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surement of soil organic carbon
using compact near-infrared spectrophotometers:
effect of soil sample preparation and the use of
local modelling†

Aymbiré A. Fonseca, ab Celio Pasquini *b and Emanuelle. M. B. Soares a

Compact near-infrared (NIR) spectrophotometers are low-cost instruments that enable rapid, non-

destructive and environmentally friendly measurement of soil organic carbon (SOC). However, several

aspects, such as soil sample preparation modes or modelling strategies, related to the use of these

instruments in large and heterogeneous data sets are yet to be addressed extensively. This work aimed

to evaluate the performance of two compact NIR spectrophotometers (NeoSpectra and NanoNIR) to

determine SOC content in a large-scale application. Also, it is important to understand the implications

of soil sample preparation (soil grinding and drying) and the use of local partial least squares regression

(LOCAL-PLSR) on the accuracy of the models built using these instruments. The soil samples of the

calibration (n = 320, selected using the Kennard–Stone algorithm) and validation sets (n = 160) were

collected from Minas Gerais state (approximately 589 000 km2), Brazil. Three soil sample preparation

modes were considered: air-dried and 2 mm sieved samples, air-dried and finely ground samples, and

oven-dried and ground samples. Models to determine SOC were developed using the traditional PLSR

(GLOBAL-PLSR) and a new approach based on LOCAL-PLSR, and their performance was evaluated using

the root mean square error of prediction (RMSEP). The accuracy of the models built using the compact

instruments was compared with the accuracy achieved using a bench Vis-NIR spectrophotometer. The

NeoSpectra was the best-performing spectrophotometer, showing values of RMSEP, R2 and bias,

respectively, between 5.2 and 6.3 g kg−1, 0.522 and 0.645 and −0.08 and −0.594. Significant

enhancements in SOC estimation of up to 13% were found when models were calibrated using LOCAL-

PLSR and oven-dried and ground soil samples. Our results showed that compact NIR

spectrophotometers are a cost-effective alternative to the Vis-NIR spectrophotometers for large-scale

SOC measurement. Models built using these instruments were accurate, mainly when LOCAL-PLSR

calibration was used together with oven-dried and ground soil samples.
Environmental signicance

Increasing soil organic carbon (SOC) stocks are crucial to improve plant production systems and to mitigate global climate change, among other things.
However, it is estimated that monitoring SOC has been generating more than 67 000 000 L per year of toxic acidic waste containing chromium globally, which
poses a risk to human health. In contrast, near-infrared (NIR) spectroscopy is an environment-friendly technique that follows the green chemistry principles.
Here we used compact NIR spectrophotometers to measure SOC on a large scale. Focus was given to the methodological aspects of using these instruments. Our
results revealed that compact NIR spectrophotometers are a cost-effective alternative for large-scale SOC determination. Local modelling and soil sample
preparation are strategies that can improve the performance of compact NIR spectrophotometers in the large-scale determination of SOC.
sa, Viçosa, Minas Gerais, Brazil

s, Campinas, São Paulo, Brazil. E-mail:

tion (ESI) available. See DOI:
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1. Introduction

Increasing soil organic carbon (SOC) levels can benet several
ecosystem services provided by soil, such as carbon sequestra-
tion and food production.1,2 However, managing soil to increase
SOC requires well-substantiated knowledge of spatial and
temporal behaviour of this attribute, which in turn requires
characterizing it more extensively. More than 75% of soil
analysis laboratories use wet oxidation proposed by Walkley–
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Black3 to determine SOC.4 Although wet oxidation is cheaper
than dry oxidation (reference method), the method is laborious,
time-consuming, and generates toxic acidic waste containing
chromium.5 Considering the potential of 600 million soil
samples to be analyzed globally,6 more than 67 000 000 L per
year (approximately 150 mL per sample) of toxic waste can be
generated by routine laboratories to determine SOC. It is
therefore of particular importance to developing analytical
methods to measure SOC content quickly, at low cost, without
generating waste, which can be used in large-scale applications
such as routine laboratory and precision agriculture.

In recent years, visible-near-infrared (Vis-NIR) spectroscopy
has shown great potential for being implemented in soil anal-
ysis laboratories to determine SOC.4,7–10 This spectroscopic
technique is fast, non-destructive, highly reproducible, and
environmentally friendly, and has low operating costs.
However, buying a Vis-NIR spectrophotometer remains rather
expensive (usually higher than US $50 000.00), mainly for small
laboratories. Given recent technological advances in the last
decade, several compact near-infrared (NIR) spectrophotome-
ters are available nowadays.11,12 These instruments are usually
small in size, light, and inexpensive (usually below US
$5000.00), allowing their widespread application in soil analysis
in small laboratories. When compared to Vis-NIR spectropho-
tometers, compact NIR instruments operate in a shorter range
of the electromagnetic spectrum,11–13 but in terms of perfor-
mance in SOC determination, the current literature shows that
models based on these instruments can present excellent
accuracy.10,14–16 However, the performance of compact NIR
spectrophotometers in SOC determination using large and
heterogeneous data sets has seldom been studied17 and, until
now, methodological aspects such as soil sample preparation
for using these instruments have not yet been addressed
extensively.

One of the advantages of using diffuse reectance spectroscopy
to determine SOC is the possibility of measuring this attribute
using 2 mm sieved soil samples.18 So, this is the most common
soil sample preparation mode used in studies with compact NIR
spectrophotometers in soil science (Table 1). However, even in
a 2 mm sieved soil sample, the great diversity of particles with
different origins, morphologies and granulometries can affect the
representativeness of its spectrum, which in turn affect the
performance of the models developed to estimate SOC.16 Previous
research with Vis-NIR spectrophotometers has shown that these
Table 1 Compilation of studies with the use of a compact NIR spectrop

Soil attributea Multivariate methodb So

Routine soil analysis PLSR Ov
SOC, TN, pH PLSR Ai
SOC, TN PLSR Ov
SOC, clay PLSR/RF Ai
SOC, TN PLSR Ov
Cyanide PLSR Ai
SOC, TC PLSR, CB, SVM Ai

a SOC= soil organic carbon; TN= total nitrogen, and TC= total carbon. b

and SVM = support vector machine.

© 2023 The Author(s). Published by the Royal Society of Chemistry
variabilities can be reduced by soil sample preparation before
spectrum acquisition.19–21 Soil grinding increases the homogeneity
of the sample particles, while soil drying reduces water domi-
nance in the NIR spectra.19–21 Thus, these procedures may provide
essential improvements to the performance of compact NIR
spectrophotometers, especially considering that one of the most
limiting aspects associated with these instruments is their smaller
probing optical window.22

Additionally, the partial least squares regression (GLOBAL-
PLSR) is the most common multivariate method used to cali-
brate prediction models based on compact NIR spectrophotom-
eters (Table 1). However, soil is a complexmulticomponentmatrix
with several organic and inorganic compounds that absorb NIR
radiation,23–26 so the use of databases composed of a wide diversity
of soil types in terms of texture, mineralogy, parent material, and
vegetation poses a challenge for modelling the spectral informa-
tion related to SOC.27,28Usually, increasing the scale of the data set
makes it more complex, negatively affecting the accuracy of the
models developed for SOC determination.4 An alternative
approach for optimizing large spectral libraries is local modelling.
The local partial least squares regression (LOCAL-PLSR) selects,
from a large data set, a subset of samples spectrally similar to
a given sample whose SOC content is to be predicted, reducing, in
this way, spectral variabilities related to other soil attributes in the
calibration set.29 Studies with Vis-NIR spectrophotometers have
shown relevant improvements in the accuracy of models built
from large spectral libraries when local modeling is used.30–32

Therefore, it is probable that this multivariate approach can also
improve the performance of compact NIR spectrophotometers.

Considering the presented context, the main objectives of
this work were to assess the performance of two compact NIR
spectrophotometers in the large-scale measurement of SOC and
to understand how the soil sample preparation and the use of
local modeling can affect the performance of SOC determina-
tion models developed using this type of instrument. The
results of the models built using compact spectrophotometers
were compared to those of models based on the Vis-NIR
spectrum.

2. Materials and methods
2.1. Study area and soil samples

The study was carried out using 523 soil samples collected from
the Soil Bank of the state of Minas Gerais.36 The sampling points
hotometer in soil science

il sample preparation Source

en-dried (40 °C) and 2 mm sieved Soriano-Disla et al.33

r-dried and 2 mm sieved Ahmad Jani et al.15

en-dried (40 °C) and 0.2 mm sieved Barthès et al.14

r-dried and 2 mm sieved Karyotis et al.34

en-dried (40 °C) and 2 mm sieved Mura et al.10

r-dried and 2 mm sieved Sut et al.35

r-dried and 2 mm sieved Sharifar et al.17

PLSR= partial least squares regression; RF= randon forest, CB= cubist,

Environ. Sci.: Adv., 2023, 2, 1372–1381 | 1373
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Fig. 1 Collection locations and classes37 of the soil samples employed in this work.
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span an area of 589 000 km2, covering all the main soil types
found in Minas Gerais state, Brazil (Fig. 1). The soil samples
were collected at a 0–20 cm depth in areas with preserved
vegetation, located in different Brazilian biomes (Atlantic
Forest, Caatinga, and Cerrado). Aer sample collection, the soil
was air-dried, and sieved to 2 mm.
2.2. Reference analysis

The SOC content was measured using the Walkley–Black
method.3 For this, 10 g subsamples of air-dried soil (<2 mm)
Fig. 2 SOC contents as determined by the wet oxidation method and th
set (B), and the validation set (C).

1374 | Environ. Sci.: Adv., 2023, 2, 1372–1381
were nely ground using a ball mill. Wet oxidation was per-
formed using acidied potassium dichromate solution
(K2Cr2O7 + H2SO4) as recommended.3 The SOC content varied
from 0.6 g kg−1 to 44.7 g kg−1 (Fig. 2A).
2.3. Spectral analysis

2.3.1. Soil sample preparation. The NIR spectra were
acquired from soil samples processed by three preparation
procedures. First, the NIR spectra were measured using air-
dried and sieved (2 mm) soil samples (Mode I). Aer scanning
eir occurring frequency observed for all data sets (A), in the calibration

© 2023 The Author(s). Published by the Royal Society of Chemistry
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this group of spectra, the soil samples were ground using a ball
mill for 5 min and then their NIR spectra were measured again
(Mode II). Finally, the ground soil samples were dried in
a forced-air oven at 50 °C for 48 hours, and then their spectra
were acquired again (Mode III).

2.3.2. Spectrophotometers and spectrum acquisition. The
performance of two compact NIR spectrophotometers was
evaluated. One of the spectrophotometers was a NeoSpectra
Micro-FT (NeoSpectra), produced by Si-Ware Systems (Si-Ware,
Egypt). The NeoSpectra operates in the wavelength range of
1350–2500 nm with a spectral resolution of 16 nm at 1550 nm.
The integration time per scan was 20 s. The other spectropho-
tometer was a NIRscan Nano (NanoNIR), produced by Texas
Instruments (Texas Instruments, USA). The NanoNIR operates
in the 900–1700 nm range with a spectral resolution of 10 nm.
The nal spectrum of each sample was obtained using the
average of 90 spectra acquired in 21 s.

A rotation device was used to move the soil samples over the
optical probing beam of these instruments during spectral data
acquisition,16,22 increasing the representativeness of the spectral
data. The soil samples were transferred to cylindrical glass vials
with 20 mL volume (Sigma-Aldrich, Ref. DWK986541-500EA).
During a measurement cycle (20 s – NeoSpectra; 21 s – Nano-
NIR), the vials were moved over the optical window of the
spectrophotometers, performing six rotations. A complete
description of the rotating sample device and its components
can be found in Pasquini and Hespanhol (2021).22 In addition to
providing better representative spectra, the rotational device
minimizes the effect of ambient light on the instruments, as the
ask containing the sample or Spectralon completely covers
the probing window of the spectrophotometers during
measurements.22

Spectrum acquisitions were made at the laboratory ambient
temperature (25 ± 1 °C) considering that the effect of the
temperature on the performance of the compact instruments
has not been characterized yet.

The reectance spectra (expressed in absorbance) were
measured using the intensity of the signal obtained with a vial
lled with Spectralon® as a reference for 100% reectance. The
compact spectrophotometers' spectrum acquisition protocol
includes a reference measurement before each sample
measurement.

To compare the performance of compact instruments in
large-scale SOC against the performance obtained using Vis-
NIR spectrophotometers, the same set of samples (composed
of 523 soil samples) was scanned with a Fieldspec 3 spectror-
adiometer (Analytical Spectral Devices, ASD, Boulder, CO). This
instrument operates in the 350–2500 nm range, with a spectral
resolution of 1 nm from 350 to 700 nm, 3 nm from 700 to
1400 nm, and 10 nm from 1400 to 2500 nm.8 Spectral data from
the Vis-NIR spectrophotometer were acquired by the GeoCiS
group using oven-dried (45 °C) and 2 mm sieved soil samples as
an average of 5 measured spectra taken at different locations on
the sample.8 These spectra are part of the Brazilian Soil Spectral
Library.8

2.3.3. Spectral preprocessing. Many pretreatments were
tested to minimize the effect of radiation scattering, including
© 2023 The Author(s). Published by the Royal Society of Chemistry
continuum removal, normalizations, standard normal variate,
multiplicative scatter correction, and rst and second deriva-
tives combined with different smoothing window sizes of the
Savitzky–Golay lter. Regardless of the spectrophotometer, the
pretreatment resulting in the smallest error was the rst
derivative using the Savitzky–Golay algorithm.38 For spectral
data acquired using the NeoSpectra, a window size of 15 data
points was used. For the NanoNIR, a window size of 21 data
points was used. The regions of the NIR spectra that presented
a low signal-to-noise ratio were removed before the develop-
ment of the models. Thus, the regression models built using the
NeoSpectra and NanoNIR were constructed employing the
range of 1365–2471 nm and 921–1680 nm, respectively. For the
Vis-NIR spectrophotometer, the rst derivative using the
Savitzky–Golay algorithm with a window size of 41 data points
resulted in the smallest error. The regressionmodels built using
the bench spectrophotometer were constructed employing its
full spectral range (350–2500 nm).

All spectral transformations and pretreatments were per-
formed using an Unscrambler X 10.4 (Camo, Norway).

2.3.4. Calibration and validation sets. Aer the removal of
outliers identied using Hoteling statistics, spectral residuals,
and an X–Y relation outlier (implemented in the Unscrambler X
10.4 – Camo, Norway), two-thirds (320 samples) of the data set
were selected using the Kennard–Stone algorithm39 to build the
calibration models. The remaining one-third of the soil samples
(160 samples) were set aside for validation. The sample selec-
tion using Kennard–Stone oen results in optimistic validation
results. On the other hand, it ensures the representativeness of
the calibration set while the validation samples do not extrap-
olate the model, also a requirement regarding multivariate
models. The frequencies of SOC content in the calibration and
validation sets are presented in Fig. 2. Further work will verify
the performance of the models for new samples.

2.3.5. GLOBAL-PLSR calibration. The predictive models
were calibrated using the global method (Fig. 3). The GLOBAL-
PLSR was developed using the entire calibration set (320
samples) and the leave-one-out cross-validation technique. The
number of latent variables (LV) producing the lower RMSECV
(root mean square error of leave-one-out cross-validation) was
selected. Then, the SOC content of all independent samples
(validation set) was determined using the global models.

2.3.6. LOCAL-PLSR calibration. Fig. 3 shows the LOCAL-
PLSR calibration procedures. For each soil spectrum of the
validation set, a group of samples spectrally similar to it was
selected from the calibration set. The selected samples similar
to the analyzed sample were used to t its specic LOCAL-PLSR
model. For this, the number of original variables (wavelengths)
was rst reduced by constructing a preliminary GLOBAL-PLSR
model40 using the spectral data of the 320 samples of the cali-
bration set and their SOC content. Then, the spectrum of each
sample of the validation set was projected into the PLSR space,
and their scores were registered. Finally, the original spectra of
both calibration and validation samples were replaced by the
PLSR scores to perform the similarity analysis.40

The optimal criterion to select the nearest neighbors to be
included in the local calibration set has not yet been well
Environ. Sci.: Adv., 2023, 2, 1372–1381 | 1375
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Fig. 3 Flow chart of LOCAL-PLSR and GLOBAL-PLSR calibration procedures. For a given sample in the validation set, k is the number of nearest
neighbor samples selected in the calibration set considering a given Mahalanobis limit distance.
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established in the literature. Here, a code was implemented in
the Jupyter Notebook interface with the Python language to
select the best similarity criteria based on the Mahalanobis
distance. Mahalanobis limit distances ranging from 0.1 to 3.5
(in steps of 0.1) were tested. Aer selecting the samples from the
calibration set that satised the imposed similarity criterion,
the LOCAL-PLSR models were constructed (Fig. 3) and the
number of LV was optimized in each case by cross-validation
and limited by the number of samples satisfying the distance
criterion. The lower root means square error (RMSE) was
employed to dene the best Mahalanobis distance limit for each
dataset (spectrophotometer type/sample preparation mode).

The main libraries used to build and evaluate the local
models in the Jupyter Notebook interface were NumPy,41

Pandas,42 SciPy43 and Scikit-learn.44

2.3.7. Performance of the models. The RMSE of calibration
(RMSEC) and prediction (RMSEP) and the ratio of performance
to interquartile range (RPIQ) were used to evaluate the models'
performance (Table 2).45,46 The randomization test (Voet, 1994)
was used to attribute statistical signicance in the comparison
of the RMSEP of models built with different types of compact
spectrophotometers and to evaluate the effects of the prepara-
tion of soil samples on their performance. Additionally, to
Table 2 Metrics used to assess the performance of the models

Metric Equationa

Root means square error – RMSE (g kg−1)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXi¼n

i¼1

ðŷi � yiÞ2

n

vuuut

Ratio of performance to inter-quartile – RPIQ
RPIQ ¼ Q3 �Q1

RMSE
Bias

Bias ¼ 1

n

Xi¼n

i¼1

ðŷi � yiÞ

a ŷi = predicted values; yi= reference values; n= number of samples; Q3
and Q1, third and rst quartiles, respectively.

1376 | Environ. Sci.: Adv., 2023, 2, 1372–1381
assess the repeatability of the SOC values determined using the
compact NIR spectrophotometers, ten (10) spectra of three (3)
soil samples with contrasting SOC contents (23.4, 17.6 and
12.9 g kg−1) were measured using the NanoNIR and NeoSpectra,
and their SOC values were then predicted and the mean values,
standard deviation and coefficient of variation (%) of the results
were calculated.
3. Results

The absorbance and the rst derivative spectra acquired using
the NeoSpectra and NanoNIR and the different soil sample
preparation modes are presented respectively in Fig. S1 and S2
of the ESI.† The spectrum set acquired using the bench Vis-NIR
spectrophotometer is also presented in Fig. S1,† and their rst-
derivative spectra are in Fig. S2 (ESI).†
3.1. Performance of compact spectrophotometers

Figures of merit of spectrophotometers' performance for
GLOBAL-PLSR models are presented in Table 3, and the results
of the randomization test for accuracy comparison among the
models are presented in Table S1 of the ESI.† The NeoSpectra
was the best-performing compact spectrophotometer for SOC
prediction using GLOBAL-PLSR calibration (Tables 3 and S1 of
the ESI†). The RMSEC of the models based on the NeoSpectra
ranged from 5.4 to 5.7 g kg−1, values approximately 30% lower
than that of the NanoNIR (Table 3). Additionally, the RPIQ
values of the models built using the NeoSpectra were always
greater than 2.0, as well as the one obtained with the Vis-NIR
spectrophotometer (Table 3). The NeoSpectra was also the
best-performing compact spectrophotometer to predict SOC in
independent soil samples (Table 3). During the external vali-
dation procedure, the RMSEP of the models built using the
NeoSpectra varied in the range of 6.0–6.3 g kg−1, values up to
12% lower than that obtained in the model developed using the
Vis-NIR spectrophotometer (Tables 3 and S1 of the ESI†).
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Figures of merit for the GLOBAL-PLSR performance using calibration and independent validation samplesa

Spectrum acquisition protocol

Calibration Independent validation

LV RMSEC (g kg−1) R2 RPIQ Bias RMSEP (g kg−1)

NeoSpectra Mode I 10 5.7 0.522 2.0 −0.08 6.3
Mode II 9 5.4 0.564 2.1 −0.03 6.0
Mode III 10 5.4 0.578 2.1 −0.39 6.0

NanoNIR Mode I 2 7.6 0.151 1.5 1.05 8.2
Mode II 3 7.3 0.227 1.5 0.16 7.6
Mode III 3 7.2 0.235 1.6 0.18 7.6

Vis-NIR 9 5.5 0.549 2.0 −0.01 6.8

a Mode I = air-dried and 2 mm sieved soil samples; Mode II = air-dried and ground soil samples; Mode III = oven-dried and ground soil samples.
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Models built using the NanoNIR showed worse accuracy
(Table 3). Although the models built using this instrument
required fewer latent variables to explain variations in SOC
contents of the data set, probably as a function of the shorter
spectral range covered by this instrument, their error of
prediction was about 20% higher than that of the model
developed using the Vis-NIR spectrophotometer (Tables 3 and
S1 of the ESI†). In addition, the global models built using the
NanoNIR presented RPIQ # 1.5 and R2 # 0.235 (Table 3).

Regardless of the SOC content in the soil samples, the results
obtained with compact NIR spectrophotometers were highly
repeatable. The mean values of SOC estimated from the ten
spectra of the three analyzed samples employing the best local
models were 15.8 ± 0.6, 21.8 ± 1.1 and 25.8 ± 1.5 g kg−1 when
the NeoSpectra was used, and 14.1 ± 0.5, 20.0 ± 0.1 and 21.8 ±

0.1 g kg−1 when the NanoNIR was used. Therefore, the coeffi-
cient of variation of the results obtained with the compact
instruments ranged from 0.5 to 5.9%. The reference values of
SOC in these samples were, respectively, 12.9, 17.6 and 23.4 g
kg−1.
3.2. Effect of soil sample preparation mode

The soil sample preparation mode affected the performance of
the compact spectrophotometers in large-scale SOC determi-
nation (Tables 3 and S2 of the ESI†). Worse accuracy in both
calibration and validation stages was obtained when air-dried
and 2 mm sieved soil samples (Mode I) were used (Tables 3
Table 4 Figures of merit for the LOCAL-PLSR performance using indep

Instrument
Soil sample
preparation

Independent validation

Mahalanobis limit
distance

NeoSpectra Mode I 2.6
Mode II 3.5
Mode III 3.3

NanoNIR Mode I 1.4
Mode II 1.6
Mode III 1.6

a Mode I = air-dried and 2 mm sieved soil samples; Mode II = air-dried an

© 2023 The Author(s). Published by the Royal Society of Chemistry
and S2 of the ESI†). Using nely ground soil samples (Modes II
and III) led to a reduction of 5.3% in RMSEC. It improved by up
to 7.3% in model accuracy during the validation stage (Tables 3
and S2 of the ESI†). Additionally, models built using nely
ground samples showed higher R2 and RPIQ than those built
using the soil sample preparation Mode I (Table 3).

Although grinding the soil has improved the performance of
compact NIR spectrophotometers, the use of air-dried or oven-
dried ground soil samples did not signicantly (P value = 0.9)
affect the performance of the NeoSpectra and NanoNIR in large-
scale SOC determination (Tables 3 and S2 of the ESI†). Models
built using soil sample preparation Modes I and II presented
RMSEP = 6.0 g kg−1 when the NeoSpectra was used and RMSEP
= 7.6 g kg−1 when the NanoNIR was used.
3.3. Effect of local modeling

Signicant improvements in large-scale SOC determination
were found using LOCAL-PLSR calibration (Tables 4 and S3 of
the ESI†). The RMSEPs of the models built using the NeoSpectra
ranged from 5.2 to 5.9 g kg−1, and those built using the Nano-
NIR ranged from 7.0 to 7.5 g kg−1 (Table 4). When minimal soil
sample preparation was used (sample preparation Mode I), the
RMSEP of the models built with the NeoSpectra reduced from
6.3 to 5.9 g kg−1, while those built with the NanoNIR reduced
from 8.2 to 7.5 g kg−1. Thus, improvements of up to 9% in the
performance of these instruments were provided by employing
LOCAL-PLSR. Nevertheless, the most signicant gain of using
endent validation (validation set)a

RMSEP (g kg−1) RPIQ R2 Bias

5.9 2.3 0.534 −0.594
5.3 2.5 0.631 −0.324
5.2 2.6 0.645 −0.286
7.5 1.8 0.247 0.305
7.1 1.9 0.332 −0.411
7.0 1.9 0.356 −0.797

d ground soil samples; Mode III = oven-dried and ground soil samples.
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LOCAL-PLSR calibration occurred when soil sample prepara-
tion Modes II and III were used (Table 4). The RMSEP values of
the LOCAL-PLSR were up to 15% lower than those obtained
using GLOBAL-PLSR (Tables 4 and S3 of the ESI†) when nely
ground soil samples were employed. The RPIQ values of the
models calibrated using LOCAL-PLSR were higher than those of
models built using GLOBAL-PLSR calibration, regardless of the
compact spectrophotometer type and the soil sample prepara-
tion mode used (Table 4).
4. Discussion
4.1. Spectrophotometer comparison

The NeoSpectra was the best-performing compact spectropho-
tometer in SOC determination. This performance appears to be
related to the amount of information found over the more
comprehensive NIR spectral range scanned using this instru-
ment. The NanoNIR operates in the shorter wavelength range of
900–1700 nm. Although this region contains information
regarding soil organic compounds, the spectral data obtained
from it are generally related only to the second or third over-
tones of vibrational modes25,47,48 imparting lower sensitivity to
the models. The NeoSpectra, in turn, operates in the range of
1350–2500 nm, and hence, the spectral data acquired using this
instrument includes the combination absorption bands.25,47,48

Therefore, more information on the sample constituents is
available for modeling using spectral data from the NeoSpectra.
In this sense, it was expected that models based on Vis-NIR
spectra would be the most accurate. However, this was not
observed.

It is known that SOC content changes the soil chroma, and
these variations, in turn, affect the absorption intensity of
electromagnetic radiation in the visible region, which could
provide useful information for modeling SOC.4,8,48,49 However,
the NeoSpectra performed better than the Vis-NIR spectropho-
tometer in determining SOC content in independent samples
(validation set), although the accuracy achieved by the two
instruments was similar for the calibration results. These
results may be due to the representativeness of the spectral data
acquired by each instrument. Compact spectrophotometers
usually probe a smaller portion of the samples than conven-
tional bench instruments, which may impair their perfor-
mance.16,22 However, in this work these instruments were
coupled to a rotation device, increasing the sample area
exposed to the optical beam and improving their performance.
The Vis-NIR bench instrument has no sample moving device
and only 5 spectra were obtained at 5 locations on the sample to
compose the average spectra used to construct the models.
Furthermore, it is essential to understand that, although the
NeoSpectra does not operate in the visible region, its spectra
cover almost the entire NIR region. Therefore, the instrument
provides information regarding organic species present in the
samples with higher sensitivity found in the spectral region of
the combination of vibrational modes (1900–2500 nm). This
suffices to build accurate models to determine SOC, as can be
depicted from the results presented in recent studies by Barthès
1378 | Environ. Sci.: Adv., 2023, 2, 1372–1381
et al. (2019);14 Beltrame et al. (2016);50 Fonseca et al. (2022);16

Soriano-Disla et al. (2017).33

4.2. Soil sample preparation mode

The RPmIQ of the GLOBAL-PLSRmodels built using NeoSpectra
and the different soil sample preparation modes ranged from
2.0 to 2.1. This performance index is based on the RMSE of the
model and the interquartile range of SOC in the soil population
under study,45 and values between 2.0 and 2.5 indicate excellent
quantitative models.45,51 Although the model built using soil
sample preparation Mode I performed well, the accuracy of SOC
prediction of the independent samples was higher employing
nely ground soil samples. This improvement is due to the soil
aggregate breakdown,19–21 which increases the homogeneity of
the sample and the representativeness of the spectral data,
improving their performance in SOC prediction.16

The performance of the NanoNIR was also improved when
the GLOBAL-PLSR was built using nely ground soil samples.
However, even using the soil sample preparation Modes II and
III, the highest RPIQ value achieved using this spectropho-
tometer was 1.6, indicating that the models performed
poorly.45,51

In the current literature, no studies were found regarding the
accuracy of compact NIR instruments aimed at SOC determi-
nation at a regional scale. Vis-NIR spectrophotometers have
been studied for a longer time, and the average RMSEP value
reported for regional models based on this instrument and
minimally processed samples (air dry # 2 mm soil samples) is
9.0 g kg−1.4 Models built with this kind of spectrophotometer
and using a few soil types can be highly accurate, reaching
RMSEP values of up to 1.3 g kg−1.16 However, the accuracy of
SOC prediction decreases with the increasing scale of the
dataset and the diversity of soils it contains.4,27,28 Note that the
prediction errors obtained in the present work using the
compact instruments were lower than 9.0 g kg−1, demon-
strating the low-cost spectrophotometers' great potential.

4.3. Comparison between GLOBAL-PLSR and LOCAL-PLSR
models

The performance of the compact spectrophotometers improved
when LOCAL-PLSR calibration was used. The gain can be
attributed to the reduction of spectral variabilities related to soil
mineral composition found in the local calibration sets. In the
NIR spectra of soils, the absorption bands associated with
inorganic compounds are intense, prominent, and located in
different wavelength regions according to the mineral compo-
sition.23 The absorption features associated with organic
compounds are generally subtle and less intense and oen
superimposed with those of the mineral compounds.52 As
GLOBAL-PLSR models calibrated on the large scale include
several soil types, modeling the spectral information related to
SOC is more complex, which impairs their performance.28

LOCAL-PLSR models, on the other hand, are calibrated using
only those samples from the calibration set exhibiting the
greatest spectral similarity and, consequently, mineral compo-
sition, with the measured sample. Thus, the variability of soil
© 2023 The Author(s). Published by the Royal Society of Chemistry
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attributes and their effect on the spectra are reduced while the
information related to SOC is evidenced and well located,
improving the model's accuracy.28,53

LOCAL-PLSR calibration is more cost-effective than grinding
the sample to increase the accuracy of compact instruments for
SOC determination. LOCAL-PLSR models built using minimal
soil sample preparation were more accurate than GLOBAL-PLSR
models, even when using laborious and energy-consuming
ground soil samples. However, similarly to that observed for
GLOBAL-PLSR models, increasing homogeneity by reducing
particle size distribution through soil grinding (Barthès et al.,
2006; Miltz and Don, 2012; Tamburini et al., 2017) further
improves the performance of the LOCAL-PLSR models. As
mentioned, the spectrum acquired from ground soil samples
best represents its true composition. Therefore, when the
spectral data of grinding soils are used to calibrate LOCAL-PLSR
models, the selection of spectrally similar samples is more
accurate, increasing the models' performance.

It is opportune to mention that the models developed using
LOCAL-PLSR calibration can be even more accurate if more
extensive spectral libraries are employed. The Mahalanobis
distance threshold employed to select the nearest neighbors to
be included in the local calibration set affects the performance
of LOCAL-PLSRmodels (see Table S4 of the ESI†). When smaller
Mahalanobis distances were used to select the samples with
similar spectra to the evaluated sample (more restrictive simi-
larity criteria), the RMSEP values were reduced to 2.8 g kg−1

(Table S4†). However, many samples from the validation set
could not be assessed using the more restrictive criteria because
the local calibration set could not be composed with enough
samples to produce a reliable model. Thus, larger databases are
needed to ensure the benets of restrictive similarity criteria, as
the calibration set needs a minimum number of similar
samples to t a model. The use of a more extensive spectral
library, comprising about, for example, 10 000 soil samples,
may considerably improve the accuracy of LOCAL-PLSR models
built with compact spectrophotometers.

On the other hand, extensive libraries are very costly.
Therefore, instrument standardization needs to be provided
sometime permitting large libraries to be transferred to several
instruments of the same brand working in different laborato-
ries. The current literature mentions several well succeeded
studies reporting this relevant aspect of multivariate calibra-
tions with compact instruments,54–57 conveying condence that
larger soil libraries could be also transferred. The continuity of
this work will evaluate instrument standardization aiming for
SOC determination.

5. Conclusion

The results of this work proved that compact NIR spectropho-
tometers are a cost-effective alternative to Vis-NIR spectropho-
tometers for large-scale SOC determination. The NeoSpectra
(1350–2500 nm) was the best-performing spectrophotometer,
delivering superior results compared to those of the Vis-NIR
spectrophotometer. On the other hand, the use of the Nano-
NIR (900–1700 nm) resulted in models showing slightly lower
© 2023 The Author(s). Published by the Royal Society of Chemistry
accuracy for SOC prediction than themodels obtained using the
Vis-NIR spectrophotometer. However, using oven-dried and
ground soil samples signicantly improved the performance of
both compact NIR spectrophotometers, especially when the
models were calibrated using LOCAL-PLSR. Thus, this approach
can make the use of the NanoNIR feasible.

The LOCAL-PLSR calibration and grinding and drying of soil
samples are strategies that increase the accuracy of compact
NIR spectrophotometers in SOC determination. The best
performance of the instruments was found when they were used
together. Several soil spectral libraries have been built, and as
far as we know, all of them are based on Vis-NIR spectra. These
libraries are made up of a wide diversity of soil types. Our
ndings suggest that LOCAL-PLSR can be a better calibration
tool than traditional GLOBAL-PLSR for determining SOC using
these spectral libraries. However, the present spectral library is
representative of the Brazilian state of Minas Gerais. Therefore,
although the tested models performed well, they are limited by
the representativeness currently covered by this library.

These achievements show the feasibility of expanding the
use of NIR technology to aid environmental studies related to
urgent issues about carbon sequestering and soil management.
In addition, a study is underway to build the rst Brazilian
national soil spectral library based on compact spectropho-
tometers and propose a protocol for using this library in routine
soil analysis laboratories.

Author contributions

A. A. Fonseca: conceptualization, methodology, formal analysis,
investigation, soware, data curation, writing-original dra and
visualization. C. Pasquini: conceptualization, methodology,
soware, resources, writing – review & editing and supervision.
E. M. B. Soares: conceptualization, methodology, investigation,
resources, writing – review & editing, supervision, and project
administration.

Conflicts of interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento
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(INCTAA) for providing the spectrophotometers used in this
study. The authors also acknowledge the Group GEOCIS (Geo-
tecnologias em Ciência do Solo; Geotechnologies in Soil
Environ. Sci.: Adv., 2023, 2, 1372–1381 | 1379

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3va00046j


Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
2/

20
25

 1
0:

26
:3

4 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
Science), https://esalqgeocis.wixsite.com/english, for the
acquisition of the spectral dataset using a Vis-NIR spectropho-
tometer (FAPESP 2014-22262-0).
References

1 B. Minasny, B. P. Malone, A. B. McBratney, D. A. Angers,
D. Arrouays, A. Chambers, V. Chaplot, Z. S. Chen,
K. Cheng, B. S. Das, D. J. Field, A. Gimona, C. B. Hedley,
S. Y. Hong, B. Mandal, B. P. Marchant, M. Martin,
B. G. McConkey, V. L. Mulder, S. O'Rourke, A. C. Richer-de-
Forges, I. Odeh, J. Padarian, K. Paustian, G. Pan, L. Poggio,
I. Savin, V. Stolbovoy, U. Stockmann, Y. Sulaeman,
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