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ive learning for polymer
representation learning via explicit and implicit
augmentations†

Jiajun Zhou, a Yijie Yang, a Austin M. Mroz ab and Kim E. Jelfs *a

Polymers play a crucial role in a wide array of applications due to their diverse and tunable properties.

Establishing the relationship between polymer representations and their properties is crucial to the

computational design and screening of potential polymers via machine learning. The quality of the

representation significantly influences the effectiveness of these computational methods. Here, we

present a self-supervised contrastive learning paradigm, PolyCL, for learning robust and high-quality

polymer representation without the need for labels. Our model combines explicit and implicit

augmentation strategies for improved learning performance. The results demonstrate that our model

achieves either better, or highly competitive, performances on transfer learning tasks as a feature

extractor without an overcomplicated training strategy or hyperparameter optimisation. Further

enhancing the efficacy of our model, we conducted extensive analyses on various augmentation

combinations used in contrastive learning. This led to identifying the most effective combination to

maximise PolyCL's performance.
1 Introduction

Polymers, with their remarkable diversity and extensive adapt-
ability, have emerged as a key material class across various
applications,1 including medicine and medical devices,2 agri-
culture,3 solar cells,4 and electronics.5 Polymers are made from
combinations of small, organic molecule-based monomeric
building blocks and thus there is an enormous chemical space
to be explored. The complexity of polymers can also be reected
in the extended polymer material space, including the variety of
processing and synthetic conditions for the production of
polymer products that can vary their performance.6–8 The
effective exploration of the extensive chemical space of poly-
mers is a major challenge in the discovery of functional poly-
mers for target applications. Indeed, this space is far too large to
feasibly explore with conventional trial-and-improvement
experimental approaches alone. The integration of computa-
tional modelling and machine learning has signicantly accel-
erated this process, enabling the rapid identication of
promising candidates.9,10 However, there exist many challenges
to training robust ML models for polymer property prediction,
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including limited high-quality data,11 scarcity of data in
a specic property space,12 and highly diverse polymer
representations.10,13–15 Indeed, polymer representations pose
a challenge for many reasons, including difficulties describing
repeating structures built from monomeric units, and the lack
of representations that incorporate macroscopic packing.11,14

The design of polymer representations, which refers to the
machine-readable way that the molecular features of polymers
are encoded, is critical for the performance of property predic-
tion models. Conventional methods for creating machine-
readable polymer representations involve creating handcraed
ngerprints, where molecular structural information features
are depicted through manually designed descriptors.16 Indeed,
several types of handcraed ngerprints17–19 and rened
ngerprint strategies10,15 within this category have found
success in the polymer literature. While these methods have
found success, handcraed ngerprints are oen designed
using the expert's chemical intuition and heuristic principles.
In addition to the potential to introduce bias, these methods are
fairly labour-intensive and time-consuming.

Deep neural networks have been increasingly used to auto-
matically extract dense molecular representations from poly-
mers.20 This approach leverages the power of deep learning to
alleviate the aforementioned challenges associated with
manual feature extraction. Polymers can be abstracted into
molecular graphs.13,21,22 Alternatively, molecules can be con-
verted to one-dimensional sequence representations, such as
SMILES.23 Here, polymer-SMILES representations are used that
include brackets with a special character “[*]” to represent
Digital Discovery
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connection points between monomers, to reproduce the
repeating nature of these materials (example shown in Fig. 1).
For example, a Long Short-Term Memory (LSTM) model was
trained on polymers represented as SMILES strings for property
prediction.10,24 In addition, BigSMILES was designed to extend
SMILES for the representation of the stochasticity of polymer
molecules by introducing additional notations.14 Deep neural
networks have also been employed with tailored representa-
tions of polymers to predict specic properties, such as degree
of polymerization, monomer stoichiometry, gas permeability
and radius of gyration.25–27

Machine learning-based predictive models are typically
trained in a supervised fashion and act as automatic feature
extractors. While this supervised training pattern is benecial
for specic downstream tasks, it may lead to learnt represen-
tations exhibiting domain-dependent characteristics and
suffering from limited generalisability to other tasks.28–31

Further, supervised learning methods rely on labelled data of
both high quantity and high quality. Within (polymer) chem-
istry, acquiring high-quality, labelled data is resource-intensive.
The scarcity of labelled data in chemistry32 may lead to over-
tting and, therefore, impair the model's generalisability to
other data in the target domain.33 The limitations of supervised
learning directly motivates self-supervised learning for chem-
ical property prediction.

Self-supervised models learn from the inherent structure of
the data, without the requirement of data labelling.34 In polymer
science, the value of creating a universal representation that is
a target-agnostic feature of self-supervised learning has already
been observed.35 Initial demonstrations of self-supervised
learning in polymer science have largely focused upon trans-
former architectures.36 Masked language modeling,37 where
random tokens are obscured from the input to be predicted by
the transformer, served as the training strategy to guide the pre-
training of transformers. This training strategy was proven
effective in Transpolymer and polyBERT for the production of
machine-learnt polymer representations using transformer
architecture.16,35 However, these works did not directly assess
the effectiveness of the representation learnt by their pre-
trained strategies and only inferred the quality of the learned
representation from the performance of the downstream tasks
using the model. Yet, inferring representation performance
from the model performance is especially challenging when the
model includes complex ML techniques, such as data-
augmentation (including non-canonical SMILES strings to
increase the size of the dataset),35 and multi-task learning
(training downstream tasks on all datasets simultaneously).16
Fig. 1 Example of (a) SMILES of vinyl chloride and (b) polymer-SMILES
of polyvinyl chloride, along with the corresponding chemical
structures.

Digital Discovery
Contrastive learning is among the most competitive forms of
self-supervised learning that learn meaningful representations
from comparing and contrasting data.38 The idea of contrastive
learning is to pull together similar data samples and separate
dissimilar samples in the representation space.39 This idea has
been demonstrated to achieve successful representation
learning in molecular systems.40–42 In addition, contrastive
learning is capable of incorporating extra modality to form
modality pairs such as structures and text description,43 SMILES
and IUPAC names,44 SMILES and the molecular graph,45 into
the molecular representation via multi-modal alignment.
However, contrastive learning is yet, to the best of our knowl-
edge, to be applied to polymer science.

As illustrated in Fig. 2, an efficient approach to contrastive
learning entails the formation of positive pairs by creating two
distinct representations of the same, original polymer-SMILES
molecule (here, termed anchor molecule) through data
augmentation. This process is critical as it enables the learning
model to recognise and reinforce the essential features of the
molecule by comparing these different views. Concurrently, the
anchor molecule and other molecules in the current (with their
respective positive pair) are automatically considered negative
pairs.46 Thus, the construction of positive pairs is exceptionally
important because their formation directly impacts the identi-
cation of negative pairs, which are imperative to helping the
algorithm understand the relationship between different posi-
tive pairs and, ultimately, better map out the representation
space.

In chemistry, common approaches to augmentation are
explicit – allowing observable modications to the representa-
tion structure (e.g. removing a token from a SMILES string).
Typical explicit augmentation modes for molecular graphs
include node dropping, edge masking/perturbation, attribute
masking and subgraph extraction.40,45 Implementation of
explicit augmentation methods for SMILES representations
remain limited and under-explored.45 In addition, augmenta-
tion can also be implemented in an implicit fashion, where
different perturbations to the embedding are implemented
during the training process (e.g. natural dropout).47,48 Despite
the demonstrated effectiveness of implicit augmentation, this
approach also remains an area of limited attention. Further-
more, there is a need to understand the effects arising from the
heterogeneous combination of both types of augmentation
strategies (i.e. implicit and explicit).

Here, we present PolyCL, a contrastive learning framework
for polymer representation learning for improved predictive
performance. To construct effective positive pairs, we also
proposed a novel combinatorial augmentation strategy to
include both explicit and implicit augmentations. Our results
show that PolyCL outperforms other supervised and pre-trained
models under the lightweight and exible transfer learning
setting where the ne-tuning of PolyCL is not required. Here, we
emphasise that this construction eliminates the need to ne-
tune an entire model (e.g. pre-trained model + prediction
head), instead PolyCL may be independently implemented as
a feature extractor for polymer property prediction tasks. We
nd that the learnt representation from our contrastive learning
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 A schematic illustration of the PolyCL pipeline. (1) Polymer contrastive representation learning with different augmentation strategies for
constructing effective positive pairs. The agreement of positive pairs projected to their latent representations is maximised by the loss function of
contrastive learning. Masking and drop in augmented views 1 and 2 are shown as sample explicit augmentations for the input original polymer-
SMILES. (2) Transfer learning by leveraging the acquired polymer representation to apply in the prediction of downstream tasks.
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strategy has improved quality, exhibits practical robustness to
non-canonized SMILES input, and show how our polymer
representation can be used for a variety of downstream tasks via
simple transfer learning. The dataset and model are available
at: http://github.com/JiajunZhou96/PolyCL.
2 Methods
2.1 Dataset

We randomly selected 1 million polymers from the unsuper-
vised polymer dataset curated by Xu et al.35 to use as the pre-
train dataset for contrastive learning. Datasets for down-
stream regression tasks were sourced from data by Xu et al.35 to
benchmark against other models. Specically, we focused on
homopolymer datasets, where the inputs are comprised only of
the SMILES strings of the monomers. For extension of the
approach to copolymers or multi-component polyelectrolyte
systems in the future, extra descriptors can be easily concate-
nated with the polymer representations produced from our
model to collaboratively encode additional information. We
used seven different property datasets covering a wide range
including band gap (both chain (Egc) and bulk (Egb)), electron
affinity (Eea), ionisation energy (Ei), Density Functional Theory
(DFT)-calculated dielectric constant (EPS), crystallisation
tendency (Xc), and refractive index (Nc). We did not use any data
augmentation strategy to boost our downstream datasets. All
datasets except for Xc were originally calculated using DFT. Xc
© 2024 The Author(s). Published by the Royal Society of Chemistry
was obtained by combining experimental heat of fusion and
a group contributions method.12,49
2.2 Polymer encoding

Polymers are oen linearly concatenated by the repeating units
of monomers, exhibiting inherently sequential structures.50

Therefore, there are advantages to representing a polymer as
a sequence-based molecular representation. SMILES strings23

are commonly employed for depicting individual monomers
within polymers. Different to the representation of small
molecules, polymers necessitate the explicit indication of con-
necting points between monomers. As we start the training
process with the pre-trained checkpoint of polyBERT,16 we
maintained the use of polymer-SMILES to make full use of the
model. In comparison, polymer-SMILES extends the traditional
SMILES representation by marking connecting points with the
special token “[*]”, following the standard syntactic rules of the
SMILES format. Subsequently, the input polymer-SMILES were
encoded by the pre-trained polyBERT model with the corre-
sponding tokeniser,16 which is a variation of the Deberta-v2 (ref.
51) language model with a transformer architecture.36
2.3 Contrastive representation learning objective

To effectively guide the training of the model to the intended
objective, we applied the normalised temperature-scaled cross-
entropy (NT-Xent) loss.46 In a batch consisting of 2N semanti-
cally similar views derived from N samples, for each positive
Digital Discovery
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pair (i, j), the remaining 2(N − 1) samples in the batch are
implicitly considered as negative examples. Therefore, the NT-
Xent loss for a positive pair (i, j) is described by

(1)

where zi, zj are the representations of two positive data samples,

sim(u, v) denotes the cosine similarity
uTv

kukkvk, s is the temper-

ature parameter, which is empirically set to 0.05. An indicator
function is used to skip the case where both k and i refer to
the same sample.

Here, we used the pre-trained PolyBERT16 as our encoder,
f($), and maintained the default settings for all hyper-
parameters in the transformer architecture. The projector g($) is
a two-layer MLP that maps the pooled 600-dimensional repre-
sentation h to a 128-dimensional latent vector z for similarity
evaluations. During the contrastive pre-training, we enabled
mixed precision training. AdamW52 was used as the optimiser
with a learning rate of 1 × 10−5 to minimise the NT-Xent loss. A
gradient clipping mechanism was employed with a max grad
norm set to 1.0. We trained the model for 10 epochs in total,
taking approximately 22 hours on 8 NVIDIA Tesla V100 GPUs.
2.4 Constructing augmentations

Contrastive learning can be enhanced by the use of effective
data augmentation modes, a benet observed across various
data modalities.40,45,46 The challenge for contrastive learning is
the construction of effective positive pairs. This can be achieved
by applying augmentation strategies to create different views of
the same polymer molecules, which should subtly alter the
attributes of the polymer representations. We aim to create
differences in two vectors of polymer representations hi and hj,
while preserving the key semantic information referring to the
original polymer molecule x. In this case, the use of the original
molecule can be considered as the baseline.

Augmentations can be empirically categorised into two
modes; “explicit” and “implicit”. Explicit augmentations are
direct and observable modications to the input data. As shown
in Fig. 2, explicit augmentations include enumeration, token
masking (Masking) and token drop (Drop). Enumeration
randomly generates one non-canonical version of a polymer
SMILES based on its canonical SMILES string. Drop deletes 10%
of tokens in the SMILES string. Masking substitutes 10% of
tokens in the SMILES string with a special token. Therefore, the
same molecule can be transformed into two different SMILES
strings to construct an effective positive pair.

Beyond explicit augmentations, the subtle modications in
how the input data is represented in the intermediate layers
within the model are referred to as implicit augmentations, as
shown in Fig. 2. Following the work of SimCSE,46 we used the
inherent dropout module inside our transformer encoder to
create differences in molecular embedding for the same input.
With implicit augmentations enabled, the dropout ratio for
hidden layers and attention probabilities in the conguration of
Digital Discovery
the transformer encoder is 0.1; when disabled, both values are
set to 0. In addition, we have also combined both explicit and
implicit augmentations for the construction of positive pairs to
study the cooperative effect of augmentation strategies.

We employed a two-step strategy to identify the best-
performing combinations of augmentations. First, we applied
our contrastive pretraining approach to all possible combina-
tions of explicit augmentations. Subsequently, we evaluated the
predictive performance of the resulting models across all
downstream tasks within a transfer learning framework. The
contrastive learning model pretrained without augmentations
served as the baseline for comparison. We assessed the number
of downstream tasks in which each model outperformed the
baseline. Based on this evaluation, we selected the most
promising combinations of explicit augmentations as candi-
dates. These combinations were then integrated with implicit
augmentations for further analysis and evaluations of
performance.

2.5 Transfer learning

We used transfer learning to evaluate the quality of learnt
representations. We ne tune the prediction head and leave the
pre-trained model unchanged during transfer learning. In the
implementation of this approach, all trainable parameters in
the pre-trainedmodel were frozen and gradients were turned off
before the training of transfer learning models of downstream
tasks.

The experimental setup employs an MLP regressor featuring
a single hidden layer and ReLU activation, integrated with the
PolyCL feature extractor. “[CLS]” pooling serves as the readout
function, extracting a 600-dimensional polymer representation.
Specically, this approach transforms token-level embeddings
for each polymer sequence into a comprehensive sentence-level
embedding, wherein sequence information is encapsulated by
the appended “[CLS]” token. The hidden size within the MLP is
consistent with the input size for all pre-trained models
(including the benchmarking study of PolyBERT and Trans-
polymer). A dropout ratio of 0.1 is applied polymer-SMILES
strings are encoded by the tokeniser of PolyBERT.16 An l2 loss
function is implemented for regression tasks. During the
regression phase, AdamW52 was used as the optimiser with
a learning rate of 0.001 and no weight decay. For each down-
stream dataset, a 5-fold cross-validation strategy is employed,
accompanied by a 500-epoch training protocol. An early-
stopping monitor is activated aer 50 epochs, with a patience
setting of 50 epochs. The performance on the unseen validation
datasets is evaluated using the root-mean-square error (RMSE)
and the coefficient of determination (R2). To show the general
expressiveness of the learnt representation, all hyperparameters
for the transfer learning performed on PolyCL are set by simple
heuristics and not tuned specically by a validation process.

2.6 Alignment and uniformity

The quality of the learned representation can be alternatively
evaluated by the quantitative metrics of alignment and unifor-
mity introduced by Wang and Isola.53 Alignment refers to the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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distance between known positive pairs (x, x+) ∼ ppos, as shown
in eqn (2). A lower alignment value between positive pairs
indicates improved feature similarity:

‘alignb E
ðx;xþÞ�ppos

kf ðxÞ � f ðxþÞk2 (2)

where x is a polymer-SMILES, x+ is a known positive view to x.
f(x) is a neural encoder to transfer polymer-SMILES to a repre-
sentation. E is the expectation.

Uniformity is a measure of the distribution of learnt repre-
sentations in the unit hypersphere; this is dened by the log of
the mean Gaussian potential between each embedding pair
x; yi:i:d:�pdata, where each variable in the pair is an independent
and identically distributed random variable, as shown in eqn
(3). A lower uniformity indicates the learnt embedding distri-
bution is capable of preserving maximal information:

‘uniform blog E

x;y �i:i:d: pdata
e�2kf ðxÞ�f ðyÞk2 (3)

To effectively evaluate the alignment and uniformity,
a dataset distribution that has never been seen by any of the pre-
trained models needed to be constructed to ensure a fair cross-
model comparison. Here, we randomly sampled 60 000 poly-
mers from the excluded development dataset of polyBERT16 for
evaluation. Each polymer was augmented once by the SMILES
enumeration method to create a positive pair, thereby
preserving semantics.

2.7 Benchmarking other models

The implementation details of all supervised learning models
are shown in ESI Section S7,† including random forest,
XGBoost, neural networks, GCN and GIN. For all pre-trained
models, we froze all parameters and consolidated the pooling
method as “[CLS]” pooling. We also used a simple MLP
regressor as shown in Section 2.5 with only adaptation on the
input layer size to t different sizes of input representations
from different pre-trained models.

3 Results
3.1 Polymer contrastive learning

The PolyCL architecture for obtaining a machine-learned poly-
mer representation is shown in Fig. 2. The detailed neural
network modules are shown in Fig. S1.† In the pre-training
phase, the repeating units of polymers were encoded to
polymer-SMILES, x.16 Then, we converted each original x into
two views xi and xj, i.e. positive pairs in two branches of the
model. All views are processed by a transformer encoder f($) to
obtain the contextualised embedding. Here, we used the pre-
trained polyBERT model16 as the encoder to obtain a more
effective prior than random initialisation, for subsequent ne-
tuning by our PolyCL framework. Then, we applied [CLS] pool-
ing, which generates compressed representations of the poly-
mer-SMILES46,54 on the contextualised embedding to obtain the
polymer representation hi and hj. The projector was introduced
by SimCLR,46 which inspired the architecture of PolyCL. Here,
© 2024 The Author(s). Published by the Royal Society of Chemistry
these pooled representations hi and hj are further projected as zi
and zj using a projector g($) into a latent space. Additionally, any
pairs in which the source instances within each pair originate
from different original polymer molecules are considered
negative pairs. The objective function of contrastive learning is
the normalised temperature-scaled cross-entropy (NT-Xent)
loss, aiming to develop machine-learned representations by
attracting positive pairs while distancing negative pairs in the
latent space.55

In the transfer learning phase, we extracted the representa-
tion using the pre-trained model and then used a prediction
head to predict any property of interest. The pre-trained trans-
former encoder is employed to encode polymers to their
representations. Here, we demonstrate how the prediction
process using a simple prediction head h($), constructed with
two-layered multi-layer perceptrons (MLP) with random initi-
alisation, can be used to train the mapping from polymer
representations to properties ŷ. However, the transfer learning
process is exible in selecting predictive models that best serve
the requirements of downstream tasks.
3.2 Transfer learning results

The primary objective of our study is to create an effective and
expressive machine-learnt representation for polymers. Trans-
fer learning is employed to assess the utility of knowledge
extracted from a pre-trained model. To evaluate the expres-
siveness of the representation, polymer representations
produced by PolyCL are directly adopted without any task-
specic renement. In practice, we achieved our objective by
ne-tuning only the prediction head, while keeping all param-
eters of the pre-trained model frozen.

There are two key advantages to this strategy. Firstly, this
approach ensures that the representation is independent of the
further ne-tuning of the underlying pre-trained model during
the transfer learning, allowing for a fairer evaluation of the
representation's quality. Secondly, this approach aligns with
common real-world applications better; typically, only the
polymer representation is incorporated into subsequent
models, instead of the specialised ne-tuning of the pre-trained
model with these later models. PolyCL should serve simply as
a exible representation generator and, therefore, requires no
extra computational resources to ne-tune pre-trained param-
eters during usage. To explore how our model performs, we
compared PolyCL with supervised models including random
forest (RF), XGBoost (XGB), and neural networks (NN), each
trained on either ECFP ngerprints56 or the domain-specic
Polymer Genome (PG) ngerprints.12 We also implemented
cross-modal comparison between the above ngerprints and
graph representations encoded by graph convolutional
networks (GCN)57 and graph isomorphic networks (GIN).58

Finally, we compared with other machine-learnt representa-
tions via self-supervised learning strategies: PolyBERT16 and
Transpolymer.35

The results of our transfer learning are shown in Table 1. We
conducted our transfer learning on seven different datasets
sourced from Xu et al.,35 including band gap (both chain (Egc)
Digital Discovery
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and bulk (Egb)), electron affinity (Eea), ionisation energy (Ei),
DFT-calculated dielectric constant (EPS), crystallisation
tendency (Xc), and refractive index (Nc). Following previous
works,12,35 we assessed the ve-fold average R2 on the unseen
validation datasets. Among seven supervised models and three
self-supervised models, PolyCL achieves the overall best R2 and
four individual best performances across the seven property
datasets. PolyCL has a signicant advantage in predictive
performances over the second-best model in the ionisation
energy (Ei), dielectric constant (EPS) and refractive index (Nc)
datasets, by 2.4%, 2.4%, 4.3%, respectively. This performance
shows that the chemical and structural information captured in
the SMILES representation by our model can be generalised to
different types of properties, and help to construct more effi-
cient models for quantitative structure–activity relationships.
Therefore, the contrastive learning strategy enables the gener-
ation of a more expressive representation.

Compared with supervised learning methods, polymer
representations produced by self-supervised learning achieved
a higher overall performance (Avg. R2) and robustness across all
datasets. Only Polymer Genome (PG) ngerprints12 can reach
comparable performance in given tasks – specically, the band
gap for a chain (Egb) and in the bulk (Egc). However, this
ngerprinting method also shows lower robustness, which is
observed considering its prediction on different datasets, for
example, crystallisation (Xc). ECFP generally exhibits superior
overall performance and robustness compared to PG nger-
prints; however, in specic tasks involving prediction, PG
ngerprints tend to outperform due to their higher target-
specicness. In addition, our implementation of graph neural
networks suggests that graph representation remains an effi-
cient way to represent polymers; however, these representations
do not show better predictive performance than traditional
ngerprinting methods.

Furthermore, we replaced the canonical polymer SMILES in
all downstream datasets with one of their enumerated SMILES
strings and used these modied datasets to evaluate models on
Table 1 The average R2 values on the unseen validation datasets with five
predictive benchmarking: band gap (both chain (Egc) and bulk (Egb)), e
constant (EPS), crystallisation tendency (Xc), and refractive index (Nc). RFEC
TransPolymer, PolyBERT and PolyCL are self-supervised models. ‘#Param
the best results for a given property

Model information Datasets

Model #Params Eea Egb Egc

RFECFP — 0.8401 0.8643 0.8704
XGBECFP — 0.8350 0.8568 0.8679
NNECFP 264k 0.8543 0.8708 0.8838
GPPG

a — 0.90 0.91 0.90
NNPG

a — 0.87 0.90 0.89
GCN 70k 0.8544 0.8043 0.7988
GIN 218k 0.8829 0.8350 0.8181
TransPolymer35 82.1M 0.8943 0.8961 0.8756
PolyBERT16 25.2M 0.9065 0.8830 0.8783
PolyCL 25.2M 0.9071 0.8884 0.8832

a The R2 values of these two lines are directly taken from the single-task l

Digital Discovery
the transfer learning setting as shown above. Since non-
canonicalized SMILES are commonly encountered in practical
applications, this modication reects real-world usage. The
results are summarized in Table 2. Compared with other self-
supervised learning strategies, PolyCL shows the most robust
results across all datasets. Compared with the use of canon-
icalized datasets, the use of non-canonicalized datasets leads to
an average performance decay of 4.7% and 8.3% for Trans-
polymer and PolyBERT, respectively. In contrast, the perfor-
mance of PolyCL is still maintained at a comparable level with
a slight performance decrease of only 2.6%. The results
demonstrate that the polymer representation obtained by Pol-
yCL outperforms other self-supervised learning strategies in
terms of robustness and invariance to different molecular
representations.

As an additional assessment, we also assessed the results of
ne-tuning, which means that all parameters in both the pre-
trained model and the prediction head are unfrozen and ne-
tuned (as shown in Fig. S3†). Although ne-tuning is not our
focus here, we show that our model achieves competitive results
compared with other self-supervised models, including poly-
BERT and Transpolymer, in this experimental setting.

3.3 Effect of augmentation combinations

The combination of augmentation modes can yield differences
in the effectiveness of learnt representations. Here, we assess
the effect of augmentation combinations by freezing the pre-
trained model and only ne-tuning the prediction head
during transfer learning, as described in Section 2.5. The effects
of explicit augmentation are shown in Fig. 3(a), and the effects
of implicit and mixed augmentations in Fig. 3(b). Here, the
original input (without augmentations) is used in both
branches (i.e. xi, xi = x), and serves as the contrastive learning
baseline (white blocks in Fig. 3). As seen in Fig. 3(a), augmen-
tation strategies directly impact the contrastive learning
performance. Over the majority of the datasets, augmentations
result in enhanced performance compared with the no-
-fold cross-validation. Seven polymer property datasets were used for
lectron affinity (Eea), ionisation energy (Ei), DFT-calculated dielectric

FP, XGBECFP, NNECFP, GPPG, NNPG, GCN and GIN are supervisedmodels.
s’ indicates the number of parameters. The numbers in bold indicate

Ei EPS Nc Xc Avg. R2

0.7421 0.6840 0.7540 0.4345 0.7413
0.7221 0.6728 0.7574 0.3842 0.7280
0.7562 0.7473 0.8066 0.3975 0.7595
0.77 0.68 0.79 <0 < 0.71
0.74 0.71 0.78 < 0 < 0.70
0.6646 0.7404 0.5238 0.3316 0.6739
0.7841 0.6925 0.6317 0.3902 0.7192
0.7919 0.7568 0.8109 0.4552 0.7830
0.7670 0.7694 0.8017 0.4367 0.7775
0.8112 0.7876 0.8460 0.4043 0.7897

earning experiments of Kuenneth et al.12

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The average R2 values on the unseen validation datasets of all downstream datasets using the enumerated form of SMILES strings with
five-fold cross-validation. The numbers in bold indicate the best results for a given property

Model EeaEnum EgbEnum
EgcEnum EiEnum EPSEnum NcEnum XcEnum Avg. R2

TransPolymer 0.8674 0.8593 0.8597 0.7720 0.6942 0.7788 0.3920 0.7462
polyBERT 0.8618 0.8191 0.8298 0.6884 0.7304 0.8109 0.2525 0.7133
PolyCL 0.8870 0.8814 0.8748 0.7862 0.7405 0.8165 0.3962 0.7689

Fig. 3 Predictive performance of transfer learning evaluated by R2 values on downstream datasets using contrastive learning trained with
different augmentation combinations. (a) Explicit augmentations only (where “Enum” refers to Enumeration) (b) Implicit and selected mixed
augmentation strategy. The striped background cells are the results using the contrastive learning model pretrained with no augmentation (the
baseline result). Blue blocks show improved performance relative to the baseline. Red blocks show decreased performance relative to the
baseline. The intensity of the colour reflects the magnitude of the deviation.

© 2024 The Author(s). Published by the Royal Society of Chemistry Digital Discovery
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augmentation baseline (labelled ‘Original–Original’). This is
especially apparent for Xc, which exhibits low baseline task
performance. Here, any combination of augmentations results
in a drastic increase in the quality of the representation; this is
reected by the improved performance over the baseline for all
augmentation strategies. However, not all combinations of
augmentations are suitable for a specic task and the best
combination is task-dependent, aligning with the conclusion of
previous studies.38

In addition, explicit augmentations yielded decreased
performance relative to the baseline for the electron affinity
(Eea) and ionisation energy (Ei) datasets. This decline in
performance likely stems from two factors: the strong baseline
performance and the sensitivity of these properties to precise
molecular orbital and electronic congurations. Augmentations
that change or obscure parts of the structure may distort the
representation that hints at the electronic properties. Hence
explicit augmentations have detrimental effects, which involves
making direct, observable changes to the molecule (e.g.
removing an atom, or breaking a bond, etc.). Alternatively, this
may also be an indication of the underlying difficulty of the
downstream task. For example, Xc is a non-trivial polymer
property to assess experimentally and computationally,49

whereas methods to assess electron affinity and ionisation
potential are better established. Indeed, the group contribution
method used to obtain Xc may be particularly susceptible to the
data augmentation strategies that we use, which increases the
complexity of this task and introduces noise. The remaining
downstream properties are generally correlated with broader
structural motifs. The augmentations allow for augmented data
to benet model robustness by introducing slight structural
perturbations.

Considering all of the downstream datasets, we observe that
some explicit augmentation combinations demonstrate supe-
rior performance relative to others (Fig. 3(a)). The combinations
of Original-Drop and Enumeration-Masking are the best explicit
combinations, leading to improved performances compared to
the no-augmentation baseline in six of the seven downstream
datasets. The second best combination of augmentations are
Original-Enumeration and Enumeration-Drop, which demon-
strated improved performance for ve of the seven downstream
datasets. From the results for the augmentation combination
study, we observe that including either the original or
enumeration augmentation strategies improves performance. It
can be intuitively explained that these two augmentations
preserve the original and complete semantics of polymer
molecules. This aligns with previous research, which has shown
that enumeration as an augmentation strategy can enhance the
performance of machine learning tasks.35,45,59,60 During Masking
and Drop, though the local data structure of polymer-SMILES is
preserved, these augmentation types introduce semantic
impairment. Therefore, combinations that result in superior
performance preserve the full semantics in one branch; this
serves as an anchor to give a hint to the parallel branch to
complete its full semantics. The strategy behind these combi-
nations might encourage the contrastive pre-training objective
to learn more effective representations.
Digital Discovery
Implicit augmentations (3(b)) have a unique advantage in
creating high-performing contrastive learning strategies, as it
outperforms other strategies relative to the baseline for ve of
the seven datasets; this is comparable to the high-performing
explicit augmentation combinations. Aer conrming the
effectiveness of implicit augmentations, we combined the best-
performing explicit combinations with implicit augmentations
(listed as mixed augmentations in Fig. 3(b)) to identify whether
this resulted in improved performance. The addition of implicit
augmentations led to varying effects on the performance of
explicit combinations. For Original-Enumeration and
Enumeration-Masking, implicit augmentations further
improved the expressiveness of the resulting representations.
However, Original-Drop and Enumeration-Drop suffer from the
loss of efficacy.

Surprisingly, Enumeration-Masking with implicit dropout
was the overall best performing combination. This result might
demonstrate that the diversied use of augmentation modes is
benecial to the construction of the contrastive learning
objective. We can intuitively explain why this combination
works. As analysed above, Masking of the original SMILES in
one branch conceals part of the information and Enumeration
in another branch assists recovery of the original SMILES from
its enumerated form. In addition, the semantics in both
branches are further disturbed to create slight differences by
dropout noises to encourage the comparison. The entire
process is comprehensive and effective. Therefore, we chose to
apply this augmentation mode, which is the product of the
combination of explicit and implicit augmentations, to train
our nal PolyCL model.
3.4 Alignment and uniformity analysis

As shown in Fig. 4, different augmentations yield different
training directions in the alignment and uniformity space from
the training start point (that of polyBERT). We traced the
change of alignment and uniformity during the contrastive pre-
training process. In the initial 20% of total epochs, alignment
and uniformity loss was measured at every 2% checkpoint of
total epochs. Aer that, alignment and uniformity loss was
measured at every 20% of total epochs. In all PolyCL training
processes, we observe that the changes in the alignment and
uniformity loss of the rst 20% epochs are faster than the
remaining epochs, especially in the change of alignment. For
the No Augmentation training process (use of only original
molecules in both branches), pre-training leads to increased
alignment loss but decreased uniformity loss. Since two poly-
mer representations in each positive pair are identical,
comparing them is ineffective; this results in the contrastive
objective failing to direct the learning of underlying structures
by constructing effective positive pairs. On the contrary, the
application of only implicit dropout leads to improved distri-
bution (lower uniformity loss) relative to the näıve case.
However, the magnitude of the alignment loss is comparable
and the increase in alignment loss is accompanied by the
decrease in uniformity loss. However, the overall change in both
metrics is insignicant compared with other augmentation
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Cross-model comparison on the alignment-uniformity space.
For PolyBERT and Transpolymer, the alignment and uniformity of only
the final published model is shown. For PolyCL and PolyCL with
different augmentation combinations, the intermediate progress
during contrastive pre-training is recorded and evaluated with align-
ment and uniformity. The coloured arrows denote the direction of
change during training. The axis label arrows denote the favourable
direction.

Fig. 5 t-SNE dimensional reduction analysis of the polymer repre-
sentation space learnt by PolyCL. Visualisation of the continuous
representation of polymer repeating units: (a) The unsupervised pre-
trained dataset coloured by molecular weight; (b) The Egc dataset
coloured by the band gap (chain) property and (c) all available datasets
coloured by the data origin, with selected polymers shown. The blue
dot denotes the connection point of the repeating unit to the polymer
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combinations, which indicates that Implicit Only may only have
a slight effect on learning representations. The Drop-only case
(Drop is applied to both branches) reveals decreased perfor-
mance, as shown by the high uniformity loss and low alignment
loss; this indicates that Drop can still recognise the similarity in
feature embeddings, however it fails to capture the diversity in
the data. This is further reinforced by the transfer learning
results in Fig. 3(a), where Drop-only only performs well for two
of the seven datasets.

Contrary to the other augmentation combinations in Fig. 4,
PolyCL applies Enumeration-Masking with implicit dropout. From
Fig. 4, it can be seen that the alignment and uniformity converge
to the ideal quadrant ð‘uniform ¼ �1:7431; ‘align ¼ 0:1209Þ during
the pre-training guided by the contrastive learning objective –

indicating superior performance. This observation aligns with the
transfer learning results in Section 3.2, and with conclusions from
previous studies,46,53 which showed that improved alignment and
uniformity is generally linked to improved performance of the pre-
trained representation. The low alignment loss of PolyCL speci-
cally demonstrates that effective alignment contributes to the
robust predictive results in Section 3.2 when PolyCL representa-
tions are applied to enumerated datasets.

We have also evaluated the alignment and uniformity of
the pre-trained models polyBERT and Transpolymer. Poly-
BERT ð‘uniform ¼ �1:1983; ‘align ¼ 0:3538Þ has a balanced
alignment and uniformity, with both values lying in the
middle region, compared to other results. For Transpolymer
ð‘uniform ¼ �0:6640; ‘align ¼ 0:1649Þ, the alignment loss is
comparable to the best contrastive learning models, while the
uniformity loss is similar to the Drop-only model.
© 2024 The Author(s). Published by the Royal Society of Chemistry
While PolyCL outperforms other pre-trained models under
these two evaluations, it should be noted that polyBERT is the
prior of PolyCL. Therefore, the properly trained contrastive pre-
training results in the improvement of the model in both
alignment and uniformity. It also emphasises the importance of
augmentation strategy, as not all augmentations will result in
the improvement of both metrics through the training process.
Though there is no evident link between the transfer learning
performance on specic tasks and the alignment and unifor-
mity, the overall transfer learning performance can be positively
correlated to the alignment and uniformity matrix.

3.5 Representation space analysis

Polymers are transformed into dense and continuous repre-
sentations by the pre-trained PolyCL. The representation space
was evaluated by t-SNE analysis,61 as shown in Fig. 5. t-SNE
analysis arranges data so that points with similar features are
plotted in close proximity to each other. Therefore, this method
is well-suited to inspecting whether our pre-training method
can effectively capture patterns in the learned representations.
In Fig. 5(a), the unsupervised dataset was embedded in the
representation space and coloured by the molecular weight of
each polymer repeating unit. The results show smooth transi-
tions between regions of low to high molecular weight. This
suggests that the embedding captures the underlying structure
chain.
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and size of different polymers that correlates closely with their
molecular weight differences.

In Fig. 5(b), polymers from a sampled downstream property
dataset (Egc) were embedded in the representation space col-
oured by the value of the band gap (chain) ground truth; the
gradient of this representation shows that the sampled down-
stream property, the chain band gap (Egc), is highly related to
the embedded structural features of polymers. In other property
datasets, this gradient was also observed (as shown in Fig. S2†).
Due to the limited number of datapoints in each remaining
dataset, the gradient is less evident than the TSNE visualisation
of Egc dataset (shown in Fig. 5(b)).

Our results also suggest that the representation space
effectively captures changes in key physical properties implied
by the structural features that the original t-SNE was trained on.
In Fig. 5(c), all available data is encoded to a representation
space and colored by the data source. Here, we observe that the
initial, unsupervised dataset comprehensively covers the
chemical space encompassed by all of the downstream datasets.
We also visualised the molecular structures corresponding to
randomly selected points in the embedding. The results show
that the structural features learnt by contrastive learning align
with human understanding, yet slight divergence. It can be seen
from the visualisation that neighbouring representations do not
necessarily have similar structures in their molecular graphs.
This discrepancy may be due to the different emphasis of
SMILES strings and molecular graphs on encoding molecular
structures and the special focus of contrastive learning strate-
gies to learn the representations.
3.6 Future work

We have introduced the use of contrastive learning to obtain
high-quality representations. Here, we used a basic polymer
representation to capture the core structural information of
polymers and allow direct comparison to previous methods.
However, incorporating more rened input features that encode
the macroscopic polymer information could potentially enhance
the predictive performance of polymer representations. Further-
more, the inclusion of polymer types may hint at the high-level
structural variations that affect the behavior of polymers. In
future work, the joint use of contrastive learning and a polymer
representation that considers the complexities in the macromo-
lecular level should be explored. This approach would maximise
the potential of both representation learning techniques and
polymer chemistry. In addition, noisy, missing data and the
variability of polymer representations can hurt the application of
algorithms. Future work can also leverage machine learning to
improve the adaptability of algorithm to better handle noise,
incomplete data and a broader range of polymer types.
4 Conclusion

We present a self-supervised pre-training paradigm, PolyCL,
that uses contrastive learning to achieve effective polymer
representation learning using unsupervised data. We have
comprehensively explored varying explicit and implicit
Digital Discovery
augmentationmodes and found that the inclusion of both types
of augmentations can result in high-performing contrastive
learning. Our analysis suggests that the PolyCL-learnt repre-
sentation excels in preserving chemical information and
enhancing model generalisability – as shown by its superior
performance in transfer learning objectives across all seven
chemical properties including band gap (both chain (Egc) and
bulk (Egb)), electron affinity (Eea), ionisation energy (Ei), DFT-
calculated dielectric constant (EPS), crystallisation tendency
(Xc), and refractive index (Nc). Additionally, PolyCL demon-
strates enhanced accuracy in chemical property prediction and
stability across diverse datasets, while also improving repre-
sentation robustness to variable and non-standardized data-
sets. PolyCL produces high-quality machine-learnt
representations, which we expect will be benecial for a wide
range of downstream property-prediction tasks for polymer
informatics. The dataset and model are available at: http://
github.com/JiajunZhou96/PolyCL.
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