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I. Introduction

With the unprecedented developments of articial intelligence
(AI) technology, chemical science is now entering a radically new
era. High-performance computing and virtual screening tech-
niques identify compounds to synthesize for target applications,
while automated robotics perform synthesis and characteriza-
tions. Additionally, AI suggests new experiments based on the
data collected by robotic platforms. In this autonomous labora-
tory workow, data science plays a central role in accelerating
discoveries in chemical science. The 15th ASLLA Symposium on
‘Accelerated Chemical Science with AI’ was held at the Korea
Institute of Science and Technology (KIST) on the 25–28
September 2022 in Gangneung, Republic of Korea. The workshop
brought together 45 participants from around the world to discuss
machine learning and automation for the chemical sciences.

In addition to brief talks from the attendees, the conference
placed emphasis on panel discussions on the themes of Data,
New applications, Machine learning (ML) algorithms, and
Education. This Perspective aims to effectively communicate
the insights and discussions from these panels to the broader
research community.

Numerous recent review and perspective articles have
extensively explored the role of data science, ML and AI in
various domains of experimental chemistry, including general
chemistry,1 synthetic chemistry and chemical reactions,2–5 as
well as theoretical topics such as chemical compound space
exploration6 and force-eld development.7,8 Additionally, recent
reviews have addressed the application of autonomous research
systems in materials science,9–16 organic chemistry,17–19 inor-
ganic chemistry,20 porous materials,21 nanoscience,22,23 drug
formulation24,25 and biomaterials.26 Reviews also exist on the
topic of self-driving laboratories27,28 and their low-cost incar-
nations.29 While previous recommendations have covered ‘best
practices' in machine learning for chemistry,30 including
uncertainty quantication,31 our focus in this Perspective is to
present specic recommendations derived from a very rich set
of panel discussions by many active researchers in the eld
rather than reiterating those already discussed themes. We refer
the reader to them to more in-depth conversations.

Continuing with the focus on AI, the Whisper program32 was
used to transcribe the panel discussions, and EXAONE33 was
used to generate automated summaries. These algorithmically
generated summaries served as the initial dras of the
following works, which we subsequently edited and annotated
to ensure clarity. Through this process, it became clear that the
panel discussions encompassed overlapping topics, high-
lighting the shared challenges in the eld of AI in chemical
science. To underscore these critical challenges, we have reor-
ganized the discussions into common themes: data, new
applications, ML algorithms, and education.
II. Data

The quality and scale of data play a pivotal role in developing
high-performance MLmodels. Thus, it is unsurprising that data
24 | Digital Discovery, 2024, 3, 23–33
consistently emerged as a focal point of discussion in all panel
sessions. This section aims to offer a concise summary of the
insightful discourse on database building, to facilitate the
creation of robust and effective machine learning models.
Building better databases

Comprehending the diversity and richness of datasets is vital
for developing generalizable ML models.34 Employing metrics
to assess novelty and methods to down-select datasets to elim-
inate redundant data can serve as remedies in certain cases.
When confronted with limited data, hand-craed descriptors,
e.g., coarse-grained descriptors, can be a pragmatic approach in
low-data materials discovery tasks.

Furthermore, the availability of high/multi-delity bench-
mark datasets is essential.35 The benets of improved training
data efficiency when using multi-level learning in chemical
compound space have been demonstrated on multiple
occasions.36,37

When dealing with high-cost, high-delity data acquisition,
the development of automated workows that incorporate
uncertainty quantication,38 encompassing both epistemic
(model's inability to t the data distribution) and aleatoric
(noise in the data) uncertainties, along with active learning,
can be benecial. Moreover, delta learning methods and
incorporation of physical rules as inductive bias within the
machine learning algorithms have shown to reduce the size of
required data.39 Furthermore, sampling techniques such as
entropic sampling and self-learning population annealing can
serve as effective data acquisition strategies. These techniques
enable effective weighting of the density of states of the nal
property in relation to input descriptors, facilitating a compre-
hensive understanding of different regions of the chemical
space. In addition to forward models, observations have sug-
gested that machine learning can also contribute to knowledge-
augmented data generation within a discrete and sparse
chemical space, particularly in the context of inverse generative
design.12,40,41

Despite the signicant emphasis on developing theoretical
strategies for efficiently constructing databases with high-
delity data, there is a need for additional efforts to ensure
that these databases are also user-friendly for interdisciplinary
research, i.e., permit even non-domain-expert AI practitioners to
interact with the data with minimal intervention. This accessi-
bility is essential for facilitating the test of new algorithmic
developments. For instance, when the rst large quantum
dataset with coordinates and multiple molecular properties for
more than 100 000 small organic molecules, QM9, was pub-
lished in 2014, the total energy was included alongside the free
atomic energy. While experts can easily calculate derived
properties from this information, such as reaction energies or
atomization energies by respectively subtracting the total
energies of constitutional isomers or subtracting the free
atomic energy from the total energy for any given stoichiometry,
this process can pose an unnecessary barrier for non-experts,
requiring them to invest time and effort in understanding the
underlying denitions of basic chemical properties. Hence, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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development of easy-to-use, web browser-based interfaces for
predictive models is of great importance.42 At the same time, the
systematic management of meta-information remains impor-
tant to ensure the reliability of the constructed database. For
example, tools such as AiiDA43 and NoMaD44,45 record compre-
hensive data provenance for ‘static’ materials simulations.

Finally, it is important to distinguish between multiple
datasets categories: smaller, more accurate, and computation-
ally challenging ones that serve specic practical purposes, and
datasets specically designed for benchmarking ML models.
This differentiation helps avoid situations where research solely
focuses on improving model performance to surpass bench-
marks without effectively translating those advancements into
practical applications, (overtting). In this context, dynamic
management of databases within the relevant research
community proves to be fruitful, as discussed below.

Dynamic community database

For ML algorithms to effectively capture the true complexity of
the chemical and materials compound space, it is crucial to
overcome biases present in existing databases. This requires
a collaborative effort within the community to enable true
discovery. To facilitate this goal, the successful implementation
of the Common Task Framework (CTF) in the protein commu-
nity, in conjunction with the Protein Data Bank, has served as
a model. The following list outlines key components in datasets
that could help to facilitate and foster collaborations between
non-experts and experts in solving such problems:

(1) Tasks: clearly dened tasks with precise mathematical
interpretation, physical meaning, and chemical purpose.

(2) Accessibility: availability of easily accessible gold-
standard datasets in a standardized format, publicly acces-
sible and ready for use.

(3) Metrics: specication of one or more proposed quanti-
tative metrics for each task to measure success.

(4). Evaluation: continuously updated leaderboards that rank
state-of-the-art methods and/or data-splits that allow us to
better track the model improvements and generalization to out-
of-domain (OOD).

(5) Discovery: ability to generate new data as needed, by
“Augmenting with chemical knowledge.”

Discussions specic to organic reactions databases

While signicant progress has been made in the past decade
with the emergence of deep learning, the effectiveness of purely
data-driven approaches in organic synthesis planning remains
to be determined.46–51

Large databases of reactions, such as USPTO,52 Pistachio,53

Reaxys,54 and SciFinder,55 do exist. However, the knowledge
contained within these databases falls short regarding quality,
diversity, and accessibility. For instance, while USPTO offers
open access, its quality may be lower compared to the limited,
paid access but higher-quality Reaxys. Reproducibility has also
become a point of concern. Additionally, despite the vast
number of experimental data available in these reaction data-
bases, only a limited number of reaction types have sufficiently
© 2024 The Author(s). Published by the Royal Society of Chemistry
large numbers of examples, typically a few hundred or more,
which hinders the development of practical/useful/general AI
models.56 Efforts such as the Open Reaction Database are
notable for trying to address these limitations,57 but remain
populated with data from USPTO, with only a few hundred
brand-new entries – this poses a question of how to best
incentivize synthetic chemists to deposit their results (both
positive and negative) into such databases.

Correspondingly, purely data-driven approaches in organic
synthesis planning would greatly benet from maximal training
data efficiency when learning. Potential solutions to enhance
efficiency include Delta-learning and transfer learning,58 multi-
level learning,36,37 and few-shot learning techniques.59 However,
the challenge of sparse data becomes particularly pronounced
when attempting to identify the scope of “impossible” reactions.
If a certain reaction is not listed in a database, one oen assumes
it cannot happen. But this assumption ismostly true for the types
of reactions that happen oen. As mentioned earlier, such
classes are relatively limited in number and occurrence.60

When high-quality datasets are lacking, an alternative, albeit
more labor-intensive approach, is expert coding within
programs like Chematica or AllChemy. These programs can
perform advanced-level synthesis planning, even for complex
natural products.61

One conclusion reached with broad consensus is the ever-
increasing need for improved quality and open databases in
all AI-related efforts, not only for reaction data but also for
describing rules of chemical reactivity, or the properties of
experimentally-available and virtual ligands to nd new cata-
lysts.62,63 Moreover, new featurization schemes may be neces-
sary, particularly ones that consider stereochemical, steric
hindrance, and long-range interaction aspects of reactions on
complex scaffolds.
Publisher's role

The consensus among many participants was that funding
bodies and scientic journals should adopt stringent require-
ments to foster the open availability, completeness, curation,
and standardized formatting of published data. However,
determining the specic standards and formats for data
remains an ongoing question.

Similarly, it was emphasized that the codes utilized to
generate the data should be accessible, unless licensed, and
well-documented. Such practices align with the increasing
adoption of FAIR (Findable, Accessible, Interoperable, and
Reusable) policies in the scientic community.64,65 Another
related challenge is facilitating broader access to proprietary
data and/or establishing new repositories where researchers
can deposit results of both successful and, importantly,
unsuccessful experiments they have conducted.

On the former issue, the panelists agreed that professional
non-prot organizations, such as the American Chemical
Society (ACS), should consider opening up their extensive
repositories or, at the very least, enabling broader academic
access. Currently, the SciFinder dataset contains approximately
100 million reactions, yet it remains completely inaccessible for
Digital Discovery, 2024, 3, 23–33 | 25
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downloads, severely limiting systematic data analyses. Given its
status as a non-prot organization, the ACS is seen to have an
ethical obligation to share the datasets it accumulates. While
the CAS Common Registry initiative66 is appreciated, restricted
licensing hinders research progress. Thinking more broadly,
policies that require disseminating a complete set of data and
code as a requirement for publication will help accelerate
progress in this eld. ACS has started dening research data
policy recommendations to achieve this goal.67 An excellent
example of this is RSC's new journal Digital Discovery,68 which
has a dedicated data and code reviewer to assess submitted
materials for documentation and reproducibility.
III. New applications
Non-equilibrium states

Particular emphasis should be given to developing benchmark
training sets that extend beyond equilibrium structures.69 Such
sets, e.g., Transition1x, should enable advancing methods
capable of describing dynamics, activated processes, and
chemical reaction networks/pathways.69,70
Utilizing experimental data

Computational data has played a signicant role in AI-driven
materials discovery. However, specic critical properties
remain inaccessible to these computational approaches
regarding real-world applications. To enhance the impact of
computational discoveries, it becomes crucial to develop AI
methods that can predict the synthesizability of materials.71 The
panel emphasized the importance of establishing an efficient
two-way communication channel between theoreticians and
experimentalists, as well as the need for integrated autonomous
workows that bridge both domains.72–75

Simultaneously, the experimental literature tends to exhibit
bias towards “success stories” while failing experiments oen
go unreported.76,77 This bias can arise from various factors, such
as the superior performance or ease of synthesis and charac-
terization of certain materials for unrelated applications.
Consequently, the available data on chemical space for explo-
ration with AI becomes limited, impeding the discovery of
genuinely novel systems. From a modeling perspective, a data
point perceived as a “failure” in experimental terms can be just
as valuable for training models as a data point from
a “successful” experiment. Although the concept of a “Journal of
Failed Research” remains elusive, the panel suggested that well-
documented and openly available metadata from experiments,
regardless of outcomes, could address this limitation by
providing theoreticians with more extensive and diverse
training sets in terms of structure and composition. Moreover,
it was highlighted that the context of an experiment matters in
dening what constitutes a “failed experiment”. For instance,
a seemingly failed experiment in one context may actually lead
to successful outcomes or the discovery of new compounds in
a different context.

During the discussions, the topic of how AI empowers crea-
tivity in chemistry was addressed. It was acknowledged that AI is
26 | Digital Discovery, 2024, 3, 23–33
ultimately a tool that accelerates technological advancements
and scientic discoveries. The progress made in this eld has
undeniably expedited the pace of invention. It can also be
argued that AI enhances the occurrence of “eureka moments”
by facilitating new insights and understanding. This aspect is
intricately linked to the exploration of new concepts and the
perception of reality. As a creative discipline, chemistry is driven
by scientists motivated to uncover novel phenomena, unen-
cumbered by pre-established physical laws. For example, this
could involve stabilizing challenging structures, creating
unconventional solvation environments, or discovering previ-
ously unknown and aesthetically pleasing spin states. There-
fore, by leveraging AI to comprehend the existing knowledge
and venture into unexplored territories, creative pursuits in
chemistry can be truly enhanced. In particular, the question of
what it entails for AI to gain scientic understanding based on
data is a very relevant question due to the advent of large
language models (LLMs) and their applications to
chemistry.78–81 In this context, philosophical and conceptual
frameworks like the one proposed by Krenn, et al. are needed.82
Addressing the multi-scale nature of materials

An example discussed was the need to provide detailed
descriptions of the operating conditions of functional materials
at their relevant scales,83–85 and under intended operating
conditions.86 This information is crucial for facilitating inverse
design. Much of the work in the eld currently follows a bottom-
up approach, focusing on the development of machine learning
potentials to extend the accessible time- and length scales in
atomic-scale simulations. This is necessary to ensure sufficient
statistical sampling for retaining predictive accuracy.87,88

Different materials exhibit limiting processes and reactions at
various scales. For instance, catalysts' activity and selectivity89

and the performance of thermoelectric materials90,91 are gov-
erned at the atomic scale, while durability and reliability involve
processes at the meso- to micro-scale or beyond.

The concept of self-driving labs was also discussed,9 with
considerations given to the expenses associated with building,
maintaining, and operating such facilities, especially when
tailored for testing various optimization algorithms. The idea of
“virtual labs” emerged as an alternative, where multi-level
modeling is utilized to mimic real-world experiments. For
example, in the context of batteries, simulations running on
materials could be linked to single-cell and battery-pack
congurations to understand the key inuences from micro-
structure to system performance.

There is also a need to approach data dynamically. Building
data in a multi-modal capacity to capture different scales or
incorporating new experiments and calculations is critical for
aiding chemical discovery. It is crucial to emphasize the
importance of top-down approaches, starting from the meso/
micro-scale phase-eld60 and seamlessly coupling them with
ML potentials92 for autonomous parameterization. Additionally,
to enable more meaningful AI-driven discoveries, it is highly
desirable to restrict the search to compounds that are easy to
synthesize and provide synthesis recipes.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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IV. Machine learning algorithms

Given these considerations, the natural question also arises:
what other foundational AI advancements, explicitly addressing
the needs of science datasets, are yet to be developed? What are
the current and future needs? The following non-exhaustive list
represents the open challenges discussed as areas of focus for
the AI community when interacting with the sciences.
Encoding algorithms for science

Identifying AI algorithm development specic to the sciences
(chemistry, physics, materials) that has been driven by clearly
dened needs is an important consideration. One notable
example is the effect of differentiation and the loss function in
the case of organic molecules, as observed in the QM9 dataset.
In this dataset, which provides quantum chemical properties
for a comprehensive chemical space of small organic molecules,
the use of different loss functions for the training and testing
sets was necessary to discover new motifs with desired func-
tionality.35 This requirement arises due to the unique challenge
of extrapolating from known molecules to identifying motifs
and properties that differ from the original set encountered by
the algorithm. This specic example highlights the demand for
novel machine learning techniques tailored to the eld of
chemistry.

An additional example of algorithmic developments,
partially inspired by chemical applications, involves the
construction of models that incorporate physical symmetries
into their structure. In the case of interatomic potentials, since
the early stages of this eld the crucial insight has been the
requirement for models to be exactly invariant to rotations,
translations, and atom index permutations.93 More recently,
these ideas have been expanded to create physics inspired
models that build upon covariant features/representations, an
extension motivated by the widespread presence of vectorial
and tensorial targets in quantum chemistry.94 It is noteworthy
that these developments have progressed independently and in
parallel with similar efforts in computer science,95 albeit
formulated using different terminology and with less mathe-
matical generality.

During the panel discussions, intriguing questions were
raised regarding the potential integration of data-centered and
expert methods and the extent to which this integration could
be achieved.96,97 Hybrid approaches were proposed as a means
to leverage the encoded knowledge of experts while maintaining
the exibility and adaptability of data-driven approaches. It was
also observed that the raw reaction rules derived from either of
these approaches can be signicantly enhanced through further
renement using quantum mechanical (QM) or molecular
mechanical (MM) calculations. For instance, MM methods can
be employed to calculate strains and estimate the applicability
of reaction rules to cyclization reactions.98

Another notable example of a hybrid approach involves
breaking down the barriers between different methodologies.
This includes merging electronic structure theory and machine
learning99 or creating a unied framework that combines
© 2024 The Author(s). Published by the Royal Society of Chemistry
simulations and experimental data.100 Such models have the
potential to learn by effectively integrating diverse sources of
information.
Going beyond the interpolative nature of machine learning

In the pursuit of discovering crystals or molecules with new
functionalities or improved properties, enhancing the extrapo-
lative performance of machine learning models becomes
crucial. However, due to the interpolative nature of ML models,
accurately predicting data from domains outside the training
data distribution remains a challenge.101 One intriguing and
challenging topic discussed was the development of AI tech-
niques that consider the minimum amount of information
necessary to learn everything from the system. Additionally,
there was a signicant focus on the necessity and development
of multi-objective optimizations for new materials
discovery.102,103

Considering these fundamental AI advancements for
enabling chemical discovery, it was noted that most multi-
objective, multi-delity constrained problems addressed in
self-driving labs today tend to prioritize higher performance
based on predened objectives. However, to advance chemistry
knowledge, algorithms need to be further tailored for inter-
pretability, extrapolation to learn new science, and hypothesis
testing, which fundamentally require different approaches. A
recent example involves dedicated exploration of the Pareto
front, allowing the extraction of local correlations with near-
optimal performance to aid in result understanding.104,105

The subsequent topic of discussion revolved around using
the acceleration and discovery of new molecules/materials
successfully validated in the lab as metrics of success in
applying machine learning in chemistry. However, going
beyond the speed of material development, true discovery of
new concepts,82 such as topological materials, remains elusive.
This led to the question of exploring deeper paths in AI to
unlock such possibilities.106 One potential avenue is consid-
ering an automatic system that generates novel questions,
although formulating the problems is typically within the
domain of human experts. In scientic discovery, anomalies or
outliers oen lead to new ndings. Optimization algorithms are
already designed to nd regions of high uncertainty in the
parameter space, which are oen unexplored. Rewarding data
points in those regions, even if only a small percentage results
in actual discoveries, can lead to the real discovery of new
phenomena. Additionally, digitizing existing knowledge in
chemistry and creating a comprehensive corpus of our current
understanding can help dene a concept of “known unknowns”
for AI, making the idea less vague and facilitating exploration
beyond what is already known. An example was shared
regarding an automated robotic system developed by David
MacMillan's group at Princeton University, which achieved
“accelerated serendipity” by assembling molecules with no
known history of interactions and rewarding accidental reac-
tivity.107 This approach resulted in discovering new reactions or
improved methods for existing reactions. Furthermore,
emphasizing the uncertainty quantication of AI models was
Digital Discovery, 2024, 3, 23–33 | 27
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highlighted as a critical step, as rewarding areas of large
uncertainty in active learning frameworks necessitates the
quantication and understanding of the epistemic and alea-
toric uncertainty of the models,38,108,109 and the errors at each
step.
V. Education

All participants unanimously agreed on the importance of
introducing machine learning, AI, and autonomous research
throughout the chemistry curriculum, starting at the under-
graduate level and potentially even earlier. While acknowl-
edging the signicance of specialized graduate education, these
skills are deemed essential for all chemists. Both academia and
industry increasingly seek applicants with a solid programming
background. As a case study, Novo Nordisk, a major company in
Northern Europe, is heavily investing in digital transformation
and envisions a future where half of its chemists are compu-
tational (“non-wet”) chemists. Universities play a vital role in
developing such a workforce. Therefore, our discussions
primarily focused on undergraduate education unless specied
otherwise.

Various educational strategies were explored during the
discussions. One extreme example is Nanyang Technological
University in Singapore, where university students are
mandated to have coursework in computational thinking, data
science, and machine learning. Similarly, Imperial College
London and the Denmark Technical University have university-
wide initiatives to incorporate data and machine learning
competencies within the undergraduate curriculum. Another
approach involves offering dedicated single courses such as
“Data Science for Chemistry” or “Autonomous Discovery” as
upper-level electives.110,111 Some participants shared experiences
of incorporating aspects of ML/AI/data science into existing
courses or pedagogical laboratory experiences.112–116 Some of
these adaptations were driven by the restrictions imposed by
the COVID-19 pandemic. For instance, alternative machine-
learning-oriented “computational labs” were developed as
substitutes for traditional wet labs. Additionally, remote-control
access to laboratory equipment117 and mailing students Lego
kits to build and operate their autonomous systems were also
explored. A recent review of low-cost self-driving laboratories
collects many of the above efforts in comprehensive
categorizations.118
Curriculum

What should comprise this curriculum? At a minimum, this
coursework should train all chemistry students in (i) elementary
programming, (ii) data management best practices, (iii) statis-
tics, (iv) elementary machine learning model construction and
evaluation.

Many science and engineering degree programs already
require computer programming or numerical computing cour-
ses. Historically, these courses were taught in FORTRAN or
MATLAB, although the recent trend is to move towards Python,
which has become the standard language for machine learning.
28 | Digital Discovery, 2024, 3, 23–33
There are both advantages and disadvantages to having this
course taught by a computer science department, considering
university politics and topical relevance to students. On the one
hand, departments may be protective of their specic areas of
study, and other departments may lack the staffing necessary to
support the teaching of new classes. On the other hand,
students oen benet from direct applications of programming
to their primary coursework, which may be lacking in broader
service courses. Regardless of how it is offered, it is crucial that
students learn elementary programming as early as possible, as
it serves as a foundational skill for the other topics covered in
the curriculum. It also enables students to undertake projects in
their nal year focusing on automation or modeling. By
adopting this approach, we can create a new generation of
students procient in coding.

Data management encompasses various aspects, including
importing, visualization, and adhering to scientic practices
such as FAIR data principles. It also involves the development of
ontologies, schema, and understanding of intellectual property
rights. Incorporating data management into the education of all
chemists is crucial, as data generation is inherent to the eld,
and funding agencies as well as publishers require data
management policies. One approach to instilling these prac-
tices is to have students create data management plans for
projects or upload data from teaching labs to actual reposito-
ries. Emphasizing the importance of reporting every repetition
of an experiment is essential. Comprehensive data manage-
ment practices will greatly benet students when preparing
papers, and reinforcing these practices throughout their
undergraduate and graduate education is highly valuable.

Statistics is a well-established eld and requires no intro-
duction. However, an ideal curriculum would place greater
emphasis on computational approaches to statistics.119
New forms of education

A side conversation discussed the potential role of virtual reality
(VR) in education.120,121 One panelist highlighted the use of VR
in classes to enhance students' understanding of internal
structures and processes within battery cells, as well as assist in
building crystal structures. The discussion also touched upon
the application of VR in outreach programs. For instance, in
2021, chemistry was the theme of the “Explore Science” fair
organized by the Klaus Tschira Foundation (Germany) to
inspire enthusiasm for natural sciences in schoolchildren.
Activities involved realistic and interactive VR explorations with
underlying simulations to foster early intuitions about chem-
istry even before university. It was noted that students oen lack
these intuitions due to chemistry kits becoming less engaging
over time, depriving them of experiences that previous genera-
tions had at their age. To address this, the panel suggested the
dissemination of VR methods and low-cost laboratory automa-
tion kits111,122–125 to high schools, which could improve student
experiences while adhering to modern safety and liability
restrictions. At the university level, digital twin simulations of
laboratory processes could serve as pre-lab training opportuni-
ties, familiarizing students with equipment and lab procedures.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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The literature also offers examples of mixed-reality enhance-
ments in teaching microuidics.47

Another potential application for training is using “body
cam” footage or similar technologies to provide mentorship in
the laboratory. The COVID-19 pandemic, with its need for
remote work and limited laboratory occupancy, presented
opportunities for pilot projects exploring augmented reality. In
these projects, a trainer could supervise trainees from a remote
location and provide relevant information directly into the
trainee's eld of view.

Challenges

The essential ideas in machine learning models for chemistry
are continually evolving, with rapid advancements in important
models and the rise of deep learning. However, certain core
skills and best practices related to model construction, data
leakage prevention, data augmentation, and model evaluation
remain consistent. The rapid development and accessibility of
machine learning soware present their own challenges. It is
easy to become overwhelmed and attempt to learn everything at
once, leading to suboptimal understanding and application of
concepts. Participants were cautious about suggesting specic
topic selections due to the rapidly changing nature of the eld.

When incorporating new computational material into cour-
sework, trade-offs need to be made. Constructive overlaps can
be found by substituting programming exercises for lengthy
symbolic derivations or incorporating data analysis and sharing
exercises instead of traditional laboratory report writing
assignments. However, it is inevitable that some content will
need to be removed. For instance, some institutions have
chosen to reduce math components or replace manual experi-
mental laboratory work with computer-based assignments,
which has been well-received by students but has also caused
tension within departments. Another approach could involve
creating summer coding “bootcamps” that provide anywhere
from 1–12 weeks of intensive coding experiences for under-
graduate and graduate students, leveraging theory faculty
members and inviting guest speakers. However, it is important
to recognize that these extracurricular experiences may not
engage all students and require faculty to donate their time.
More case studies are needed to further explore these trade-offs,
and the evolution of curriculum is expected to progress slowly.

Barriers and challenges exist in promoting the incorporation
of machine learning into chemistry education. Many chemists
outside of the subeld may not perceive it as essential and may
lack the necessary skills to teach the material. However, there is
value in providing a rigorous education based on fundamentals,
and statistical data analysis may serve as a starting point that
can act as a gateway to statistical learning methods.

Public perception

Chemistry faces an image problem compared to computer
science. Enrollments in computer science programs are
increasing while enrollments in physical sciences, including
chemistry, are generally decreasing. One possible reason for
this trend is the perception that soware jobs are more
© 2024 The Author(s). Published by the Royal Society of Chemistry
prestigious than careers in science. Factors such as higher
salaries, early exposure to computers compared to chemistry
sets, and negative perceptions of chemistry as ‘polluting’ or
‘bad’ may contribute to this disparity. Despite being the archi-
tects of matter, chemists oen remain in the background in
many applications. The general public may need to be made
aware of the signicant role chemists and materials scientists
play in scientic advancements, such as space exploration,
where chemical expertise is essential for activities like analyzing
samples and developing chemical processes. Promoting green
chemistry can also enhance the appeal of chemistry by high-
lighting its potential to provide solutions rather than being
perceived as a source of problems.126,127

The prospect of increased productivity through AI and
autonomous research presents an opportunity to elevate the
career value of chemists. However, changing perceptions about
the role of AI in chemistry and securing investments in auton-
omous laboratories remain challenges. To attract attention and
support, it is not enough to have robots in laboratories; the
robots should engage in groundbreaking chemistry and
contribute to discoveries that would otherwise be impossible.
On the brighter side

The rise of data-driven approaches in chemistry education may
alleviate challenges by reducing the emphasis on memorization
and increasing focus on generally applicable concepts and
approaches. With the availability of databases and computa-
tional tools, students no longer need to rely solely on memo-
rizing vast amounts of information.128 Instead, they can learn to
access and utilize information effectively. This aligns with the
changing perspectives of today's students, who view knowledge
as the ability to access and apply information rather than simply
remembering facts. The evolving nature of assessment also
supports this shi. Many instructors adopted “open book”
examinations during the COVID-19 pandemic, realizing that
online resources easily overcome traditional memorization-
based assessments.129,130 As a result, assessments now require
higher-order thinking and problem-solving skills. By incorpo-
rating AI-related topics and emphasizing data analysis and
decision-making, the curriculum can foster long-term learning
and focus on critical concepts while equipping students with
practical problem-solving skills.
VI. Conclusions

In conclusion, the 15th ASLLA Symposium offered valuable
insights into the use of AI in accelerating chemical science. The
discussions on Data, New Applications, Machine Learning
Algorithms, and Education highlighted the pivotal role of AI-
based techniques in driving the rapid advancement of
research and development in the eld, as well as the importance
of incorporating ML and data science into the curriculum to
educate future generations. Key future directions included
fostering data transparency, exploring novel applications of AI
in chemistry, rening machine learning algorithms for more
accurate predictions, and integrating AI-based learning into
Digital Discovery, 2024, 3, 23–33 | 29
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chemical education. The importance of cooperation among
researchers, educators, associations, publishers, and compa-
nies was emphasized in all panel discussions to facilitate AI in
chemical science. The authors anticipate the continuation of
efforts from various elds, expecting that such endeavors will
eventually lead to critical innovations in the eld of chemistry.
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56 S. Szymkuć, T. Badowski and B. A. Grzybowski, Angew.

Chem., 2021, 133, 26430–26436.
57 S. M. Kearnes, M. R. Maser, M. Wleklinski, A. Kast,

A. G. Doyle, S. D. Dreher, J. M. Hawkins, K. F. Jensen and
C. W. Coley, J. Am. Chem. Soc., 2021, 143, 18820–18826.

58 G. Pesciullesi, P. Schwaller, T. Laino and J.-L. Reymond,
Nat. Commun., 2020, 11, 4874.

59 P. Seidl, P. Renz, N. Dyubankova, P. Neves, J. Verhoeven,
J. K. Wegner, M. Segler, S. Hochreiter and G. Klambauer,
J. Chem. Inf. Model., 2022, 62, 2111–2120.

60 D. P. Kovács, W. McCorkindale and A. A. Lee,Nat. Commun.,
2021, 12, 1695.

61 B. Mikulak-Klucznik, P. Gołębiowska, A. A. Bayly, O. Popik,
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A. Jinich and A. Nigam, Nat. Rev. Phys., 2022, 4, 761–769.

83 V. L. Deringer, N. Bernstein, G. Csányi, C. Ben Mahmoud,
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