and discussion
Raman spectra of selected PFAS compounds

Fig. 2 shows the measured average Raman spectra of PFOS,
PFOA, PFNA, and PFDA powders, and will be used as a
reference for spectra comparison. Each spectrum exhibits
multiple well-defined characteristic peaks, and the relevant
peak details are summarized in Table 1. It is very hard to

Fig. 1 (a) Ag nanorods on a glass substrate. (b) A self-assembled
monolayer of thiol molecules coats the nanorods. (c) The charged
PFAS molecules are electrostatically attracted to the thiol molecule
monolayer.
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directly assign the vibrational modes of the experimental
Raman spectra since there are very large discrepancies
between the peak locations of experimental spectra and those
calculated by density function theory,39 see Fig. S3 in the
ESI.† However, there were existing assignments in the
literature. In the case of PFOS and PFOA, which are the
primary PFAS types discussed in this study, we have extracted
peak information from existing literature, as indicated in the
“Lit.” columns. The column labeled “Count” offers a
summary of how frequently a given peak appears across all
PFAS powders used in our experiments, offering insights into
potential similarities. The final column provides our

assignment of vibrational origins. Among these peaks, those
at Δv = 600, 715, and 1370 cm−1 are consistently observed in
all four compounds shown in Fig. 2. Additionally, Δv = 1296
cm−1 is shared by all PFASs except PFNA. PFOS and PFDA
share peaks at Δv = 520, 743, 1067, and 1325 cm−1, whereas
PFOA and PFNA share peaks at Δv = 788 cm−1, and PFOA and
PFDA share peaks at Δv = 660 and 873 cm−1, respectively.
Notably, PFOS exhibits unique peaks at Δv = 1043 and 1136
cm−1, PFOA at Δv = 630, 675, and 763 cm−1, PFNA at Δv = 754
and 837 cm−1, while PFDA at Δv = 427, 918, 978 and 1422
cm−1. These distinctive peaks, delineated by dashed circles in
Fig. 2 for each PFAS compound, distinctly define the
differences in the SERS spectra among these four compounds,
and are expected to enable easy differentiation through MLAs.

Attributing specific vibrational modes to observed peaks is
challenging due to the long-chain structure of PFAS
compounds and the closely matched masses of carbon and
fluorine atoms. According to ref. 10, peaks at Δv = 660, 715,
803, and 1100 cm−1 may correspond to vibrations of the CF3
group, while Δv = 1370 cm−1 could be attributed to CF or
COO vibrations. Also, PFOS stands out in the table, as it
possesses the only SO3 functional group, possibly accounting
for the unique peaks at Δv = 1043 and 1136 cm−1.10 It is
important to note that these assignments may not be
accurate. The four most common peaks at Δv = 600, 715,
1370, and 1296 cm−1 are likely linked to vibrational modes of
common structures present in all four PFASs we examined,
unaffected by variations in molecular length and functional

Fig. 2 The Raman spectra of selected PFAS powders.

Table 1 A summary of Raman peaks observed from Fig. 2 and a comparison to the literature for PFOS and PFOA resultsa

a The “Exp.” column represents the results from Fig. 2, the “Lit.” columns refer to data from the literature, and the “Count” column shows the
number of PFASs with the same peak observed in Fig. 2. The colors of peak positions indicate their relative intensity: red: strong; blue:
medium; green: weak.
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groups. Although the molecular structures of PFOA, PFNA,
and PFDA are quite similar, featuring a COOH functional
group, their distinctions arise from variations in carbon and
fluorine counts. Specifically, PFOA comprises 8 carbons and
15 fluorines, PFNA contains 9 carbons and 17 fluorines, and
PFDA consists of 10 carbons and 19 fluorines. As we
anticipate, an increase in carbon atoms should minimally
impact the normal vibrational modes of CF2 bonds and CF3
group, while the vibrational modes of C–C bonds could
undergo splitting into multiple modes around their original
normal modes. Based on some early experimental and
theoretical Raman studies on C2F6 and C3F8, symmetric and
asymmetric C–C stretchings were observed at Δv = 780 and
1008 cm−1.40–42 With the addition of more carbon atoms, it is
reasonable to assume that C–C stretchings could span
between 700–850 cm−1 and 900–1100 cm−1. Many of the
observed peaks in Fig. 2 could be attributed to these
wavenumber regions. In addition, according to those studies,
CF3 vibrations fall within the 540–630, 720–800, 1200–1270,
and 1350–1370 cm−1 wavenumber regions, while CF2 bonds
exhibit modes at Δv = 340, 460, 660, 1150, and 1314 cm−1,
respectively. Taking these insights into account, we have
reevaluated the vibrational origins for each of the
experimentally observed peaks, as indicated in the last
column of Table 1.

SERS spectra of different PFASs from AgNR substrates

Fig. 3a shows the average SERS spectra of 103 ppt PFOS, PFOA,
PFNA, PFDA, and HFPO-DA in methanol. Unlike the Raman
spectra shown in Fig. 2, these spectra show broadened spectral
features. A table listing peaks of these PFAS molecules can be
found in Table S1 of the ESI.† The peaks seen in the Δv = 700–
800 cm−1 range from Fig. 2 are no longer present. The
dominating peaks now occur in the range of Δv = 800–900 cm−1.
All the SERS spectra exhibit similar spectral features, especially
sharp peaks at Δv = 805, 927, and 999 cm−1. Some other
common peaks appear at Δv = 1136, 1401, and 1603 cm−1. Those
peaks are all presented in the spectrum of the AgNR
background. However, the relative peak intensity ratios are
different for different PFASs, and there are some small
variations in various wavenumber regions. In addition, at least
two small peaks at Δv = 754 and 1271 cm−1 that do not belong

to any peaks of the AgNR background appear in all the PFAS
spectra. These peak locations are close to some of the peaks
shown in Raman spectra (Δv = 743–763 and 1296 cm−1) shown
in Table 1, which demonstrates the possibility of PFAS
detection. The shift of the peaks in the SERS spectrum
compared to the Raman spectrum could be due to two possible
reasons: the breaking symmetry of some vibrational mode due
to molecule adsorption on a surface in SERS, or due to charge
transfer from the molecule to the adsorbed surface.44 The high
similarity among the SERS spectra of all PFASs presented in
Fig. 3a as well as the AgNR background spectrum is probably
due to the low affinity of PFAS molecules to the AgNR substrate,
but this needs to be further confirmed by other carefully
designed experiments. We performed a cosine similarity test to
further assess the similarity between the spectra in Fig. 3a.
Cosine similarity is a measure of the similarity between two
non-zero vectors, with values ranging from −1 to 1, where 1
indicates high similarity. Given two spectra Ia and Ib, the
calculation of cosine similarity Sc(Ia, Ib) can be defined as Sc(Ia,
Ib) = (Ia · Ib)/(‖Ia‖‖Ib‖), where the “·” operation represents the
inner product of two vectors, and “‖I‖” represents the length of
the vector I. The results, shown in Table S2,† indicate that there
are moderate similarities between the PFAS spectra and the
AgNR background, and the PFAS spectra are highly similar to
each other (with values >0.9). This high similarity among PFAS
spectra suggests that it is difficult to visually distinguish them.
However, the values are not equal to 1, indicating that there are
subtle differences between the spectra. These differences can be
effectively captured and used for differentiation using
mathematical techniques such as t-SNE.

To investigate whether the SERS spectra can be used in
differentiating different PFASs, the t-SNE analysis was
implemented. t-SNE is a nonlinear dimensionality reduction
technique well-suited for embedding high-dimensional data
into a space of two or three dimensions, ideal for human
interpretation and visualization. It is designed to identify
hidden patterns, especially nonlinear local similarities, and
can unveil distinctions within SERS spectra that may appear
quite subtle to human observers.35 The t-SNE algorithm for
SERS spectra observed in Fig. 3a was executed with a
perplexity of 40, an iteration of 300, and initialized randomly.
As shown in Fig. 3b, the SERS spectra from the same kind of
PFAS molecules can form close, independent, and well-
separated clusters with respect to each other, which
demonstrates a clear differentiation capability of SERS. These
results demonstrate that 1) the SERS spectra from PFASs with
different numbers of carbon atoms but the same end
functional groups (PFOA, PFNA, and PFDA) can be used to
differentiate the PFAS species; 2) SERS spectra from PFASs
with the same number of carbon atoms but different end
functional group (PFOA and PFOS) can also be used to
differentiate the PFAS species.

In order to demonstrate the quantification capability of
SERS, the concentration-dependent SERS spectra of PFOA
have been measured, and the representative average spectra
are shown in Fig. 4a. These spectra are very similar except for

Fig. 3 (a) The average SERS spectra of selected PFAS solutions of 103

ppt in methanol. The average SERS spectrum of an AgNR substrate is
shown as a reference. (b) The t-SNE plot of the SERS spectra of
selected PFASs.
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some minute variations. A comparative analysis of peak
locations relative to those in Fig. 2 and 3, as well as the
reference, is listed in Table S3 of the ESI.† As shown in
Fig. 4a and Table S3,† all spectra show common peaks at Δν =
682, 934, 1053, 1403, and 1642 cm−1, which are attributed to
the background interference, while the peaks at Δν = 333 and
485 cm−1 are unique to the PFOA spectra. These two peaks
show slight variations with the change in PFOA
concentration. To quantify the PFOA concentration from
SERS spectra, the traditional method is to establish a
calibration curve, i.e., plotting the SERS intensities (IΔv) of
characteristic peaks from the PFOA spectra as a function of
known concentration (CPFOA). Similar to Table S2,† we
calculated the cosine similarity for the spectra shown in
Fig. 4a, comparing the reference spectrum with various
concentrations of PFOA. The results are shown in Table S4.†
The cosine similarity values still indicate moderate similarity
between reference and PFOA spectra, and high similarity (but
not 1) between the spectra at different concentrations. This
again suggests that while it is difficult to visually distinguish
them by human eyes, there are still subtle differences
between the spectra that can be effectively captured using
mathematical and machine learning techniques. These
findings further justify the use of machine learning and
support the robustness of our methodology. Fig. 4b presents
some of the average peak intensities at Δv = 333, 485, 682,
and 934 cm−1 and associated standard deviations versus the
logarithm of CPFOA. It is noteworthy that the relationship
between IΔv and CPFOA at Δν = 682, and 934 cm−1 exhibits
significant variations. In contrast, I333 at Δv = 333 cm−1

remains relatively stable within the concentration range
between 1 and 107 ppt, while increasing significantly at 108

ppt, which makes it difficult to be used as a concentration
calibration curve for SERS-based detection. On the other
hand, I485 shows an opposite trend, decreasing with
increasing CPFOA. Since these two peaks are unique to PFOA
spectra, the different CPFOA trends for these two vibrational
modes indicate that there could be a possible orientation

change of the adsorbed PFOA molecules on the AgNR surface
during the increased CPFOA.

45 Thus, the intensity ratio I333/
I485 could be another way to establish a calibration curve.
Fig. 4b also plots this ratio versus CPFOA (the open orange
circles), and it does not appear to improve the quality of the
calibration curve, i.e., at lower concentrations (CPFOA ≤ 107

ppt), the ratio I333/I485 also almost remains as a constant. The
non-monotonic calibration curve can be explained by the
following mathematical model described in a recent
publication on SERS measurements.46 The intensity ISERS(Δv)
at a specific wavenumber Δv can be expressed as:

ISERS(Δv) = v(C)IvSERS(Δv) + m(C)ImSERS(Δv) + Inoise(Δv),

where IvSERS(Δv) and ImSERS(Δv) are the contributions from the
analyte and the medium, respectively, Inoise(Δv) is the noise, and
v(C) and m(C) are concentration-dependent coefficients. The
coefficients v(C) and m(C) reflect the adsorption properties of
the analyte and medium molecules at the SERS hot spots. As
the concentration C increases, v(C) typically increases
monotonically, while m(C) decreases. Depending on the relative
magnitudes and rates of change of v(C) and m(C), the overall
intensity may increase, decrease, or remain constant with
changing concentration, explaining the observed fluctuations.
This mathematical explanation indicates that a traditional
calibration curve may not be suitable for quantifying PFAS
concentrations. How exactly v(C) and m(C) change are
determined by the detailed surface dynamics and chemical
activities of PFASs with the AgNR, which has not been studied
thoroughly. In conventional thinking, when an analyte with a
higher concentration is presented, it is expected that the
corresponding SERS peak intensities increase monotonically
with the concentration. Such a perspective has two important
assumptions: (1) the analyte molecule does not react with AgNR
surface or contamination molecules; (2) analyte molecules have
high surface affinity to AgNR surfaces. However, for some other
molecules, the situation could be different. A well-known
example is hairpin-based SERS detection.47–49 Before the analyte

Fig. 4 (a) The average SERS spectra of PFOA in methanol at the concentrations (from bottom to top) of 0 (reference), 100, 101, 103, 106, 107, and
108 ppt, respectively. (b) The semi-log plot of the peak intensities at Δv = 333, 485, 682, and 934 cm−1 (solid symbols) as well as the peak ratio I333/
I485 (open orange circles) versus CPFOA. This method shows fluctuations and inconsistent trends with increasing concentrations of PFOA. (c) The
log–log plot of the predicted concentration (Cpre) of PFOA versus the actual concentration (Cact) of PFOA using an optimal SVR model. The Cpre

data are mainly distributed around the dashed line (Cpre = Cact), indicating that the concentrations of PFOA predicted through SERS spectra closely
approximate the actual concentrations on a qualitative level, demonstrating the stability and accuracy of the SVR model.
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detection, the SERS tags are closely linked to the SERS
substrates, producing large SERS signals. However, when the
hairpin-based capture probe desired analyte molecules, the
hairpin loop opens, and the SERS tag always moves from the
SERS substrates, which induces a decrease in SERS signals.
Thus, the corresponding SERS intensity decreases with the
increase of analyte concentrations. These arguments tell that
the SERS intensity versus concentration calibration curve
depends on how the analyte interacts with the AgNR substrates
and what signals we detect. The flat relationship in Fig. 4b shall
result from complicated interaction between PFASs, AgNR
substrates, and the contaminant molecules, for which the
detailed mechanism is unknown to us now.

Additionally, the large error bars in Fig. 4b indicate
significant variations in the measurements. These variations
can be attributed to two main factors. The first reason is the
low affinity of PFAS molecules. PFAS molecules have a limited
affinity to the SERS substrates, resulting in weak signals that
are often overshadowed by noise. The limited affinity results in
a lower signal-to-noise ratio (SNR), complicating the
establishment of a stable calibration curve. This issue has been
noted in recent studies. For example, Zhou et al. discussed the
use of modified carbon fiber microelectrodes to enhance
molecular affinity to plasmonic substrates through electrostatic
interactions and electroenrichment.50 The results indicate that
by regulating the potential, carotenoid molecules with a similar
molecular structure can have higher SNR and be better
quantified and identified by SERS. Another reason may be the
attribution of background influences. The SERS substrates used
in our study are modified by thiol molecules, which can
generate a constant background signal. This background can
interfere with the analyte signal, leading to variations in the
observed intensities. Additionally, the choice of baseline
removal technique affects the shape of the intensity versus
concentration plot. For example, the black reference curve in
Fig. 4a was obtained using a polynomial baseline removal
technique called WiRE. The large peak at around Δv = 400 cm−1

is created by the polynomial-based nature and significantly
contributes to the observed variances. Therefore, it is evident
that alternative techniques may be necessary for accurate
quantification of PFOA concentration.

To circumvent this problem, we can apply more complicated
ML-based regression models to establish a calibration curve.
ML techniques aim to overcome the difficulty of predicting
CPFOA posed by this anomalous behavior and can be a more
robust method for the determination of CPFOA. An SVR model
was used to predict CPFOA based on the SERS spectra. In the
SVR model, a radial basis function (RBF) kernel, with C = 100,
= 0.1, and a default γ value, was used. To ensure an unbiased
evaluation and robust generalization of this model, stratified
sampling was employed to split the spectral set into training
and test sets. Unlike the typical 8 : 1 training-to-test ratio in ML
tasks, a 1 : 1 ratio was chosen intentionally to demonstrate that
accurate predictions of PFOA concentrations could be achieved
with relatively limited data. To ensure the reliability of the
result, the segmentation–training–prediction process was

repeated ten times to account for the potential variation. Fig. 4c
shows a log–log plot of the predicted concentration (Cpre) of
PFOA versus the actual concentration (Cact) obtained from the
optimized SVR model. The Cpre data are mainly distributed
around the dashed line (Cpre = Cact), indicating that the
concentrations of PFOAs predicted through SERS spectra closely
approximate the actual concentrations on a qualitative level.
The model's performance can be assessed quantitatively using
the coefficient of determination R2, a statistical measure that
quantifies the goodness-of-fit of a regression model.51 An R2

value approaching 1 typically indicates an excellent fit. The
average R2 value resulting from 10 independent trials was 0.95 ±
0.01, while Fig. 4c shows the result from the best trial with an
R2 of 0.97, highlighting the model's strong performance in
PFOA concentration prediction. Remarkably, the prediction for
a concentration Cact = 106 ppt (i.e., log(Cact) = 6) exhibited an
average of 5.99 with a low standard deviation of 0.10. As
illustrated in Fig. 4c, this data point almost converged to a
single dot on the diagonal line, denoting an excellent fit.
Regarding the behavior at low concentrations, the result of Cact

= 1 ppt (i.e., log(Cact) = 0) is also close to the diagonal line. One-
sample t-tests were performed to determine the limit of
detection (LOD). These tests compare the mean of a single
sample of data to a known value. In our case, the purpose of
these tests was to determine whether the average predicted
concentration at each tested level statistically equaled the actual
concentration. One-sample t-tests were performed at all actual
concentrations, starting from the lowest concentrations
considered feasible for detection, i.e., 1 ppt for PFOA. The null
hypothesis for each test was that the mean predicted
concentration equaled the actual concentration, whereas the
alternative hypothesis was that it did not. In the context of a
one-sample t-test, when the p-value falls below the common
significance threshold α, typically set at 0.05, it indicates that
the predicted values significantly diverge from the true values.51

The LOD was determined by selecting the lowest concentration
at which the p-value of the t-test was greater than or equal to
0.05. This implies that there was no significant evidence to
reject the hypothesis that the predicted concentration equals
the actual concentration. The observed p-value for 1 ppt is 0.53,
which exceeds 0.05. As a result, it suggests that the predicted
values are not significantly different from the true values,
implying an LOD as low as 1 ppt.

SERS spectra of PFASs on cysteine-functionalized AgNR
substrates

To better control the background SERS spectra and attempt
to possibly change the affinity between the PFAS molecules to
the AgNR substrates, we believe that a surface
functionalization of the AgNR substrate is necessary.
Alkanethiol molecules with different functional groups can
be easily self-assembled on Ag surfaces. Once the AgNR
substrates are immobilized with alkanethiol molecules, they
will generate background SERS signals. Then, when PFAS
molecules are adsorbed on these substrates, it is expected
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that the SERS signal will be changed. To illustrate this effect,
we performed a preliminary study to functionalize the AgNR
substrates with cysteine. Cysteine has a negatively charged
carboxylate group and a positively charged amine group.
Fig. 5a–c show the average SERS spectra of PFOA and PFOS
of CPFOS and CPFOA = 108, 104, and 10−2 ppt on cysteine
functionalized AgNR substrates, and their comparison to the
SERS spectrum of the modified SERS substrate, respectively.
In the SERS spectrum of the cysteine-modified AgNR, many
peaks, such as Δv = 502, 672, 1050, 1164, 1304, 1399, and
1610 cm−1, appear, which are consistent with those reported
in previous publications for Raman and SERS spectra of
cysteine.52 With the addition of PFOA and PFOS solutions,
these peaks also persist, but some peak intensities (such as
Δv = 672, 1304, and 1399 cm−1 in PFOA 108 ppt spectrum
(Fig. 5a) increase, while some (such as Δv = 1050 cm−1 in
PFOA and Δv = 672, 1050, and 1399 cm−1 in PFOS 108 ppt
spectrum, Fig. 5a) decrease. With the decrease in CPFOS and
CPFOA, many intensities of the above-mentioned peaks
increase, which demonstrates the higher interference effect
of the cysteine at low analyte concentration. However, both
the average spectra of PFOA and PFOS also show
distinguished spectral features that are different from the
cysteine spectrum. At a high concentration (CPFOS and CPFOA

= 108 ppt), PFOA shows distinct peaks at Δv = 807, 904, and
1354 cm−1, and PFOS has a sharp peak at Δv = 973 and 1520
cm−1. For most of these peaks (except for Δv = 1520 cm−1),
the peak intensities decrease with CPFOS and CPFOA, which is
consistent with the analyte concentration change. A summary
table of the center positions of the distinct peaks identified

in the SERS spectra of PFOS and PFOA, and their presence in
each spectrum shown in Fig. 5a–c is included in Table S5.†

At lower concentrations (e.g., 10−2 ppt), the SERS spectra
of PFOA and PFOS appear indistinguishable to the human
eye. However, under a t-SNE analysis, the spectral signatures
can still be distinctly differentiated, as evidenced in Fig. 5a′–
c′. Each subplot corresponds to a different concentration,
and intriguingly, three distinct clusters representing PFOS,
PFOA, and cysteine-modified AgNR (reference) appear. This
finding strongly demonstrates the ability to use a
functionalized SERS substrate to enhance the specificity of
PFAS identification across a broad range of concentrations.
The use of advanced data analysis, such as the t-SNE
algorithm, emphasizes its importance in revealing subtle
spectral distinctions that are otherwise imperceptible to
human observation.

To further demonstrate the ability of SERS spectra from
functionalized AgNR substrates, all the spectra from Fig. 5a–c
are combined together to construct an SVM model. For this
analysis, we used a simple kernel – the linear kernel for SVM
and maintained the 1 : 1 training-to-test ratio. Surprisingly,
even with this minimal setting, the SVM consistently
achieved flawless results across all ten trials, attaining an
average accuracy of 100%, as demonstrated by the confusion
matrix shown in Fig. S4 of the ESI.†

These results indicate that when there are three
concentrations in a spectral dataset, distinguishing between
PFOA, PFOS, and reference based on SERS spectra from
cysteine-modified AgNR substrates becomes an effortless task
for the SVM. The exceptional performance of the SVM in

Fig. 5 The SERS spectra of (a) 108 ppt, (b) 104 ppt, and (c) 10−2 ppt of PFOA and PFOS on cysteine-modified AgNR substrates and the
corresponding (a′, b′ and c′) t-SNE plots. In all figures, the colors red, blue, and black represent PFOA, PFOS, and water on cysteine-modified AgNR
substrates. All spectra plotted in (a)–(c) have the same scale in order to compare the absolute spectra intensities. The peak region originated from
background (marked in grey), and distinct peak regions of PFOS (marked in blue) and PFOA (marked in red) are shown in (a)–(c) to help visually
differentiate between their spectra and highlight their unique characteristics.
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differentiating the spectra implies that the inherent
characteristics of the SERS spectra of PFOA, PFOS, and water
on cysteine-modified AgNR substrates exhibit distinct
patterns, enabling accurate classification with minimal data.
Such a finding highlights the potential of using ML
techniques to effectively discriminate between PFAS types,
offering valuable insights for environmental monitoring and
analysis.

SERS spectra of PFOS and PFOA on MCH-functionalized
AgNR substrates

MCH (6-mercapto-1-hexanol) is a short-chain alkanethiol
molecule with an end group of –OH. When the AgNR surface
is functionalized with MCH, the surface will be negatively
charged. Fig. 6a shows the resulting average spectra for
different CPFOA on MCH–AgNR substrates, while Fig. 6b plots
the spectra for PFOS. Visually discernible observations can
readily identify several characteristics evident in
Fig. 6a and b: 1) at most CPFOS, the SERS spectra are quite
similar. In fact, the main spectral features are dominated by
the MCH spectrum. Both the PFOS and PFOA spectra are
characterized by the three signature MCH peaks: Δv = 703,
872, and 1089 cm−1. Fig. S5† presents the plots of the
intensities of three distinct peaks against the logarithm of
the concentrations for both PFOA and PFOS. It can be
observed across all four subfigures that the relationship

between peak intensities and concentration does not follow a
monotonic trend, irrespective of the PFAS molecule type or
the way baseline removal is employed. This inconsistency is
attributed to variations in the enhancement factor, stemming
primarily from batch-to-batch discrepancies. Such variations
are the result of how spectra were acquired from different
locations on the substrates and across multiple substrates,
leading to the observed fluctuations. 2) Spectra of PFOA
contain a unique peak in Fig. 6a at Δv = 433 cm−1, while
those of PFOS display a unique peak at Δv = 1612 cm−1 in
Fig. 6b, but only at CPFOS ≤ 4.28 × 102 ppt. This same peak
also appears in Fig. 4 and 5, suggesting this unique peak is a
part of the PFAS molecules and not the MCH. 3) With the
increase of the PFOS concentration, the main features of
MCH gradually diminish. These spectral similarities and
differences can be used to classify and quantify PFOS in the
solution.

ML methods were used to classify and quantify the PFOS
and PFOA spectra from MCH-modified AgNR substrates. To
ensure a high-quality result for classification and quantification,
we implement the Gaussian–Lorentzian function fitting (GLFF)
to remove all the baselines in the spectra,53 through which the
spectra can preserve the original signal but also minimize
variations introduced by the intricate background. Fig. 6c
presents a t-SNE plot based on the baseline removed and
normalized SERS spectra. While the resulting t-SNE clusters
could not be separated as distinctly as those observed in Fig. 3a

Fig. 6 The average SERS spectra from MCH modified AgNR substrates: (a) PFOA of concentrations of 0, 10−1, 100, 101, 102, 103, 104, 105, 106, 107,
108, and 109 ppt, respectively; and (b) PFOS with concentrations of 0, 4.28 × 10−2, 4.28 × 10−1, 4.28, 4.28 × 101, 4.28 × 102, 4.28 × 103, 4.28 × 104,
4.28 × 105, 4.28 × 106 ppt, respectively. The arrows in the figures indicate the direction of the concentration increase. (c) t-SNE result for PFOS
(pink), PFOA (grey), and reference (blue) samples, including spectra from all concentrations. (d) The SVM classification confusion matrix for PFOS,
PFOA, and reference samples. A: different concentrations of PFOA; B: different concentrations of PFOS; and C: MCH-modified AgNR substrates. (e)
and (f) the log–log plot of Cpre versus Cact of PFOA and PFOS via two independent SVR models, respectively.
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and 5, a significant separation between the majority of PFOA
(grey dots) and PFOS (pink dots) spectra is evident. Specifically,
the 1st and 4th quadrants of the t-SNE plot predominantly
contain PFOA data points, whereas the 2nd and 3rd quadrants
predominantly contain PFOS data points. Notably, some PFOS
data points appear within the 1st and 4th quadrants, and are
close to the PFOA cluster, indicating challenges in achieving a
complete differentiation between PFOA and PFOS even within a
high-dimensional context. Moreover, it is noteworthy that the
reference data (MCH, blue dots) form clusters in proximity to
both PFOA and PFOS clusters. This proximity suggests the
potential difficulty in effectively distinguishing the reference
from the PFOA and PFOS compounds. These observations
collectively emphasize the intricacies involved in accurately
discerning between PFOA and PFOS spectra obtained from
MCH-modified AgNR substrates, both in terms of their spectral
patterns and their relationships with the reference data.

Subsequently, to demonstrate the capabilities of ML
models, we partitioned the entire spectral dataset into
distinct training, validation, and test subsets. Especially,
regarding the PFOS spectral dataset and the accompanying
reference spectra, data originating from three independent
wells were collected. Consequently, we assigned the spectra
from the first and second wells to the training and validation
sets with a ratio of 8 : 1, while the spectra from the third well
were exclusively assigned to the test set. For the PFOA
spectral dataset and its corresponding reference data,
measurements were obtained from a single well. To ensure
an equitable division for training and validation, stratified
sampling was applied with an 8 : 1 : 1 ratio. Since these three
groups exhibit more variations than the spectral dataset
analyzed in the previous section, a more powerful SVM model
with an RBF kernel with C = 100 and γ = ‘scale’ (indicating
that γ is set automatically by the algorithm) was employed.
Ten independent trials were conducted, resulting in an
accuracy of 0.89 ± 0.02. The trial with the highest accuracy
(0.93) is demonstrated by the confusion matrix shown in
Fig. 6d. In this particular trial, the accuracy for PFOA is 0.99,
with only one misclassification of a PFOA spectrum as PFOS;
the accuracy for PFOS is 0.93, with 5 PFOS spectra being
misclassified as PFOA. For the control group represented by
MCH, the accuracy was notably lower at 0.55, with 9 as PFOS.
These findings align with the results from t-SNE in Fig. 6c,
corroborating the difficulty in effectively separating pure
MCH from PFOA–MCH or PFOS–MCH mixtures.

To illustrate the quantification capability, two separate SVR
models were built to quantify concentration-dependent PFOA
and PFOS spectra. Both SVR models employed an RBF kernel, C
= 1000, and γ = ‘scale’. For the PFOA model, was set to be
0.001; while for PFOS, was adjusted to 0.1, suggesting the
need for a larger error tolerance to enhance quantification
results. Ten independent trials were performed for each SVR.
The R2 values for PFOS and PFOA are 0.76 ± 0.04 and 0.82 ±
0.01, respectively, and the log–log plots of Cpre versus Cact of the
best trials are plotted in Fig. 6e and f, respectively. These two
plots showed the highest R2 values achieved in the analysis,

which were 0.82 and 0.84 for PFOS and PFOA, respectively.
Although the results for PFOS suggest that quantifying its
concentration is more challenging, the model's prediction
exhibits a notable alignment with the actual PFOS
concentrations, i.e., most predicted concentrations closely
follow the diagonal line, reinforcing the feasibility of this
quantification approach. One-sample t-tests were employed to
rigorously determine the LOD for both PFOA and PFOS. Similar
to determining the LOD for Fig. 4, for each analyte tested,
starting from the lowest feasible concentration, such as 0.1 ppt
for PFOA or 4.28 × 10−2 ppt for PFOS, a one-sample t-test was
conducted for the SVR model generated predicted
concentrations against their respective actual concentration. We
then identified the LOD by finding the lowest concentration at
which the p-value of the t-test was greater than 0.05. By
employing one-sample t-tests, the SVR model for PFOA achieved
an LOD of 1 ppt, with a p-value of 0.37, while the LOD for PFOS
was determined as 4.28 ppt, with a p-value of 0.10. With the
prospect of incorporating more spectral data and refining the
ML models, we believe that the quantification can be
significantly improved.

Taking into account the LOD for PFOA and PFOS, which
are 1 and 4.28 ppt, respectively, the impact of low-
concentration samples on both classification and regression
models is noteworthy. As illustrated in Fig. 7a, by excluding
concentrations below 1 ppt for PFOA and 4.28 ppt for PFOS,
3 of the 5 misclassified PFOS spectra were eliminated. All of
them belonged to the lowest concentration tier of 4.28 × 10−2

ppt and were incorrectly identified as PFOA. When
concentrations increased slightly to 4.28 × 10−1 ppt, the
number of spectra misclassified as PFOA reduced to only 1.
The elimination of these low-concentration samples resulted
in the removal of 80% of the misclassifications from PFOS to
PFOA. This led to a substantial improvement in the
classification accuracy for PFOS, increasing it from 0.93 to
0.99, and lifting the overall model accuracy from 0.93 to 0.95.
Contrastingly, the impact of removing low-concentration
samples on regression models is modest. The R2 scores for
PFOA and PFOS by the regression models would experience
only marginal improvements, rising from 0.85 to 0.88 and
from 0.83 to 0.85, as shown in Fig. 7b and c, respectively. The
findings suggest that while classification models are notably
sensitive to variations in low concentrations, regression
models exhibit a higher level of robustness. Therefore,
careful consideration of concentration ranges could be
crucial in enhancing classification performance but may offer
limited gains in the context of regression.

The stability of MCH-functionalized AgNR substrates

To demonstrate the stability of MCH modified AgNR
substrates, a short time-dependent study was performed.
Three AgNR substrates were immersed in 2 mL of 1 mM
MCH for 1 hour before being dried with nitrogen. Each had
20 SERS spectra taken. 2 μL of 106 ppt PFOA in methanol was
applied to one of the three substrates, and 20 SERS spectra
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were measured. After one week, 20 SERS spectra were
measured from the two remaining substrates without PFOA.
Then, the same volume and concentration of PFOA were
applied to one of the two substrates, subsequently with 20
SERS spectra taken. After one more week, 20 SERS spectra
were measured from the last substrate without PFOA. Then,
another 20 SERS spectra were taken after PFOA was
dispensed. The spectra for each substrate with PFOA had its
baseline removed and were averaged to track 3 distinct peaks
over the period of 2 weeks.

Fig. 8a shows the spectrum comparison. The average
spectra of the three measurements at different times have
very similar spectral shapes with fluctuation in amplitude.
However, the fluctuation in spectra amplitude was not
significant. Fig. 8b plots the peak intensities at Δv = 710, 878,
and 1089 cm−1, and these data do not have a consistent
change over time. Additionally, the small error bars suggest
that the outcomes derived from the MCH-modified AgNR
substrates exhibit a high degree of stability over time.

Conclusions

In conclusion, our study demonstrates the effectiveness of
utilizing both Raman and SERS spectra for the detection and
differentiation of various PFAS. Raman spectra reveal distinct

characteristic peaks specific to different PFAS molecules,
allowing for a direct comparison with results from other
literature. Meanwhile, while direct SERS spectra may not
exhibit clearly distinguished PFAS characteristic peaks, the
presence of PFAS on SERS substrates does induce noticeable
spectral changes. By combining these spectral alterations
with ML techniques, we have successfully differentiated and
quantified the amounts of PFOA in water. Our approach,
involving SERS and SVR, achieved an impressive LOD of 1
ppt, enabling highly sensitive PFAS detection. To further
improve differentiation and quantification, we employed
various alkanethiol molecules to modify the AgNR substrates,
introducing different surface charge or wetting properties,
expecting such a modification to alter the adsorption affinity
of different PFAS molecules to the SERS substrates. Although
the spectral features were dominated by the alkanethiol
molecules, discernible changes due to the presence of
different concentrations of PFAS and PFOS molecules were
observed. Leveraging an SVM model, we achieved an average
accuracy of 89% in differentiating PFOA, PFOS, and MCH,
regardless of their concentrations. Once the spectra were
accurately classified, further quantification was achieved
through an SVR model, capable of predicting concentrations
as low as 1 ppt for PFOA and 4.28 ppt for PFOS.

Overall, our findings present a robust and efficient approach
for PFAS detection, combining SERS and advanced MLAs. The
high sensitivity and accuracy attained through this method hold
great promise for addressing critical environmental and health
concerns associated with PFAS contamination, opening avenues
for the development of sensitive, reliable, and rapid detection
systems to safeguard our water resources and communities. In
particular, if a handheld Raman system is incorporated, this
detection strategy can be portable and field-applicable.

However, our investigations do find several challenges in
using SERS for PFAS detection. First, it is very hard to
understand the spectral features. The obtained SERS spectra
cannot be directly compared to Raman spectra.54 This
deserves further investigation. Second, the PFAS molecules
still have low affinity to any substrates presented in this
work, which was suggested by the concentration-dependent

Fig. 7 (a) The SVM classification confusion matrix for PFOS, PFOA, and reference samples after removing the low concentrations. A: different
concentrations of PFOA; B: different concentrations of PFOS; and C: MCH-modified AgNR substrates. (b) and (c) the log–log plot of Cpre versus Cact

of PFOA and PFOS via two independent SVR models after removing the low concentrations, respectively.

Fig. 8 (a) The time-dependent averaged spectra of 106 ppt PFOA on
MCH-modified AgNR substrates. Measurements were taken on the day
of creation (black, week 0), 1 week after creation (red), and 2 weeks
after creation (blue). (b) The intensity of spectra peaks Δv = 710 cm−1

(black), 878 cm−1 (red), and 1089 cm−1 (blue) versus time.

Sensors & DiagnosticsPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

0/
20

/2
02

5 
10

:2
1:

49
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/D4SD00052H


Sens. Diagn., 2024, 3, 1272–1284 | 1283© 2024 The Author(s). Published by the Royal Society of Chemistry

SERS spectra. A better functionalization strategy shall be
implemented to improve the affinity between PFAS molecules
and SERS substrates. Third, it is a challenge to assign the
Raman or SERS peak modes even though there are DFT
calculations available. Finally, future research may explore
the applicability of this approach to other contaminants and
the potential for real-world implementation in environmental
monitoring and water quality assessment. Experiments with
real water samples containing PFAS are planned to provide a
more comprehensive evaluation of our methodology. To
address this, the collection of various water samples from
different sources, including rivers, lakes, and household taps,
under different conditions, has already been initiated.
Currently, these samples are spiked and thus considered
artificial. Furthermore, collaborations with agencies such as
the EPA will be explored to obtain real samples with inherent
PFAS contamination to strengthen the applicability and
reliability of our detection method.
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