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With the development of industrialization, energy has been a critical topic for scientists and engineers
over centuries. However, due to the complexity of energy chemistry in various areas, such as materials
design and fabrication of devices, it is hard to obtain rules beyond empirical ones. To address this issue,
machine learning has been introduced to refine the experimental and simulation data and to form more
quantitative relationships. In this review, we introduce several typical scenarios of applying machine
learning to energy chemistry, including organic photovoltaics (OPVs), perovskites, catalytic reactions and
batteries. In each section, we discuss the most recent and state-of-art progress in descriptors and
algorithms, and how these tools assist and benefit the design of materials and devices. Additionally, we
provide a perspective on the future direction of research in this field, highlighting the potential of
machine learning to accelerate the development of sustainable energy sources. Overall, this review
article aims to provide an understanding of the current state of machine learning in energy chemistry
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1. Introduction

Energy consumption is rising accompanied by population
growth and industrialization." Currently, fossil fuels such as
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and its potential to contribute to the development of clean and sustainable energy sources.

coal, oil, and natural gas still dominate the global energy
consumption.>® However, the burning of fossil fuels leads to
a huge emission of carbon dioxide, which contributes to global
warming and has negative impacts on the environment and
human health.*® Therefore, it is increasingly important to
develop sustainable and clean sources of energy in order to
replace fossil fuels. Many attempts have been made over the
last few decades to accomplish energy conversion and storage
with high efficiency and little pollution, such as solar, wind,
water, biofuel, and hydrogen.® To be more specific, in the last
10 years, there has been significant progress in the field of
sustainable and clean energy (Fig. 1). It is also an area that will
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Fig.1 Change in the number and percentage of publications with
clean energy and containing energy topics in the last decade (source:
Web of Science).

continue to be a focus of research and development in the
forthcoming years.””®

Photovoltaics (PV) is one of the clean energy technologies
that utilize solar energy and has gained more and more atten-
tion. More particularly, solar energy is a source of energy that
can be considered as physically infinite. Therefore, adopting
solar energy is regarded as the most promising solution to
address the energy crisis.'® PV can be divided into three
categories: silicon-based solar cells, organic solar cells (OSCs),
and the increasingly popular perovskite solar cells (PSCs).

Currently, over 90 percent of the global PV market is
dominated by crystalline silicon solar cells."* Silicon-based
solar cells are mature and commercially available for large-scale
manufacturing. However, in most buildings and agricultural
production sites, the opaqueness and weight of crystalline silicon
prevent it from being used as a cover.’> OSCs and PSCs are
considered as potential alternatives to silicon-based solar cells,
as they have the potential to be light weight, flexible, and
produced at a lower cost. Nevertheless, compared to silicon-
based solar cells, OSCs and PSCs are still in the development
stage.”® The high power conversion efficiency (PCE), long-term
stability and less efficiency loss while scaling up are the main
challenges for OSCs and PSCs."*

Computational design of materials has become an essential part
of PV design.””™"” By using computational methods, researchers
can simulate and predict the performance of different materials
and devices without costly and time-consuming experimental trials.
Such methodology can greatly accelerate the materials design and
device optimization process. In the past few decades, computa-
tional chemistry methods have mainly employed first principles
method."™ " One of the main advantages of first principles meth-
ods is that they can accurately and non-empirically predict the
electronic and optical properties of materials, including the energy
levels of electrons and holes, band gaps, and the absorption
spectrum. In recent years, machine learning, a statistics-based

© 2023 The Author(s). Published by the Royal Society of Chemistry
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technology, has become an important part of computation-aided
materials design.”**" Through machine learning, researchers can
not only bypass complex formulas to explore relationships between
different values but also generate novel compounds and materials.
Many parameters in materials or devices for PV cannot be simply
derived from theoretical equations or calculated using the first-
principles method, while the usage of machine learning greatly
facilitates research in these areas.

In addition to PV, the catalytic reaction is also an efficient
tool in sustainable and energy chemistry. A lot of catalysts have
been developed to accelerate different types of chemical reactions,
like the oxygen reduction/evolution reaction (ORR/OER), hydro-
gen evolution reaction (HER), CO, reduction reaction (CO, RR),
etc.”*”>* However, the catalytic ability is limited by multiple factors
such as synthesis conditions, morphology, measurement meth-
ods, etc.”>? 1t is hard to develop theories or models to describe
catalytic systems. Machine learning, with the benefits of multi-
factor fitting and identifying trends, has great potential in catalytic
fields. Similarly, with the help of machine learning, researchers
may be able to improve the understanding of the structure-
function relationship and predict the catalytic ability, thereby
guiding the synthesis of catalysts.

To date, there are already many websites, books, and reviews
on machine learning in chemistry or energy that describe
machine learning algorithms and the related research
process.”®*° To gain a better understanding of basic machine
learning concepts such as what an algorithm is, what a dataset
is, and how to manipulate and use machine learning, refering
to these excellent works may help in comprehending the
machine learning process.>*"** This review provides a perspec-
tive on input types, task types and state-of-the-art (SOTA)
performances when using machine learning in energy chem-
istry. We expect that this review could help chemists and
materials scientists to gain more insight into how machine
learning empower the development of energy chemistry.

Here, we will introduce how machine learning could optimize
and accelerate the development of energy chemistry, especially
in designing of materials. More specifically, this review focuses
on the recent advancements, applications, and future prospects
of machine learning in the fields of PV, catalysis and batteries.
These are essential areas of energy chemistry, where machine
learning techniques have been applied to improve the predic-
tion, design, and optimization of material properties. In Section
2, we provide a brief introduction to organic photovoltaics
(OPV) and delve into the structural and electronic descriptors.
We further discuss the development of de novo design of OPV
materials. In Section 3, we summarize multiple types of features
and prediction tasks for perovskites. After that, we discuss how
machine learning helps in perovskite discovery through experi-
ments and auto-synthesis. In Section 4, developing atomistic
potentials and the prediction for heterogeneous catalytic reactions
are presented. As a practical application, battery design and
management are reviewed with typical examples in Section 5.
Finally, a perspective on developing novel machine learning-based
methodologies aimed at solving chemistry problems and their
applications in energy chemistry is proposed. With the assistance
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of machine learning, scientists can benefit from developing
materials designs on different scales, from predicting and opti-
mizing properties, fitting atomistic force fields, to managing
systems.

2. Organic photovoltaics

Compared with traditional crystalline silicon PVs, OPVs have
the advantages of light weight, low-cost, and flexibility.>*** One
of the major advantages of commercial OPVs is that they can be
solution-processed, which means that they can be cost-
effectively produced on large-area PVs.*® OPVs have been under
development for several decades, but their performance still
lags behind that of crystalline silicon PVs, particularly in terms
of PCE. It is imperative to search for novel and efficient OPV
materials. Many factors can affect OPVs, such as electronic
structure properties (HOMO, LUMO, and bandgaps), interfaces,
and bulk heterojunction (BHJ) mixing. With the advent of
machine learning, it is now possible to quickly predict these
physical properties or efficiency before experiments, thereby
saving time, resources, and manpower. Therefore, machine
learning can be used as a powerful tool for high-throughput
screening in the development of OPVs.>” Many accessible mate-
rial databases that have been created based on previous calcula-
tion works provide a good data environment for using machine
learning in exploring promising OPVs.**™° Besides, researchers
used to manually collect a large amount of data from previous
papers to establish training databases.*™*” Leveraging these
databases, many precise OPV prediction models have been
proposed.

2.1 OPV descriptors

Descriptors build a bridge between computer algorithms and
physical understanding, which is critical for effectively predicting
new materials or properties. Due to the complexity of OPV
structures, the understanding of the quantitative structure-prop-
erty relationship (QSPR) for OPVs is still inadequate even now.
Thus, researchers invest significant effort in developing descriptors
to uncover more hidden information within the structure of OPVs.

There are multiple types of descriptors used in the process
of converting raw data into features for OPVs, and these types
can be divided into two categories: physical property represen-
tation and chemical structure representation. In physical prop-
erty representation, researchers usually directly use electronic
structure parameters or measurement values as the features.
When constructing features using physical property data from
different papers, it is important to ensure similar measurement
conditions to avoid model bias or deviation. In chemical
structure representation, various methods based on different
structure description dimensions can be employed to describe
the structure. It is important to note that these methods are
often accompanied by a loss of information when converting
a chemical structure to a feature. Therefore, the method of
converting chemical structures into features may vary depending
on the specific situation.

898 | Energy Adv., 2023, 2, 896-921
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It is important to choose the suitable number and types of
descriptors as features because adding more features in the
model does not guarantee better prediction results. The inap-
propriate descriptors can add redundant information to the
model and too much features may lead to model overfitting.
Besides, it may also increase the dimensionality of the data,
making the model training more expensive and difficult. Hence,
feature engineering is usually required after manually selecting
the descriptors to optimize the performance of the model.** In
actual practice, chemical structure descriptions and electronic
descriptions typically complement one another.**

2.1.1 Chemical structure representation. In machine learning
in chemistry, the most commonly used descriptors are chemical
structure descriptors. Compared to values or parameters based on
manual measurements, molecular structures are a precise input for
machine learning algorithms requiring accurate data for training
because chemical structures are not influenced by experiments.
Chemical structural descriptors have some benefits: (1) chemical
structural descriptor inputs are suitable for all molecule-based
models, regardless of their downstream task. This universal input
even contributes more than experimental values in the model.
Zhao et al. investigated the impact of several descriptors on the
prediction of PCE and discovered that structural descriptors have
the most contribution to machine learning models.* (2) Accuracy
of chemical structural descriptors is not affected by noise, occa-
sional experimental errors or hidden parameters.*® Therefore, a
combination of different structural databases is possible. (3)
Chemical structure representations are flexible and adaptable.
Researchers can use language modification methods to boost the
precision of chemical structure representations. Generally, mole-
cular structures can be represented by simplified molecular-input
line entry system (SMILES) character strings.”” This simple repre-
sentation is widely used in chemical structure databases, chemical
drawing software, molecular modeling and recognized as the
standard compound representation for chemical information pro-
cessing tasks. It is easy to expand SMILES to novel representation
by adding topological or atom environmental to capture precise
molecular information from the structure.”® To adapt the deep
learning, O’Boyle et al. and Krenn et al. proposed DeepSMILES and
self-referencing embedded strings (SELFIES) for molecule genera-
tion, respectively (Fig. 2a).*>° Besides character representation, the
chemical structure can be represented as a compact numerical
representation based on the presence of pre-defined substructures
(Fig. 2b). This method is named molecular fingerprints. In poly-
mers, the chemical fragment representations could improve the
model performance. In our previous work, we developed the
multidimensional fragmentation descriptors method to boost
the prediction accuracy of linear conjugated polymers (Fig. 2c).>!
In addition to the abovementioned descriptors, complex atom-based
structure representations combine the electronic structure informa-
tion and topological structure information to provide a more
comprehensive understanding of a compound’s structure.*>>

In the chemical structure representation of OPVs, the whole
polymer cannot be described directly using the machine learning
algorithm for its complex components. As an approximation
method, researchers usually adopt individual monomers to

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Specific representation coding and differences between SELFIES and SMILES, with SELFIES having a more complex structure than SMILES.>®
Reproduced from ref. 50 under the terms of the Creative Commons Attribution 4.0 license from IOP Publishing. (b) Simple representation of molecular
fingerprints.>* Reprinted (adapted) with permission from ref. 54. Copyright 2014 Elsevier. (c) The multidimensional fragmentation descriptors strategy in a
linear alternative polymer; A and B represent different fragments in the polymer and A-B stands for a monomer in the polymer. The features from

different input dimensions work together and boost the prediction accuracy of the linear alternative polymers.>

from ref. 51. Copyright 2021 American Chemical Society.

represent the polymers. Therefore, the process of describing small
molecule and polymer structures is similar. In many cases of
small molecule or protein design, 3D coordinates or 4D descrip-
tors are useful as they provide detailed information about the
molecular structure and conformation.>*> However, the OPV struc-
tures are often more complex, and the use of these high dimen-
sional descriptors may not be as effective. Besides, researchers are
more concerned with OPV functionality than with subtle changes
in the absolute position. Thus, 3D or 4D descriptors are rarely
employed in the OPV machine learning work. In actual practice,
structural descriptors are mainly classified into 2D and 3D
categories. 2D descriptors can be mainly divided into SMILES
(including different kinds of SMILES, such as canonical SMILES
and SMILES with atomic mapping), InChl, Tensors and others.
3D descriptors can be divided into voxels, Coulomb matrix, tensor
field networks and potential energy surface method. Using the
concept of physical descriptors, Elton et al. introduced general
descriptor production rules in two and three dimensions.*®
Recently, the majority of OPV machine learning studies have used
molecular fingerprints as the primary structure representation.
This is because molecular fingerprints not only contain the
original structure of the molecule but also capture some informa-
tion from the surrounding atomic environment at a 2D level.
This type of environmental information is generally in the range
of 4-6 atoms such as extended-connectivity fingerprints (ECFP4
and ECFP6).”” Although molecular fingerprints lose long-range
structural information, it is believed that with a large enough
dataset, the environmental information supplemented by sub-
segments can still capture this information. This is because OPV
molecules have relatively fixed building blocks of the backbone
structure. Note that very few OPV works simply use structures as

© 2023 The Author(s). Published by the Royal Society of Chemistry

Reprinted (adapted) with permission

the only descriptor. Generally, multiple descriptors including PV
parameters and chemical structure information are featured
together.

In many cases using fingerprints as descriptors, random
forest (RF) and boosting decision tree (BDT) are the most
suitable models in OPVs.’®”° Sun et al. manually constructed
a database of more than 1700 experimentally tested real donor
materials including both polymers and small molecules (with
a median PCE of 3.48%).®° They compared the performance
of image representation, ASCII strings, and seven molecular
fingerprints in the binary classification of “high” or “low” PCE
(two thresholds are 3.00% and 10.00%) with the algorithms of
the back propagation neural network (BPNN), deep neural
network (DNN), RF and support vector machines (SVMs).
Besides, they also researched the influence of different lengths
of the fingerprints. They found that using RF with daylight
fingerprints®' an average prediction accuracy of 86.67% could
be achieved and explored whether the fingerprints whose
length is longer than 1000 bits including sufficient chemistry
information are suitable candidates for building descriptors
in PCE prediction models. Furthermore, Wu et al. established
a small database of 565 donor/acceptors (D/A) combinations and
used a fragment fingerprint method to build a PCE prediction
model.®? In their work, the authors employed five different
model methods including linear regression (LR), boosted regres-
sion trees (BRT), multinomial logistic regression (MLR), RF and
artificial neural network (ANN) to perform ternary classification
of PCE (power conversion efficiency) using thresholds of 7% and
11%. Among these methods, RF achieved the highest perfor-
mance with 65.2% accuracy in the ternary classification of high-
level PCE (>11%). They discovered six novel D/A combinations

Energy Adv, 2023, 2, 896-921 | 899
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after virtual screening. After that, they compared the PCE values
of the new materials with model prediction values and found
that RF prediction values are closest to experimental values.

As mentioned before, small molecules are treated as mono-
mers using fingerprints in OPVs without considering the mole-
cular weight and binding situation. In some cases, if the
structure is complex, it can lead to large deviations in material
predictions. Nagasawa et al. used MACCS fingerprints and
bandgaps, the HOMO, and weight-averaged molecular weight
as the input with ANN and RF methods to build a PCE
prediction model (Fig. 3).°> However, the predicted PCE of
selected OPV molecules in the Harvard Clean Energy Project
dataset was about 5.0%-5.8% while the experimental device
values were 0.47 £+ 0.04%. They concluded that the deviations
between the machine learning and experiment values are due
to the direction of combining and low molecular weight.
Additionally, as an extension of the molecular structure, mole-
cular graphs converted from SMILES can also be the structural
descriptors in building PCE machine learning models. Eibeck
et al. used the graph neural network (GNN) model and attention
fingerprint model found by Xiong et al.®* in the PCE prediction
and reported achieving the Pearson correlation coefficients
of 0.68 and 0.57.°> In the field such as retrosynthesis®®
and chemical reaction prediction,®” the molecular graph per-
formed well, and with the development of the GNN and
machine learning in chemistry, this method will contribute
more to OPVs.

CEP website

(~ 2.3 millions)

Il

1000 molecules
(Calc. PCE >10%)

1 polymer
(PCE = 5.0-5.8%)
for synthesis

View Article Online
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2.1.2 Electronic descriptors. In OPVs, there are many phy-
sical parameters achieved through experiments or simulations.
A few descriptors are from the raw experimental data values,
mainly focusing on the short-circuit current (Jsc), open-circuit
voltage (Voc), fill factor (FF), and PCE. Usually, the measured
parameters are used as targets to be predicted rather than
features. This is because the experiment-free machine learning
model can be used in the virtual screening of new materials.
Also, many electronic descriptors are from properties (e.g:,
HOMO and LUMO, bandgap, reorganization energy (1), dipole
moment (u), etc.) which are usually achieved through calcula-
tion. In previous research, more detailed discussions about
electronic descriptors were documented.***® Besides, new elec-
tronic descriptors can be derived from linear combinations of
defined electronic descriptors. Sahu et al. defined two new
descriptors, LUMO and HOMO differentials from the donor
and acceptor, and verified the poor correlation between these
attributes. This result suggests that they can be treated as
independent descriptors (Fig. 4).>*

Combining electronic descriptors with visualizing decision
tree models, researchers can gain physical insights and experi-
mental guidance from the trained models.”"”® To visualize a
decision tree, the model is represented graphically as a tree-like
structure. In the tree-like structure, there are four main types of
nodes: root nodes, leaf nodes, internal nodes, and branch nodes.
To be more specific, input data are located at the root nodes and
the predictions are at the leave nodes. Each branch of the tree

RF screening

(ECFP6, n=8)

~ RF screening

(MACCS, n=4)

149 molecules
(PCE >5.7%)

Manual screening
(synthetic aspect)

1 molecule

modification

Fig. 3 Workflow of the high PCE OPV material selection by Nagasawa et al.%® Reprinted (adapted) with permission from ref. 63. Copyright 2018

American Chemical Society.
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Fig. 4 (a) Using the values of the HOMO and LUMO as features in the ternary OPV Voc prediction model. (b) The RF model and (c) SVM model.®®
Reproduced from ref. 69 under the terms of the Creative Commons Attribution License from Wiley.

represents a decision made on the attributes, and the internal
node shows the test on the attributes. This tree is constructed by
repeatedly splitting the data based on the attributes that provide
the most information gain. This process will continue until the
stopping criteria are met. Decision tree visualization can help to
understand the structure and decisions made using the model
and can provide direct insights into the relationships between the
input variables and the output predictions. For example, Lee used
a ternary OPV machine learning model to verify the correlation
between the electronic properties (HOMO and LUMO from
donors, acceptors, and third components, respectively) of various
materials and their PCE®® (Fig. 5). He employed the feature
ranking mechanism of the RF algorithm to rank the contribution
of each feature to the V¢ and concluded that the donor’'s LUMO
and HOMO had a primary impact on the Voc. Furthermore, he
established an RF model for binary classification, with a threshold
of 9%. After analyzing the logical flowchart of the classification of
the two groups, it was found that the LUMO and HOMO of the
donor, as well as the HOMO of the acceptor, were the key values
that contributed to the classification model. This result is con-
sistent with previous work in the field, which also identified these
features as important for the classification of the two groups.

2.2 De novo materials design

In OPVs, the main goal of using machine learning is to explore
new materials. No matter whether chemical structural

© 2023 The Author(s). Published by the Royal Society of Chemistry

descriptors or electronic descriptors are used, the applications
in which they are used are mostly focused on supervised learning,
which requires the manual definition of data labels. However, the
supervised learning model can only use the fragmentation meth-
ods to generate novel OPV molecules. In this method, researchers
adopt a trained supervised learning model to score the manually
defined fragments or building blocks from defined fragment
combination libraries. Such libraries could be established using
either expert knowledge or traversal searching methods.”>”* After
identifying the well-performing fragments, researchers usually
combine them into novel compounds. A trained prediction model
is used to predict the properties of candidates.”* After that, the
candidates with the desired properties are selected for further
study and experimentation. A typical benefit of this approach is
that new compounds are more likely to be synthesizable under
real-world conditions. However, based on this method, chemical
space is limited by the way of combinations and the types of
fragments, which limits the diversity of new molecules. Recently,
there has been an increasing number of researchers showing
interest in the de novo design of compounds using deep learning
methods.””””” Using de novo design methods, researchers can
generate new molecules without any pre-defined building blocks.

Nigam et al. proposed a molecular generative neural network
model based on the SELFIES description method for inverse
molecular design, named superfast traversal, optimization,
novelty, exploration and discovery (STONED) and the workflow

Energy Adv., 2023, 2, 896-921 | 901
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is shown in Fig. 5. This model enables structure enumeration in
chemical space and the discovery of transformation trajectories
between any two molecules.”” The researchers utilized the ability
of SELFIES to generate multiple structures by adding, deleting and
changing random characters while maintaining a rational chemical
structure. This allowed them to form local chemical subspaces.
They also defined the chemical space path as a finite step change
between two molecules to achieve a transformation from one end
to the other. They tried to find the median molecule, which is
similar to several reference molecules, in the path of the two
reference molecules. In the application of the discovery of new
OPV molecules, they took three properties (high LUMO energy,
high dipole moment and high HOMO-LUMO energy gap) as end
molecules and tried to find median molecules among them.

For the de novo design of a molecule, it is important to select
the benchmarking task for the design. Currently, most of the
insight into which threshold in machine learning to use derives
from the researcher’s own judgment and experience. A public
benchmark is helpful in comparing the performance of different
models. Nigam et al. reported a series of benchmarks named
TARTARUS for designing molecules including OPV molecules.”®
They demonstrated the utility of the TARTARUS benchmarks by
evaluating several mature algorithms such as VAEs, long short-
term memory hill climbing (LSTM-HC) models, REINVENT,
JANUS, and a graph-based genetic algorithm (GB-GA). After the
algorithm evaluation, they proposed six benchmarks based on
the properties of the HOMO-LUMO gap, LUMO energy,

902 | Energy Adv., 2023, 2, 896-921

molecular dipole moment and PCE, and put forward more
detailed function combinations of these properties. According
to these benchmarks, they designed a small organic donor and
an acceptor molecule to be used in bulk heterojunction devices
with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly
[N-90-heptadecanyl-2,7-carbazolealt-5,5-(40,70-di-2-thienyl-20,10,
30-benzothiadiazole), respectively. Although these benchmarks
should not be viewed as the final performance judgments of any
method used (design issues should be case by case), they can still
provide preliminary insights. They also claimed that there is
currently no champion algorithm capable of performing tasks
on all benchmarks.

To date, de novo molecular design using deep learning still
has much room for improvement. More advanced algorithms,
broader and more comprehensive datasets, and more sophis-
ticated guidance for design models are worthy of further
consideration by researchers. Also, automated synthesis of
molecules is currently a hot topic in high-throughput
screening.””®® In the near future, we believe that a series of
on-demand designs for automated design and synthesis should
take chemistry to the next level.

3. Perovskite

Perovskite was named after the Russian geologist Lev Perovski,
and initially, it only referred to CaTiO;.*' Because of the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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development of a class of compounds with the same structure
as CaTiO; (ABO3), crystal structure compounds with perovskite-
like structures can also adopt this first name as a general title.
Perovskite is a face-centered cubic structure of the cubic crystal
system, and many different cations can be embedded in this
structure, allowing the development of a variety of engineered
materials.**®* This material has been successfully used as a
photovoltaic adsorber (usually in a form of perovskite
halides),®® and has the superiority of a high light absorption
coefficient, tunable bandgap, high defect tolerance, and simple
synthesis method. In recent years, the power conversion effi-
ciency of perovskite solar cells has reached 36%.%° Owing to the
outstanding performance, the perovskite materials have a wide
range of applications in a variety of other optoelectronic and
energy devices, including (but not limited to) light-emitting
diodes,®”"®® catalysts,**°° batteries,’"*> photodetectors, etc.?**

3.1 Features and descriptors

There are a lot of features that can be derived from the
perovskite structure.’® In the perovskite structure, the topology
of the crystal lattice constrains the positions of the atoms such
that the relative positions of the A, B, and O atoms or ions are
fixed. This means that when determining the available perovskite
structure, researchers can mainly focus on the matching of the
dimensions of the A, B, and O atoms. To evaluate the tolerance of
ion size mismatch in perovskites when forming different structure
types, Goldschmidt introduced a tolerance parameter ¢ calculated
from the A, B, O ionic radii ratio, which has been widely applied to
study different structures of perovskite.”® Besides, the octahedral-
factor pair p is also from the basic perovskite structure calculated
from the ratio between the ionic radii of anions and cations.””
With the development of structure research and more datasets for
perovskites, the tolerate factors have improved. Bartel et al
proposed a new tolerance factor that can be applied to 576 types
of materials, achieving a 92% accuracy in classifying whether the
materials are perovskites or not.”® Lu et al. enhanced the tolerate
factor and octahedral factor, which can cover almost all geometric
elements of structural formability.”® Generally, these two descrip-
tors are widely used not only in computation but also in experi-
ments and their revised version is successfully employed in
perovskite machine learning.">'""

There are other common descriptors besides the structural
features that can be used to represent perovskites, such as
atomic, element level properties and macroscopic measurement
properties. After considering the A-sites and B-sites, a huge
number of microscopic descriptors can be extracted from the
atom, such as atom mass, radius, electron affinity, Pauling
electronegativity, etc. Similarly, macroscopic properties such as
density and volume, and space groups can also be included in
the feature input. Li et al built a perovskite bandgap energy
prediction model, which uses five structure relative factors (such
as the tolerance factor) and an initial atomic feature set with 77
atomic physical, chemical and spatial properties.'® Isayev et al.
proposed a concept of property-labeled material fragments
(PLMFs), which combined the geometry structure with atom/
element properties, including the multiplication and ratio of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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general element/atomic values, measured values and derived
properties.’®* Generally, it is possible to use different combinations
of descriptors to create new descriptors using expert knowledge.
Additionally, a data-driven method such as sure independence
screening and sparsifying operator (SISSO) can also be used in
exploring new descriptors. To be more specific, SISSO is a math
model that is based on the LASSO approach. With the input of
physical quantities, it could perform linear combination (unary or
binary operators), which can select the best descriptor from a
large space of parsed expressions (potential features).'*>'** Many
examples show that this method can produce numerous novel
descriptors.'” Usually, using SISSO is accompanied by feature
engineering (such as generating several potential descriptors and
selecting the most suitable one). For example, Xie et al. used the
SISSO with atomic radius, valence, electronegativity, permittivity,
and nine operators to yield over 182 million descriptors
(equations).'% Finally, after cross-validation, they selected the best
features and successfully adopted them in octahedral tilting
prediction with 81.7% accuracy. Notably, it is not a fact that the
prediction result is better with more combinations of material
properties. It is a problem that requires a tailored approach to
feature selection. Xu et al. showcased that for predicting the
properties of ferroelectric perovskites, the traditional machine
learning workflow can perform better than the SISSO based
method in specific surface area, bandgap, Curie temperature
prediction.'” Therefore, in the choice of material electronic
descriptors, multiple explorations can be used to find the optimal
solution.

With the development of deep learning, a number of
descriptors have been integrated to fit the DL input, which brings
a new development in this area.'®*'*® Chen et al. proposed a novel
neural network materials graph network (MEGNet) and repre-
sented a series of crystal perovskite structures as graphic
structures."'® To be more specific, as shown in Fig. 6, they
followed the GNN normal representation and defined the V, E,
and U as atomic (node/vertex), bond (edge), and global state
attributes, respectively. The original graph structure information
is first updated from the original bond states to the new bond
states. Subsequently, the atomic states are updated based on the
previous state and bond states. Finally, a new graph structure is
generated after using the previous global states. The previous
steps are repeated in a cycles until the final result is achieved. 11
of the 13 properties predicted in MAE were under the generally
accepted thresholds of chemical accuracy and better than the
previous work using the QM9 database. This method also extends
to predict the synthesizability and bandgap of perovskites.'****?

Besides, automatic unsupervised learning methods can
extract hidden information from the original input in the field
of perovskites, leading to the formation of non-manual defined
descriptors."™ From an encoding-decoding model such as
variational autoencoders (VAE), original features are embedded
into a series of compressed latent vectors, which can capture
more in-depth features. Using the features extracted only from
its chemical formula in the VAE model, Ihalage et al. defined
the mean vector generated from VAE (u) as the perovskite
material fingerprint (Fig. 7)."** Furthermore, they verified this
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new fingerprint with the k-nearest neighbor method and found
that in the fingerprint space, similar materials are located close
to each other. 5-Nearest neighbors (5-NNs) can determine the
correct experimental crystal system of the parent composition
with a success rate of 71.8%. Furthermore, non-manual defined
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Feature engineering

descriptors can be used to de novo design the perovskite.
Based on the generative adversarial network (GAN) and trans-
former models in machine learning, Dan et al. and Wei et al.
proposed material design models named MatGAN and crystal
transformer."*>''® Wei et al. compared these two models and
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Fig. 7 An overview of using VAE to make perovskite material fingerprints. (a and b) In the part of descriptor creation section, they explored the periodic
table for elements that may fully or partially fill octahedral and interstitial positions and specified the following conditions: (1) in the generation, the
average oxidation of site A should not be larger than that of site B; and (2) the average ionic radius of the A site should be more than or equal to the
average ionic radius of the B site. (c and d) In the model training section, they trained the VAE model on over 2000 unlabeled experimental data sets.
Calculation of Euclidean distances in fingerprint space between experimental components and potential perovskites.*** Reproduced from ref. 114 under

the terms of the Creative Commons CC BY license.
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found that the transformer-based model is more suitable for
exploration in known chemical spaces due to its ability to
capture element interrelationships, whereas the GAN-based
model is more appropriate for discovering new molecules in
uncharted chemical spaces.

3.2 Types of perovskite prediction tasks

Despite the rapid development of perovskites in recent years,
there are still several challenges that restrain perovskite
industrialization."'”"*® The first challenge is the requirement of
potential new materials. Although lead-based halide perovskites
currently have the highest PCE, their decomposition can lead to
significant environmental concerns. However, non-lead halide
perovskites have not been able to surpass lead-based perovskites
in terms of efficiency currently, making it necessary to predict the
PCE of materials using computational methods. Additionally, in
experimental processes, it is common to judge whether a struc-
ture belongs to a perovskite structure or not, and find out how its
physical properties (e.g., lattice constant, bandgap, lattice con-
stant, etc.) can be regulated. These processes are time-consuming
and need a series of experiments. Besides, some kinds of per-
ovskites decompose rapidly in the presence of water vapor, light,
increased heat, etc., which deviate from laboratory conditions.
Machine learning can play a crucial role in addressing these
challenges. Using the trained prediction models, researchers
can make rapid and accurate analyses of perovskite structures
and physical properties.

Predicting the basic physical information of perovskites can
be of great help in the exploration of new materials, the
mapping of experimental parameters and the understanding
of structure-function relationships. Many models have been
developed to predict the physical properties of perovskites such
as bandgaps,'°>'"® oxide ionic conductivity,"*° thermodynamic
stability,"*"'** dielectric breakdown strength,'**'** lattice
parameters,'>® crystal structures.'®® For example, Zhang et al.
established a model to predict lattice constants based on cubic
perovskites.'>”'*® Besides, Li et al. predicted formation energy,
thermodynamic stability, crystal volume and oxygen vacancy
formation energy using a variety of machine learning models."*
Saidi et al. constructed a convolutional neural (CNN) model for
deriving relevant physical properties (e.g., lattice constants, octa-
hedral tilt angles, etc.) from the given perovskite material."*°
Compared to the first-principle methods such as density func-
tional theory (DFT), these kinds of machine learning models can
be used for low-cost large-scale screening of physical properties in
perovskite materials.

A significant concern in perovskite research is the explora-
tion of identifying potential perovskite structure types. This
includes determining which elements can form perovskites and
understanding the different structural and compositional var-
iations that are possible within the perovskite structure,*?**3
Many models are successfully established in different kinds of
perovskites.'?*™*® Taking the electrical and geometrical factors
into account, machine learning models established by Li et al.
were used to predict the formation of perovskite structures and
showcased 96.55% and 91.83% accuracy in the single and

© 2023 The Author(s). Published by the Royal Society of Chemistry
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double perovskite databases.*® Combining first-principles
calculations and machine learning, Talapatra et al. proposed
to use energy above full = 50 meV as a threshold criterion for
database stability and non-stability for perovskite screening.*”
Based on 68 elements from the periodic table, they built a
virtual database of 437 828 stable perovskite structures. Based
on SHAP analysis, Zhang et al. proposed that the formation of
hybrid organic-inorganic perovskite (HOIP) structures is more
likely to occur when the A site radius falls within the range
of 1.95-3.25 A and the B site radius falls within the range of
0.60-1.20 A'*® Besides, machine learning can also be adopted
in identifying the perovskite structure in experimental charac-
terization. Massuyeau et al. built RF/CNN models capable of
identifying XRD peaks using XRD diffraction patterns as the
training set, which can directly distinguish between perovskite
and non-perovskite materials.’*® All of these works provide
good paradigms for identifying perovskites.

Searching for the stability and high PCE lead-free halide
perovskites'® is also an important downstream task of perovskite
machine learning application. Using the property density distribu-
tion function (PDDF), Stanley et al constructed features and
applied them to predict the bandgap, formation energy, and convex
hull distance of lead-free halide perovskites."*" Besides, machine
learning can also be used in the design of new types of lead-free
halide perovskites. Lu et al reported a HOIP prediction model
trained from 212 reported bandgap values.'** Using a combination
of DFT optimization and machine learning prediction, they deter-
mined the range of tolerance factors, octahedral factors, metal
electronegativity, and polarizability of potentially promising HOIP
organic molecules and selected 3 thermal and environmental
stable lead-free HOIPs with appropriate bandgaps from 5158
candidates. In addition, there have been research efforts that
combine machine learning and DFT,"** for discovering lead-free
hybrid perovskite,"** two-dimensional lead-free perovskite'*> and
others."®4¢ These works provide a solid foundation for discover-
ing more efficient and stable lead-free halide perovskites.

One of the major challenges that remains to be addressed in
perovskite applications is the stability of devices. The stability
of the perovskite devices falls short of mainstream silicon
devices. Odabas et al. analyzed the hysteresis and reproduci-
bility of perovskite solar cells and proposed materials and
alternatives for perovskite deposition with low hysteresis and
high reproducibility.’*” In materials, in addition to thermo-
dynamic stability, another more important aspect to consider is
mechanical stability (or mechanical strength). Jaafreh et al. inves-
tigated the mechanical strength of perovskite-based materials
using the AdaBoost algorithm with the volume and shear quan-
tities of the elastic modulus and its scaling criterion (satisfying G/
B smaller than 0.57 for ductility at room temperature (RT)). Based
on the model, they identified about 770 perovskites with mechan-
ical strength."*® Howard et al. proposed a reap-rest-recovery (3R)
cycle machine learning framework to avoid permanent failure of
perovskites due to exposure to water vapor and oxidation.'*® Due
to the complexity of factors such as device stability, more effective
models with interpretability still need to be developed for evalua-
tion to help find a suitable device."*°
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Compared with using virtual datasets, using real-world
datasets is considered a more appropriate approach for pre-
dicting the properties of perovskite materials. However, one of
the obstacles of this method is the time-consuming and labor-
intensive process of manually collecting and cleaning large
datasets from thousands of perovskite-relevant articles. Thanks
to the development of natural language processing (NLP),
much of the chemical text and information extraction toolkits
are proposed such as ChembDataExtractor, OSCAR4, Chemical-
Tagger and others.’>'™>* Thus, it is possible to do text mining
and build relatively large real-world datasets for perovskite
prediction.”>'® Beard et al."®” adopted the ChemDataExtrac-
tor to build two datasets from 25720 articles regarding dye-
sensitized solar cells (DSCs) and perovskite solar cells (PSCs)."*”
Furthermore, using an automatic collection dataset can directly
train the machine learning model. Kim et al. proposed a
linguistic model-based approach for linking the scientific
literature to material synthesis insights and successfully per-
formed perovskite synthesizability screening (prediction of
two precursors).’*® Although there are few examples in the area
of text-mining, it is likely that in the future the text-mining
method will play an important role in building perovskite
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datasets as the amount of scientific literature data continues
to grow.

3.3 Experimental conditions and acceleration

In many cases, machine learning is often used as a powerful
tool for experiment-free exploration in perovskite research.
Although decision trees and SHAP’s interpretable mechanisms
can provide an intuitive understanding of how a model arrived
at its predictions, it is not always clear if the underlying
assumptions of the model are valid or if they accurately
represent real physical processes. One explanation is that the
experimental environment is usually more complex than the
features input in the machine learning models.”">* Additionally,
data from different articles may be collected under different
conditions, using different measurement techniques, or with
different levels of measurement accuracy, making it difficult to
compare and use in a machine learning model. It is important to
validate the accuracy of machine learning models by combining
the results of machine learning calculations with experimental
work."®® This approach helps to ensure that the predictions
made by the models are accurate and reliable. By using machine
learning as a tool, it is also possible to accelerate perovskite
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Fig. 8 High throughput experiments conducted by Sun et al. Precursor solutions were prepared and a high throughput experimental cycle was
designed. Three experiments and characterization were carried out to examine the structural and optical properties according to thin film deposition, X-
ray diffraction and UV-visible spectroscopy.’®! Reprinted (adapted) with permission from ref. 161. Copyright 2019 Elsevier.
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discovery experiments in real-world conditions (usually with
high throughput experiments)'®*'®* (Fig. 8). All of these works
are considered as accelerating the speed of the experiments.

To be more specific, the accelerated experiments assisted by
machine learning can be divided into two parts, to explore the
experimental condition and realize verification.'®® In the aspect
of materials or experimental reagent selection, there are a lot of
studies that have been reported. Yu et al. used machine learning
to study the reactivity trends of different types of amines and
suggested five property recommendations of amines for post-
treatment of MAPbI;."** By developing the capping layer, Har-
tono et al. used RF regression and SHAP values to find the
features having the largest contribution to stability, and found
that the most important properties for prolonging the onset of
degradation were a low number of hydrogen bond donors and a
small topological polar surface area.'®® Furthermore, based on
their model, they proposed and experimentally validated phenyl-
triethylammonium iodide (PTEAI) as the best capping layer
material. They found that the stability lifetime of MAPbI; was
4 £ 2 over bare MAPbI; and 1.3 £ 0.3 over octylammonium
bromide (OABr), which is SOTA at that time. They also gave a
corresponding explanation based on XPS and FTIR results that
the capping layer on top stabilizes MAPDbI; by changing the
surface structure and chemistry, which match the previous
experiment regulations.’®*'®” Besides, by machine learning
and experimental verification, Cai et al. confirmed the ratio of
Sn: Pb in MASn,Pb,-xI; holding an Sn-Pb alloy within the

perovskite crystal."®®
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In exploring the device stability condition part, Hu et al
investigated the factors affecting the stability of perovskite solar
cell devices through a combination of experiments and
machine learning.'®® Five factors affecting the efficiency and
stability (grain size, defect density, bandgap, fluorescence life-
time and surface roughness) were selected using machine
learning models and proposed that roughness and crystal size
have a strong influence on long-term stability. Subsequently,
based on a self-built PCE model, they designed different con-
ditions to vary the surface roughness to achieve the best
stability of perovskite devices at 25% humidity and 25 degrees
Celsius.

Machine learning-assisted high throughput experiments for
automated synthesis have an important role in replacing man-
ual synthesis and a large-scale exploration of perovskites.'”*72
More specifically, human-based operations are replaced with
fully automated robotic working and the process is iterative
between automated experiments and machine learning-based
experiment planning. This method can speed up the experiment
considerably compared to human labor. For example, Li et al.
reported a high-throughput robotic perovskite synthesis system
73 Bayesian
optimization is the most commonly used algorithm, which
performed well in low-dimensional parameter space.’’*'”> As
shown in Fig. 9, MacLeod et al. developed an 8-step thin film
modular robotic platform called ‘Adad’, which automatically
synthesizes, processes, and characterizes thin-film samples.
Using ChemOS in the previous work, a Bayesian optimization

that takes 20-fold less time than manual synthesis.
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algorithm was applied to design the next sample for the experi-
ment after the characterization."”®'”” Besides, Higgins et al.
used a pipetting robot to build a perovskite combinatorial library
and used Gaussian regression (a form of Bayesian optimization)
to analyze the physical properties of the constituent series.'”®
However, compared to the integrated pervasive API interface of
machine learning, machine learning-assisted high-throughput
experiments still require the development of a pervasive experi-
mental system and software in the future.

4. Machine learning in catalytic
reactions

Catalysis is important in energy storage systems."”>'*° Catalytic

reactions are complex due to multi-phase involved surfaces/
interfaces, mass transfer effects, and various geometric/electronic
structures of catalysts.'®"™*®” Traditional methods for designing
catalysts mainly focus on synthesis and computational-assisted
design, hoping to understand the mechanisms and derive empiri-
cal rules for catalytic properties. However, it is greatly limited by
the quality of experiments and the precision of calculations.
Machine learning helps researchers to have a better understand-
ing of the structure-property relationships and accelerate the
discovery of new catalysts.

4.1 Optimizing potentials

Machine learning is a powerful tool for optimizing interatomic
potentials. Traditionally, a lot of physics-based potentials have
been applied to Monte Carlo simulations and molecular
dynamics (MD) simulations.'®®°* However, the accuracy of
these potentials cannot be guaranteed and is hard to improve.
First-principles simulation can provide enough accuracy, but it is
limited by the cost of calculations. It is impossible to run enough
first-principles calculations for different types of potentials. With
the development of machine learning, it becomes possible to
train models with a practical number of first-principle calcula-
tions and obtain accurate atomistic potentials. This routine
would accelerate MC/MD calculations and allow for long time
scale simulations.™*"%

By using machine learning methods, machine learning
potentials are obtained by fitting energy and force from DFT
calculations. A classical method was proposed by Behler and
Parrinello in 2007."°* Similar to empirical potentials, the total
energy E could be expressed as a sum of atomic contributions E;,
an approach that is typically also used in empirical potentials.

E=YE )

In Behler et al,"** researchers proposed a neural-network (NN)
representation of DFT potential-energy surfaces (PESs). The
advantage of this method is that it could provide the energy
and forces of all atomic positions, which is faster than first-
principle methods and applicable to both periodic and nonper-
iodic systems. The critical point is the introduction of a new
symmetric function, where each atom reflects the local environ-
ment that determines its energy. Furthermore, Behler improved
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this symmetry function in 2011, which is called the atom-centred
symmetry function (ACSF)."®® The inspiration is that Cartesian
coordinates are not good enough to represent atomic positions.
So a transformation to symmetry functions is necessary to
construct high-dimensional NN PESs. This method is applicable
to different types of systems, like molecules, crystalline, amor-
phous solids, and liquids.

Another important method to calculate PESs was proposed
by Bartok et al,'® in which a kernal-based descriptor was
applied. In this research, they started with forming a local
atomic density related to neighbor atoms, and converted the
PES to an interpolation of the atomic energy in the truncated
bispectrum space. By using Gaussian process (GP) regression,
they realized a good approximation to the atomic energy
function. Then with different sparse configurations, they
proposed a final expression called the Gaussian approximation
potential (GAP) model. This model also performs well in bulk
crystals at high temperature. As a typical method, it has been
applied to develop smooth overlap of atomic positions
(SOAPs)."” This proves that some widely used descriptors
could be concluded using a general approach, where they
applied a finite set of basis functions to expand the atomic
neighborhood density function. To make a best estimate of
atomic energy function, it assumes a Gaussian basis function
as below:

e(b) = Z oy

=(1/2) 3" [(br=bus) /0
! = Z“nc(b:bn)v (2)

where n and [ range over the reference configurations and
bispectrum components, respectively, and 0; are (hyper)
parameters.

Thompson et al.'*® proposed a new interatomic potential for
solids and liquids, which is called spectral neighbor analysis
potential (SNAP). Different from the GAP model proposed by
Bartok,'®® researchers proposed the bispectrum as its descriptor
and assumed a linear relationship between atom energy and
bispectrum components. In SNAP, the coefficients are deter-
mined by the weighted least-squares linear regression, which
allows the model to fit a full set of quantum mechanics calcula-
tions. Also, the symmetry properties are applied to reduce the
computational cost.

By utilizing graph convolutional neural networks (GCNNs),
Schutt et al.*®® developed a deep learning architecture SchNet
to model atomic systems. By using continuous-filter convolu-
tional layers, SchNet is able to predict the potential-energy
surfaces and energy-conserving force fields of small molecules,
which could be utilized in MD simulations. Also, GCNN has
been applied to overcome the limitations of traditional meth-
ods, which do not consider the spatial information. Gasteiger
et al.>® constructed a directional message passing neural net-
work (DimeNet) that embeds the messages passed between
atoms by considering directional information.

A deep learning method is promising in promoting the
efficiency of calculating many-body potential energy. Zhang
et al.*** designed a DeePMD-kit to build potential energy and
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force fields by using deep learning methods. The model used a
function containing coordinates and elemental types as
descriptors. By training the data from the AIMD to DeePMD
model, the MD stimulations can accurately replicate the results
of the original AIMD data. The DeePMD-kit is written with
Python/C++ and interfaced with TensorFlow, which improves
the training efficiency and user-friendly.

Also, a lot of software packages have been used to build deep
learning potential energy surfaces. The promotion and applica-
tion of machine learning models greatly benefits the develop-
ment of atomistic potentials, as we listed several typical
packages in below: 1. LASP:**? learning-based atomistic simu-
lation package (LASP) is a software platform that merges the
stochastic surface walking (SSW) method and global neural
network (G-NN) potential for exploring and evaluating the PES.
LASP provides various simulation techniques for PES data
building, exchange, and G-NN potential generation within a
single platform. 2. AMP:>**® the atomistic machine-learning
package (AMP) is a software package for building and using
machine learning models for atomistic simulations. It is designed
to handle large-scale simulations and includes features for paral-
lelization and incorporating diverse training data. 3. SchNet-
Pack:****% SchNetPack is an open-source software package for
building neural network potentials for molecular and material
simulations. It includes a variety of NN architectures, as well as
tools for generating and analyzing training data. 4. MLIP:**¢ 2%
the machine learning interatomic potentials (MLIP) software
package is a Python library for building interatomic potentials
using machine learning models. It includes a variety of machine
learning algorithms, as well as tools for generating and analyzing
training data.

In conclusion, machine learning has been widely applied to
find the PESs and atomic forces. With the development of
machine learning algorithms, different descriptors and regression
methods have been applied, leading to great progress. Compared
with ab initio calculations, adopting machine learning could
largely reduce the computational cost and maintain acceptable
accuracy. It is promising to apply machine learning methods in
MD/MC calculations.

4.2 Predicting catalytic ability

A lot of models and descriptors have been proposed to describe
the catalytic activity. Among them, the d-band center theory is a
classical descriptor for describing the relationship between the
adsorption intensity and the energy of d-band center, which leads
to different catalytic activities.’*® However, calculating the d-band
center of metals by applying the first-principles methods con-
sumes a lot of CPU time. So it is convenient to predict d-band
centers by using machine learning tools. Takigawa et al.*'® com-
pared with different regression models and applied the gradient
boosting regression (GBR) method with six descriptors to predict
the d-band center of 11 metals and their pairwise alloys. The
result shows a reasonably accurate d-band center energy with an
average root mean square error (RMSE) <0.5 eV.

Adsorption decides the interaction intensity between active
intermediates and the catalyst, and overpotential determines
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the behavior when assembling catalysts in batteries. Lian
et al.*"" investigated single-atom catalysts (SACs) for lithium-
sulfur (Li-S) batteries. At first, researchers classified the adsorp-
tion process by the presence or absence of S-S bond breaking.
Then, crystal graph convolutional neural network (CGCNN) was
applied to complete the classification and regression.”’> By
obtaining 812 adsorption configurations on 203 SAC catalysts,
researchers categorized them into 4 categories and excluded
unstable catalytic configurations. After training the machine
learning model, its prediction has a mean absolute error of
0.14 eV (Fig. 10a). As shown in Fig. 10b, for different elements,
researchers calculated two elementary steps and plotted their
free energy as AG, and AG,. These two elementary steps were
identified as potential limiting steps depending on the LiS*
adsorption energy, which shows a volcano plot as shown in
Fig. 10c. And by calculating the overpotential for different
metal sites and supporter composites (Fig. 10d), researchers
concluded that higher overpotential would lead to a limited
catalytic activity. Based on the volcano plot and overpotential
results, it could be applied to optimize the synthesis of SACs
and predict catalytic activities.

The oxygen reduction reaction (ORR) and oxygen evolution
reaction (OER) are key reactions for fuel cell and metal-air
batteries.>'*">'® The ORR/OER are limited by 4 electron transfer
and sluggish kinetics, so it is important to design efficient
electrocatalysts for these two reactions. In recent years, SACs
have been widely applied in the ORR/OER, and achieved high
activities.”"”*"® And this has led to increased interest in
investigating the key factors for these reactions, which could
assist in understanding the mechanism. Ying et al.>*° found a
volcano-shaped relationship between the catalytic activity and
AGo, and applied machine learning model based on the RF
algorithm. With consideration of the scaling relationship and
the feature importance, it determined the outer electron num-
ber and oxide formation enthalpy as the two most important
factors. And the machine learning model could give an accurate
prediction of AG, efficiently.

Furthermore, SACs still have some limitations, like compatible
low stability and simple adsorption configurations. So researchers
further introduced dual-metal-site catalysts (DMSCs),****** which
could both enhance the activity and optimize surface adsorption.
The increase in metal sites also increases the difficulty of inves-
tigating specific factors that contribute to reaction activity. So
machine learning methods have been applied here to reveal the
order of important factors,*** which benefits the optimization of
catalysis design.***?>®

Zhu et al®® conducted DFT calculations to calculate the
adsorption free energy and screen high ORR activity DMSCs as
the flowchart shown in Fig. 11a. By training models based on the
GBR algorithm,>*” it showed a low RMSE of 0.036 €V. And mean
impact value (MIV) has been applied here as an indicator to assess
the importance of features. With this tool, researchers proposed 7
features that were mostly related to the catalytic activity of DMSCs,
and determined that the electron affinity of metal atoms is the
most important feature for the activity of DMSCs. This result
provides a valuable insight for synthesizing DMSCs.
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Fig. 10 Taken from Fig. 3 and 4 in Lian et al.?!!* (a) DFT calculated and machine learning predicted adsorption energy of Li-polysulfides, (b) predicted

adsorption energy of LiS*, (c) volcano plots for catalysts with an overpotential lower than 0.1 V, and (d) heat map of the predicted overpotential of
different SACs. Reproduced with permission.?** Reprinted (adapted) with permission from ref. 211. Copyright 2021 American Chemical Society.

5. Machine learning in batteries

Since the first commercial product came out in 1991, Li-ion
batteries have been developed for over 30 years. As some of the
most promising energy storage devices, they have wide applica-
tions in vehicles, electronic devices, and aerospace.>**>*° The
focus of development of Li-ion batteries is on the energy
density, lifetime, and safety. To solve the bottlenecks in practical
applications, it is important to design and optimize different parts
of batteries. Currently, Li-ion batteries are suffering from low
coulombic efficiency, poor electrode stability, and formation of
dendrites.**'* Researchers put a lot of effort into developing
electrodes, electrolytes, and battery management systems to avoid
these issues.

A lot of effort has been made in finding new chemistry in
battery electrodes, and electrolytes. However, each material has
different electrochemical properties, and it is hard to optimize
directly. With the development of machine learning, it becomes
a powerful tool in dealing with complex factors and provides
relationships between structure and their functions. Machine
learning assists the design of batteries and boosts the discovery
of energy storage materials.

5.1 Predicting electrode materials

For Li-ion batteries, electrode materials play a crucial part in
determining voltage, capacity, Li storage ability, and stability of
the structure and cycling.>**>** It is important to predict these
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Fig. 11 Taken from Fig. 4 by Zhu et al.>?® (a) Schemetic plot of screening high efficient DMSCs from DFT calculation and trained with the machine
learning model, (b) training results of AGey, (c) feature importance based on the MIV. Reproduced with permission.??® Reprinted (adapted) with

permission from ref. 226. Copyright 2019 American Chemical Society.
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properties based on the intrinsic properties of electrode materials.
And finding a clear structure-function relationship would benefit
researchers to gain insights into the behavior of electrode
materials.?*"**> Many machine learning models have been used
to predict the properties of battery electrode materials. Joshi
et al>*® applied DNN, SVM, and kernel ridge regression (KRR)
as algorithms. Then, the model was trained with data taken from
the Materials Project database,>****> and a voltage profile of
electrodes was obtained. By applying a total of 4250 data instances
for 3580 intercalation-based electrode materials, researchers
extended their predictions to different metal-ions (Li, Mg, Ca,
Al, Zn, and Y) batteries. Their results showed a good fit for
predicting the voltage of current electrode materials. The machine
learning model is also able to investigate new electrode materials
by replacing Li with other metals. The result shows a similar trend
compared with experimental results.**®

Besides the voltage of electrode materials, the Li-ion conduc-
tivity is also a significant factor that decides the performance of
batteries. For different electrode materials, the conductivity can
differ in tens of magnitude,*”**® so how to develop high Li-ion
conductivity materials is of great importance. Sendek et al**°
discovered a lot of crystalline solid materials through density
functional theory simulations guided by machine learning-based
methods. In this research, researchers compared the machine
learning guided method with random search of material space,
and received at least a 44 times improvement in the log-average of
room temperature Li ion conductivity. It is also evaluated from the
F1 score, which is 3.5 times better than completely random
guesswork and much better than human brains. The screening
result shows that most of the high conductivity materials are
found by applying the machine learning guided search, which
proves its superiority over the traditional guess and test method.

With the development of the Materials Project database,
there are a lot of material data that could be utilized for
training a machine learning model. However, the quality of
models is greatly limited by the quality and quantity of data,
and for each material, not all properties are well prepared.

View Article Online

Energy Advances

So developing an unsupervised learning method is valuable, as
it could avoid labeling data and requires less data points.
Zhang et al.>*® proposed an unsupervised learning model to
find materials for solid-state Li-ion conductors. As is shown in
Fig. 12a, researchers applied an agglomerative hierarchical
clustering method to train a mXRD dataset, and it shows
similar characteristics with the real mXRD pattern (Fig. 12b
and d), which means a good quality of classification. Then this
model was used to find solid-state Li-ion conductors (SSLCs)
with high Li-ionic conductivities and group them accordingly.
(Fig. 12c¢). To confirm the superiority of the unsupervised
learning, they conducted AIMD simulations, and the result
shows that the model discovered 16 new fast Li-conductors
with conductivities of 10~ to 107" S em ™.

Previous works mainly focused on finding new compounds
as electrode materials. Except for screening and designing electrode
materials using components, optimizing heterogeneous electrode
microstructures is also a powerful tool in designing batteries.>”*
Starting from microstructures could unveil the relationship
between structures and functions clearly. With the help of machine
learning, complex structures could be designed. The reconstruction
routine consists of two major strategies, statistical sampling and
optimization. A common method is to sample descriptors of
different microstructures, and follow up with minimizing the
difference between reconstructed structure and real structure.
Based on this method, different modeling methods could be
applied to build 3D electrode models, like physics-inspired Monte
Carlo method and hierarchical reconstruction.”***>*

5.2 Designing electrolytes

Electrolytes play an important role in Li-ion battery systems,
like forming the solid electrolyte interphase (SEI) layer, con-
ducting Li*, and the compatibility of electrodes.>**>*” A lot of
investigations have been made to find new chemistry of elec-
trode materials and reactions, but the research on electrolytes
is less. A typical commercial electrolyte is LiPF, and organic
carbonate solvents, as it is easy to operate and cheap.>*®>*°
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Fig. 12 Plots remade from Fig. 2 and 3 by Zhang et al.%°° (a) the tree diagram of the agglomerative hierarchical clustering method, (b) the dendrogram to
the conductivity reveals grouping of known solid-state Li-ion conductors, (c) violin plots of ort data grouped in the grouping, (d) mXRD of materials, (e)
crystal structures (left) and (right) Li sites (green sphere) determined by local anion (yellow/red sphere) configurations, and (f) ort vs. activation energy, ion
conducting properties of newly predicted shown as filled symbols. Reprinted (adapted) with permission from ref. 250. Copyright 2019 Springer Nature.
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Plus, with the existence of electrolyte additives, it could stabi-
lize the electrolyte skeleton and improve the formation of the
SEI So the design of electrolytes is focused on lifting the ionic
conductivity, safety and stability.

Machine learning is a strong tool for large scale screening
materials and their properties. Jalem et al.>*° proposed a NN
method for screening potential solid state electrolyte (SSE)
materials. In the research, researchers utilized NN and searched
in the LiMXO, group. The screening was mainly focused on two
properties, the Li diffusion barrier and the cohesive energy.
These two properties are important for Li-ion conductivity and
bonding information. Researchers revealed the relationship
between diffusion barrier, the cohesive energy and their struc-
ture descriptors in the materials space. Compared with tradi-
tional partial least squares, the application of multi-output node
architecture could increase the accuracy of prediction.

Also, to realize the finding of new chemistry, the structure—
function relationship needs to be investigated carefully. Kireeva
et al.*®* applied the support vector regression to investigate the
composition-structure-Li ionic conductivity relationships. It
could be utilized to define parameters that lead to high Li-ion
conductivity, and search in a large material space, which could
provide potential materials as SSE.

As shown in Fig. 13a, the model predicts the conductivity
well with the experimental result. The accurate result could
provide a significant insight into the co-doping effect, which is
not completely issued by DFT calculation. Generally, the doping
of different cations shows the same trend without outlier-by-
prediction. Fig. 13b provides a model with an additional
descriptor pool. It reveals the impact of different parameters
on the property space.

Besides, machine learning could also be applied to predict
mechanical properties like the growth of dendrites. Dendrite
formation is a serious problem that affects the safety of
batteries.**>>** Using solid electrolytes is a promising method
to deduce dendrites, which could suppress the formation of
dendrites greatly. Ahmad et al®®* calculated properties of
mechanically isotropic and anisotropic interfaces as the criteria
of dendrite initiation. Then a GCNN was trained on the shear
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and bulk moduli, and gradient boosting regressor and kernel
ridge regression were used to train the elastic constants. With
these machine learning methods, 20 mechanically anisotropic
interfaces could be predicted between Li metal and four solid
electrolytes as the candidate materials.

SSEs are also promising for addressing the flammability
concerns, which requires to form a high quality SSE layer. To
evaluate the quality of SSE films, both conductivity and uni-
formity are considered. Chen et al.”®® proposed a high-quality
SSE film synthesis method guided by machine learning. In this
research, researchers adopted three algorithms (principal com-
ponent analysis, K-means -clustering, and support vector
machine) to analyze the relationship between fabricating para-
meters and film quality. Principal component analysis has been
used to determine the manufacturing conditions and converts
it to a low dimensional subspace. Then K-means algorithm is
applied to classify different films and defines its performance.
Finally, a support vector machine unveils the effect of fabricating
parameters on the quality of films. When assembling the whole
cell, the SSE film shows a good stability, proving this method to
be useful. The machine learning-assisted method successfully
optimized the production of SSE films.

In conclusion, machine learning boosts the design of electro-
Iytes and screening materials with superior physical properties.
Compared with traditional first-principle methods, machine
learning methods are able to consider more factors that deter-
mine the behavior of electrolytes and directly guide fabrication
process in batteries.

5.3 Optimizing battery management

When fabricating commercial products, strict process control
and optimization of parameters are important.>***®” Among all
these parameters, how to maximize the lifetime of batteries and
monitor the health condition has been considered as an
important topic.”®” Traditionally, lifetime testing of batteries
needs long term experiments that may last for months.**® And
with a variety of charge/discharge conditions for batteries, it is
hard to predict a certain health condition directly. These issues
bring trouble for sampling batteries and hinder the selection of
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representative data. Since machine learning is powerful in data
learning and predicting, it is promising to develop advanced
algorithms to optimize parameters in batteries and monitoring
lifecycles.>®°

To estimate the state of charge and health, it is significant to
build efficient models to describe battery management systems.
A main battery model that applies in battery systems is equivalent
circuit models (ECMs),>”**”* which simplifies complex systems to
circuits and fits models. For further advancement, physics-based
models (PBMs) are being developed for battery systems,>”> which
can take into account multi-dimensional information, like real
time scale analysis, and battery dynamic parameters.””>*”* These
models are always limited by their complexity and require a large
computational source to solve them. With the development of
machine learning, a lot of methods and algorithms have been
applied to simulate battery systems, including multiple regres-
sions, NN, and Bayesian.””>>"’

An early-prediction strategy has been an important method
for predicting the state of health (SoH) and remaining useful
life (RUL) of batteries, as it could shorten the time of experi-
ments and improve the efficiency of optimization. As shown in
Fig. 14, Attia et al,”’® researchers proposed a closed-loop
optimization (CLO) system, combining an early-prediction
model and a Bayesian optimization algorithm to accelerate
the time of identifying charge protocols. This strategy sampled
the first 100 cycles and utilized it as input for a linear model via
elastic net regression to find charging protocols.””® Compared
with full cycle experiments, the early-prediction model acceler-
ated more than 30 folds. Then, by applying a Bayesian optimi-
zation algorithm to early-prediction data, it could provide
an optimized result for next-round charging protocols.*8*>5
With these two strategies, the article made a successful approxi-
mation to the average life cycle and uncertainty of protocols.
Also, utilizing early-prediction results reduced the total
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optimization cost, which is beneficial for the wide application
of the CLO system. Furthermore, the early prediction strategy
could be extended and integrated with Monte Carlo simulation
to predict the battery remaining useful life.>®* Tong et al.**?
proposed a deep learning algorithm, named adaptive dropout
long short-term memory (ADLSTM). By obtaining early cycle
capacity as training data, researchers trained the model, and
used long term cycles as testing data. With a trained model, MC
is applied to figure out the uncertainty of battery data, and
enhanced the robustness of the model. This method showed
the lowest errors compared with other algorithms.

As a classical energy storage system, Li-ion batteries have
been widely applied in daily life because of their high energy
density.*®*>%° However, the degradation of Li-ion batteries, due
to their complex and non-linear deactivation, has caused a lot
of issues for recycling.>®*®?®” To decide the state of health and
remaining useful life of batteries, traditional methods mainly
rely on multiscale simulations.”®® But conventional simulation
tools cannot perform well on a wide length scale and long time
scale. So it is more accessible to combine different character-
ization and machine learning methods to generate a large
amount of data and build an efficient statistical model.

For investigating battery systems, electrochemical impe-
dance spectroscopy (EIS) is a classical method to measure the
relationship between input and output, like capacity and
resistance.*®® However, it is hard to predict battery properties
using EIS since the result of EIS contains both real and
imaginary part, and still there are debates on if an electrical
model could describe a complex battery system.”>*°”>°> Zhang
et al.*®® built a battery forecasting system with a GP model.
By feeding over 20000 EIS results of commercial Li-ion bat-
teries, the GP model could predict degradation and remaining
useful life successfully. With one of the largest dataset,
researchers could estimate the capacity and RUL of batteries

Training
dataset

\

Bayesian
optimization

/ N

N
.

Cycle life
predictions
(from ML
model)

Parameter 3
(CCY)

Parameter 1
(CC1)

Parameter 2
(CC2)

High uncertainty
(exploration)

B

processes

High cycle life
(exploitation)

WV R

Fig. 14 Schematic plot of the closed-loop optimization (CLO) system applied to predict the cycle life. Researchers adapted the first 100 cycles data as
the first feeding data and applied Bayesian optimization to determine parameters. This method provides insights to designing parameters of batteries.
Reprinted (adapted) with permission from ref. 278. Copyright 2019 Springer Nature.
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by applying only one impedance test in different dimensions,
like different temperatures and at different stages of life.
Another article also applied EIS to measure the state of charge
(SoC) and obtained a high accuracy model.*** By using a
sensitivity analysis of data, researchers extracted most reliable
features to predict the SoC. These methods help improving the
prediction of battery conditions, and also benefit sampling
methods of EIS.

In conclusion, to make predictions for state of charge and
health, researchers design a lot of machine learning algorithms
and models, combining different characterization methods.
These models provide valuable insights for designing and
optimizing battery systems and accelerate the prediction, which
are helpful for high throughput screening. Furthermore, by
combining more physics insights with current machine learning
algorithms, researchers can create models that can better explain
the results.

6. Perspective

Despite numerous models that have been developed, machine
learning-based energy chemistry is still in its early stages and
there is still much room for improvement. In this section, we
provide several perspectives based on our own knowledge and
the relevant studies. We will focus more on the challenges and
opportunities of machine learning in energy chemistry rather
than the general problem of Al for science like data bias or
limited data.

6.1 Concept transformation: from drugs to energy materials

Over the past 20 years, drug-based machine learning has made
significant progress, and become an important field in che-
minformatics. This machine learning expertise is now being
applied to energy chemistry, specifically in the field of OPVs
which draws on many concepts and techniques from drug-
based machine learning. For example, molecular fingerprints,
such as MACCS, and Morgan fingerprints, were initially
proposed and developed in small molecule drug research for
virtual screening and molecular similarity comparison, but it
has recently been widely applied in the field of organic photo-
voltaics in energy chemistry. Besides, the concept of QSPR has
been adapted from the drug discovery field to the field of OPVs
and other material machine learning work. In the relatively
early stages of machine learning in energy chemistry, it is
worthwhile to consider the inspiration and guidance from drug
design. This concept can help to speed up the development of
machine learning in energy chemistry and lead to more effec-
tive and efficient solutions.

More recently, drug design for small molecules has kept
pace with the development of applications in the field of SOTA
machine learning technology, such as different transformer-
based and GNN-based methods. But OPV machine learning
models, which are also based on organic small molecule
representation, are relatively limited and many of the current
works still rely on using molecular fingerprinting with
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traditional machine learning. Compared to deep learning,
traditional supervised learning requires less data and is more
robust. This advantage can be extended and more adapted to
the drawbacks of a small number of OPV datasets and low
standardization of experimental data collected from the litera-
ture, which leads to better performance. However, using super-
vised learning cannot model complex relationships. With the
development of OPVs and OPV data growth, the deep learning
method could lead to a deeper understanding of underlying
relationships in OPVs.

Transferring molecule-based models from one application
to another is often simple since many molecule-based models
have a high degree of applicability. For example, Some models
based on small molecules can be used not only in drug
discovery, but also in other areas such as materials science.
Flam-Shepherd et al. showcased that their fragment-based 3D
molecules model®® can be used in the design of both drug
molecules and the materials of organic light-emitting devices
(OLED). Besides, with relatively minor modifications, some
molecule-based generalizable models such as SMILES transformer
reported by Shion Honda et al**® and SSVAE deep generative
model reported by Kang et al.>®” could potentially be used in other
molecule-based prediction models in energy chemistry.

6.2 Trustworthy models

The lack of interpretability and experimental validation can be
a major limitation for many applications of chemical machine
learning, especially in the discovery of energy relevant materials.
Without understanding the underlying mechanisms of a model’s
predictions and whether those predictions are reliable, it can be
difficult for researchers to trust and use the model effectively
because a model’s predictions may not always be accurate.
Researchers can use different methods to make their works into
white-box models, which provide insights into how models work
internally. This allows researchers to have a better understanding
of the mechanisms behind their predictions and decision-making
processes.

Generally, some tools can help us to improve the interpret-
ability of our models. Using visualization tools based on the
NLP model or NN can visualize the weights of certain layers in a
deep learning model. In some famous machine learning
packages such as TensorFlow and Keras, it is easy to realize.
This can make the model more acceptable; Rives et al. proposed
a ESM-1b model which showed promising results in protein
structural and functional prediction.”®® They used the tsne
technique to visualize their trained weight in their ESM-1b
model and illustrated that the ESM-1b model can learn the
physical and chemical information from the protein sequence.
Besides the visualization tool, one useful tool is model-agnostic
methods®®® including the local interpretable model-agnostic
explanations (LIME), SHAP, recursive feature elimination
(RFE). The key attribute of model-agnostic methods is their
independence from specific model structures, enabling their
application across various model types. This flexibility allows
for broad adoption in different model configurations.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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In addition, experimental validation is an important part of
ensuring the overall acceptance of the work by the researchers.
With the development of chemistry machine learning, different
researchers will come up with different solutions for the same
task. Machine learning models with experimental validation
are more acceptable to the people who want to apply them.

6.3 Benchmark and criteria

There are different criteria reported in different papers for
manually collecting and incorporating data in the field of
machine learning in energy chemistry. It is extremely difficult
to determine which method is best suited for a particular
project, which highlights the importance of benchmarking
and comparison studies. To objectively evaluate different types
of models and descriptors, benchmark and the comparison
criteria should be established in a same downstream task.
Using the public benchmark and criteria, researchers can have
a better understanding of the strengths and weaknesses of each
method.

In many fields of machine learning, such as linguistics
and biochemistry, many benchmarks have been established.
Benchmark is one of the most important aspects of comparing
models, which helps to clearly compare the performance of
different models on different datasets. For molecules, several
molecule benchmarks were set by Wu et al** and Nigam
et al.”® However, more benchmarks are still needed to develop
because many novel models in machine learning in chemistry
are focusing on the descriptor and different works claim that
their strategy is excellent but the training and test environ-
ments are different. Therefore, it is hard to compare different
strategies. Although there are many public datasets for energy
chemistry as mentioned above, we hope to have more public
datasets in the future. Most of the current public datasets
are collected in different methods, the average accuracy of
validation with different datasets can be considered as an
evaluation benchmark.

In summary, establishing more benchmarks helps to com-
pare the quality of the corresponding algorithms or descriptors,
which is more conducive to the development of chemical
machine learning especially in energy chemistry.

6.4 Combining large language models with chemical science

The development of large language models (LLMs) has been very
fast in recent years.>*" Although LLMs have shown promising
results in predicting protein structures and generation in the
field of protein modeling, the use of LLM models in the field of
materials science is still in its early stages. There are several
LLMs that have been developed for molecules, such as DPA-1
and Molformer, which can be applied to potential energy
surfaces and encoding molecules.****% In terms of extracting
data from the materials science literature, there has been some
recent progress. For example, MatBERT is a Bert-based model,
which could be utilized to understand materials terminologies
and paragraph-level scientific reasoning and achieve state-of-art
results in several benchmark tests.>*>*°® These models can be
used in specific downstream tasks after fine-tuning. In the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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future, we believe that in specific areas, we will see more and
more applications of LLMs.

Some LLMSs, such as ChatGPT, are designed to help computers
understand human language and generate natural language
responses, making them valuable tools for various natural lan-
guage processing (NLP) tasks. Such a chatbot could provide an
accessible interaction way for researchers to leverage machine
learning models, even if they are not familiar with programming
or high-performance computing systems. Unluckily, a material-
specific chatbot has not yet been developed. Nevertheless, the
emergence of material-specific chatbots like ChatGPT that can
interface with various downstream tasks and allow users to use
pre-trained models for machine learning research is expected to
lower the barrier to entry for machine learning research.

There is still much work to be done in this area. One
challenge in building a LLM is the need for large amounts of
high-quality data to train the model. Another challenge is to
develop more specialized algorithms and architectures to handle
the complex nature of materials science data. Despite these
challenges, the development of LLMs has opened up new
possibilities in the field of chemistry, and we can expect to see
more exciting applications in the future.
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