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d use of natural gas-fired
electricity in the US Western interconnection†

Tao Dai, ab Jeya Maria Jose Valanarasu,c Vishal M. Patelc

and Sarah M. Jordaan *de

Land presents a critical yet often overlooked constraint to energy development. The transition to a lower

carbon electricity system in the United States has involved a higher supply of natural gas, incurring the

associated environmental impacts. We quantified the land use by gas-fired electricity in the U.S. Western

Interconnection in 2018 with a novel life cycle method that integrates machine learning, remote sensing,

and geographic information systems. Our results show that the life cycle land transformation of gas-fired

electricity is 0.203 ± 0.004 m2 MW−1 h−1 with production and gathering comprising 92.9 ± 0.1%.

Enabled by directional drilling, active gas production in non-agricultural regions in total uses ∼6% less

land compared to the peak year of 2011 and gas production sites constructed in 2018 have a land

transformation an order of magnitude lower than those constructed in the early 2000s. Our study

quantifies land-sparing opportunities from the multiple uses of land (i.e., agricultural production) and the

co-location of wells within a single site. The findings convey the significance of temporal changes driven

by the technological revolution in future life cycle assessment studies and energy systems planning studies.
Environmental signicance

Land transformation is an inevitable outcome of the energy transition and must be urgently addressed to reduce unintended outcomes. The ability for decision
makers to address such outcomes is challenged because the amount of land transformed by different energy technologies remains disputed due to the lack of
systematic methods and data. Natural gas is set to act as a transition fuel and dominant technology in the grid decarbonization process in the United States until
2050. Land use by natural gas impacts large tracts of land because production infrastructure is distributed across landscapes; however, the actual footprint tends
to be relatively small. We developed a unique and much needed method that integrates machine learning, remote sensing, and geographic information systems
to obtain spatially explicit land transformation of natural gas-red electricity from a life cycle perspective. The approach shows high accuracy, efficiency, and
replicability for quantifying land transformed for gas-red electricity across extensive landscapes, demonstrated for the entire U.S. portion of the Western
Interconnection. The results will enable high resolution environmental impact assessment of extensive energy infrastructure (e.g., climate vulnerabilities,
natural disasters, and regionalized life cycle environmental impacts) and thus will provide new insights for energy systems planning and decarbonization.
Introduction

Natural gas is oen perceived to be among the clean sources of
electricity and is projected to account for more than 35% of
electricity generation in the U.S. through 2050, just below the
combination of all renewables.1–3 With more than 600 billion
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cubic meters of production each year during the last decade, the
U.S. domestic gas supply has provided economic benets and
supported the transition from a coal-dominated power system
to one with lower carbon, meanwhile maintaining its security
and independence.4 However, the potential environmental and
ecological impacts associated with such an intensive natural gas
production activity, including global warming potential from
methane leakage, freshwater quality degradation, landscape
fragmentation, and biodiversity and ecosystem services losses,
are increasingly noted.5–7 Land use serves as a basis for localized
environmental impact assessment and has thus been recog-
nized as a constraint to energy development, including natural
gas.8–10 Life cycle assessment (LCA)—an examination of the
environmental burdens of a product from raw materials
extraction through waste disposal—can provide important
insights into the aforementioned impacts.11,12 While many LCAs
have been conducted on gas-red electricity, the quantication
of land use remains limited with little research to conrm the
Environ. Sci.: Adv., 2023, 2, 815–826 | 815
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directly impacted land.13,14 Determining the life cycle land
transformation (i.e., the ratio of the extent of land use in m2 to
the electricity generation in MW−1 h−1 (ref. 15)) of gas-red
electricity could provide a fundamental rst-step toward more
robust analyses and comparison of different energy sources on
their land use extent and the associated environmental and
ecological impact.16–18

The infrastructure across the life cycle of gas-red electricity
mainly includes gas production sites (production pads and their
access roads), transportation facilities (e.g., gathering and
transmission pipelines for natural gas), processing facilities,
and power plants.19 Currently, only the locations of these
infrastructure elements are publicly available, and the coverage
is also limited for specic elements (e.g., gathering pipelines).20

Mapping the land use and providing more detailed spatial
information beyond the location of these infrastructure
elements, including their shapes, distribution patterns, and
land use magnitude, is in increasing demand for more accurate
and regionalized assessments of environmental impacts.21

Acquiring such land use maps is time and effort intensive,
primarily due to the infrastructure associated with the natural
gas supply chain covering large areas and rapidly changing over
time. For example, production wells are only producing natural
gas effectively within a limited area and time due to the non-
renewable nature of fossil fuels. New pads, wells, and support-
ing infrastructure need to be built to sustain a protable and
stable natural gas supply while non-producing wells can either
be temporarily shut-in, abandoned without reclamation, or
plugged in and reclaimed.

Mainly three types of approaches have been used to map the
land use by natural gas production infrastructure, and all of
them utilize a combination of geographic information systems
and high-resolution imagery. The rst is to manually delineate
the land use perimeters of each or part of the land use elements.
This manual visual interpretation is an accurate but labor-
intensive approach, so it is usually conducted on a small
scale.22,23 The efficiency of manual delineation would further
decrease when higher resolution images are used since a rela-
tively larger number of pixels must be delineated. The second
approach is to rst manually delineate the boundaries of
a sample of each infrastructure type, and then project the
results to the overall population.24–29 This approach enables
large-scale estimations but does not create an actual mapping
of land use for spatially explicit environmental impact analysis.
This approach may also underestimate the entire footprint by
2–3 times, as pointed out by Walker et al.30 Last, automated or
semi-automated approaches, termed “image segmentation”,
can expedite the process for larger datasets.30–34 Image
segmentation classies each pixel in an image to a predened
class (e.g., a production pad or an access road). Existing auto-
mated approaches can be resource intensive, however. Ger-
maine et al. tested three types of commercial automated tools
and found that the time cost efficiency of these tools is
comparable to manual delineation, due to the vast amount of
time required for post-processing.32 We contribute an approach
that utilizes machine learning to delineate infrastructure
816 | Environ. Sci.: Adv., 2023, 2, 815–826
elements of natural gas production, enabling the quantication
of the land use with high accuracy and efficiency.

Land transformation estimates from a comparative LCA
study can provide important information for policymakers.35,36

Currently, only a limited number of studies have examined land
transformation of gas-red electricity because data are limited
for both the extent of land use and the amount of natural gas
production. Early studies on the land transformation of natural
gas production have mainly depended on coarse approxima-
tions of the number and the size of production pads, with little
or no consideration of the spatial variations and the land use by
associated infrastructure (e.g., access roads).14,35 Jordaan et al.
sampled and automatically delineated the land use of the Bar-
nett Shale gas production infrastructure, estimated the amount
of lifetime production of wells, and determined the life-cycle
land transformation from a life cycle perspective.19 While
valuable, the study was limited in terms of sample size and is
representative of the year 2009. More generally, existing data is
considered outdated and lacking in transparency, meaning that
land use is a key source of uncertainty in energy systems
planning.37,38

In this study, we developed a deep learning-based mapping
approach based on image segmentation to determine the land
transformed by natural gas production and gathering. Deep
learning is one of the most effective and efficient computer
vision algorithms and has been widely applied in a variety of
areas such as item recognition, medical image segmentation,
and recently, solar energy land use.39–43 We applied the deep
learning model and mapped the results for the U.S. portion of
the Western Interconnection (WECC). We then determined the
temporally and spatially resolved land transformation of gas-
red electricity generation in the study area using a life cycle
approach (i.e., including the fuel supply through power gener-
ation). The WECC is one of the four major electric system
networks in North America, covering both historical and
modern gas production areas.44 The region covers nine of the
EPA Level II ecoregions so the study area is representative in
scale, production method, and land cover types. Our results
show that deep learning is an accurate and efficient land use
mapping approach and is feasible for large-scale studies with
high-resolution imagery. Our spatially explicit data inventories
for land use and land transformation of the life cycle of gas-red
electricity generation can provide a fundamental data source for
broader studies on ecology, energy systems, and regionalized
life cycle impact assessment.

Experimental

This study aims to map the land use and its extent, quantify the
land transformation, and identify the temporal and geospatial
patterns of land use for natural gas-red electricity in the US
portion of the Western Interconnection using a life cycle
perspective. We included ve life cycle stages in our study
scope, which are natural gas production from wells (production
stage), natural gas transportation via gathering pipelines
(gathering stage), natural gas processing plants (processing
stage), natural gas transportation via transmission pipelines
© 2023 The Author(s). Published by the Royal Society of Chemistry
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(transmission stage), and the use through combustion in gas-
red power plants (use stage). We neglected the land use by
gathering sites, transmission sites, and the surface land use of
natural gas storage since gathering and transmission sites are
usually co-located with the other land use elements, and the
land transformation of natural gas storage has been estimated
as 2 orders less than the other life cycle stages.19 Table S1†
shows the description of each life cycle stage, the corresponding
land use quantication approach, and data sources. Choices of
land use quantication approach were based on the quantity of
existing facilities and data availability. For obtaining the land
use by the large number (>100 000) of natural gas production
wells, we develop a deep learning-based image processing
approach and mapped the land use using imagery from the
National Agricultural Imagery Program (NAIP) acquired in 2018
when applicable. Imagery from 2017 or 2019 is used as
replacement when 2018 images were not available for the
infrastructure being analyzed.45 We then estimated the land use
of gathering pipelines by creating a proxy gathering pipeline
network based on the results of the production stage. Since the
number of facilities for the processing stage and the use stage is
relatively small, we manually delineated the images and quan-
tied the land use. For the transmission stage, we obtained land
transformation based on the length and mass of transmission
data from publicly available data from the Energy Information
Administration (EIA).46 By sampling the land transformation
from each stage using Monte Carlo simulation, we obtained life
cycle land transformation of gas-red electricity and its con-
dence interval.
Quantify land use by natural gas production and gathering
using deep learning

The natural gas production wells in our study were distributed
across nine EPA Level II climate regions, and since each region
has its typical landscape, our deep learning model needs to be
able to capture the characteristics of human-induced distur-
bances and the various background land use types. We used
a density-based sampling approach and created land use
samples by manual annotation (Fig. 1a). The processes start
with the surface locations of natural gas wells. The wells are
clustered by the self-adjusting density-based clustering
approach with a minimum number of wells Pm per cluster. Pm is
determined by balancing of the required manual annotation
effort and the model representativeness: a small Pm divides the
wells into a larger number of groups so a larger sample size will
be created, which requires more effort for manual annotation.
For each cluster of wells, we created a convex hull representing
the minimum bounding geometry. We identied the well that is
closest to the convex hull's centroid and used this well to
represent the appearance of the entire cluster. We exported
images at a pixel-based resolution of 1024 pixels by 1024 pixels
with the selected well located at the center of each image. We
manually annotated the sampled images in ArcGIS Pro by
creating a multiple-feature layer, which includes three land use
classes (i.e., facilities, actively-used, and regenerating as shown
in Fig. 1a). Facilities are manufactured products including
© 2023 The Author(s). Published by the Royal Society of Chemistry
wellheads and surface pipes and account for a relatively small
area. Actively-used includes access road and a portion of the
natural gas production pad, which are usually impervious
surfaces and can be identied as bright and smooth pixels in
images. The regenerating class includes clearings near or
attached to a production pad and an access road, showing
dimness and roughness in the images. The multiple-feature
layer was then split and converted to annotated images using
the spatial information of the exported NAIP images.

We trained image segmentation models based on Dense U-
NET, which is a convolutional network that has been success-
fully applied for image segmentation in areas such as biomed-
ical images.41 We developed the code in PyTorch47 and used an
NVIDIA RTX 8000 GPU to train the models. The Dense U-Net
conguration has a 5-layer deep encoder and a 5-layer deep
decoder. Each block is made of dense connections, which are
a set of ve convolutional layers having a residual connection
with the subsequent convolutional layers. There are also max-
pooling layers aer each subsequent encoder block and
upsampling layers aer each subsequent decoder block. For
upsampling, a simple bilinear interpolation operation is
employed. All the convolutional layers in the network have
a kernel size of 3 × 3, a stride of 1, and a padding of 1. The max-
pooling and upsampling operations are done by a factor of 2.
ReLU is used as the activation function aer every block. The
output segmentation mask is trained by supervising it with
a cross-entropy loss over the ground truth. The network, with
52.36 million trainable parameters, is trained for 1000 epochs
using Adam optimizer and a learning rate of 0.0005. The
computational complexity of the model is 60.80 Giga FLOPs,
which corresponds to the total number of additions and
multiplicative operations. The inference speed of the model is
358 milliseconds while benchmarked on an Intel Xeon Gold
6140 CPU operating at 2.30 GHz.

The trained deep learning model is then tested with images
of all the wells, which are exported based on the surface location
of the wells. We checkedmodel performance using the F1 score,
which is the harmonic mean of the precision and recalls of
a classier and is dened as:

F1 = 2 TP$(2 TP + FN + FP)−1

where TP, FN, and FP correspond to the number of true posi-
tives, false negatives, and false positives in the output predic-
tion, respectively. We repeated the model training process,
starting with increasing Pm (from 2 to 5, and then to 8), which
classied the wells into fewer clusters. Then we annotated more
images in areas where the model has worse performance, and
then improved the model. Finally, we obtained a deep learning
model trained with ∼6000 manually delineated images. The
training and validation curves (Fig. S1†) of the nal model were
stable, which indicates adequate training strategies.

Each NAIP image covers the land of an entire county so to
directly apply the trained deep learning model to such county-
level images for land use mapping would be of a low effi-
ciency as a natural production area occupies only a small
portion of a total county. We combined cluster-level processes
Environ. Sci.: Adv., 2023, 2, 815–826 | 817
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Fig. 1 (a) The workflow of machine learning model training. (b) The workflow of machine learning modeling application at both a cluster-level
process and an image-level process.

Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

0 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
1/

22
/2

02
5 

6:
19

:5
3 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
with image level processes to improve the efficiency (Fig. 1b).
The cluster-level processes determined the areas of interest and
enabled consistent post-processing. The image-level processes
mainly include image segmentation and geo-referencing (i.e.,
assigning the spatial information of the original images to the
segmented images).

First, we grouped the >100 000 wells into 1316 clusters on
a density basis, in which any two or more wells that are located
within 3 kilometers formed a cluster. Wells without a valid
cluster ID were then excluded from further analysis. Cluster-
level areas of interest were determined by creating a buffer
area around each well with a buffer distance of 3 kilometers to
include possible land use near the boundary, which thus
reduces the truncation error.

The corresponding original county-level NAIP images within
each cluster were then split into patches of images with a reso-
lution of 1024 pixels by 1024 pixels, which were then segmented
using the deep learning model and georeferenced.

The segmented images were merged back to a cluster level
and further converted into geospatial les (.shp les) to remove
pixels in the segmentation results. These removed pixels
include rivers and existing roads in an agricultural area as well
as disconnected pixels that are away from the identied roads
and pads. Typically, the rivers and roads in an agricultural area
are determined by the cultivated layer from the USDA National
Agricultural Statistics Service48 and the national land cover data
(NLCD).49 The disconnecting pixels are determined using the
818 | Environ. Sci.: Adv., 2023, 2, 815–826
actively-used pixels in the results, which connect to each well in
the cluster.

We allocated the cluster-level land use to each production
site by intersecting the land use map with a Thiessen polygon
created based on the location of the production pad (Fig. 1b).
We determined if a production pad is a single-use pad or
a multiple-use pad by conducting a distance-based density
clustering with a radius of 50 meters. The wells that are clus-
tered as isolated wells (Cluster ID equals −1) are then treated as
located in a single pad whereas wells with the same Cluster ID
are considered located within the same pad.

We adjusted our results based on model performance. First,
a performance matrix, Pij, is obtained by comparing the anno-
tated images and their predicted images. Pij shows the ratio of
the correctly segmented pixels (i.e., Class i segmented as Class i)
and the incorrectly segmented pixels (i.e., Class i segmented as
Class j). The model performance is categorized based on the
land cover of the sample images, which is determined based on
the NLCD. The area by each class was adjusted by the perfor-
mance per land cover type with:

A
0
i ¼ Pij

�1Ai

where A
0
i is the adjusted area for the land use class i, P−1 is the

inverse of the performance matrix P, and Ai is the post-
processed predicted area of each land use class i. To simplify
the adjustment, we used pij = 0, when i s j. Additionally, we
manually checked the quality of segmentation results for all
clusters by observation of three output categories: road, pad,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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and mapping (Table S2†). Segmentation results with either
a “not useable” performance or an area of zero are removed
from the nal data analysis. The extent of adjustment is typi-
cally less than 15%.

Obtain amount of natural gas produced per well

We obtain monthly production data for each well from the
Enverus platform50 when data is available. The lifetime
production of a subset of wells is obtained based on the wells'
production status, production history, and well type. A well with
“abandoned” or “inactive” status or with more than 360 months
of production history is regarded as having achieved its end of
production life, and the cumulative amount of production was
used as its lifetime production. For directional or horizontal
wells with more than 18 months of production but less than 360
months of production, we estimated the amount of ultimate
recovery based on the shale gas production model developed by
Patzek et al. (2015)51 by minimizing the objective function:

mðtÞ ¼ K
ffiffi

t
p

where m(t) is the measured cumulative production data, t is
time, and K is a coefficient estimated by the Levenberg–Mar-
quardt algorithm.19

Obtain land use by natural gas gathering

We rst collected and examined available data from a variety of
sources for gathering pipelines (e.g., ref. 46,50,52 and 53). It is
challenging to identify these gathering pipelines in the NAIP
images, due to either low pipeline data resolution or the
restoration of relled land. We then obtained a proxy of pipeline
length based on the access roads, which form a network that
connects all the wells and follows the rules of pipeline design
once the curves between wells are removed. We obtained the
centrelines of the actively-used class, which represents mainly
access roads and actively-used areas within the production pad.
Then the part of a centreline that is overlapped with a pad (a 50
meters radius area around each well) is removed for avoiding
double-counting of land use by the pad and for excluding the
land use by potential ow lines. Finally, the road network was
further simplied by using only the starting point and ending
point of each of the line sections, which makes straight lines
between wells. The length of the gathering pipelines is also
adjusted based on the model performance for the actively-used
class identical to the adjustment of land use by production.

The width of gathering pipelines is determined by the right-
of-way (ROW) sourced from literature, which is 10 meters for
a single-use site54 and 30 meters for a multiple-use site.23 The
lifetime amount of gas gathered by the gathering pipelines is
assumed to be the sum of lifetime production of the production
wells in the same pad. The land use extent, land use efficiency,
and land transformation are calculated at a pad level for both
the production stage and the gathering stage.

Quantify life cycle land transformation and uncertainty

We sampled from the value of land transformation in each life
cycle stage using Monte Carlo sampling (iteration = 100 000) to
© 2023 The Author(s). Published by the Royal Society of Chemistry
obtain the life cycle cumulative land transformation. Before
sampling, we identied the spatial relationship among the
production site, gathering, and processing plants based on their
identity (for matching production sites and gathering pipelines)
or distance (for matching gas sources and the processing plant)
to ensure consistency among results. For the following stages
(i.e., transmission and use), spatially generic data were used.
The probability of sampling is determined by the amount of
production for the production and gathering stage, the
throughput for processing and transmission, and the amount of
generation for the use stage.

We used determinant values from literature or measurement
for the parameters in the life cycle portion of the analysis. We
conducted a sensitivity analysis to examine the signicance of
each parameter to each life cycle stage and the life cycle results.
We did not regard the parameter type uncertainties (as listed in
Table S3†) as empirical quantities and treated them as proba-
bilistic distributions. We acknowledge that there is a large
variation within each of these parameters, considering the large
scale of our study. Checking the parameter values project-by-
project would be time and effort intensive and using a sensi-
tivity assessment could help clarify our choices and help readers
to understand the implication of the possible alternatives.

We examined the temporal and geographical variation in
non-agricultural areas within the main natural gas production
plays (i.e., Niobrara, Mancos, Piceance, Green River, Powder
River, and Uinta) to provide insights regarding the pattern of
historical land conversion from undeveloped land. There are
more than 45 000 wells located in these areas, representing
∼45% of the total wells in the WECC and accounting for >80%
of total land use and ∼90% of total non-agricultural land use.
Wells in these non-agricultural areas are also less impacted by
other human activities aer their retirement compared to those
in agricultural areas, which increases the representativeness of
the reference year remote sensing images.

Results and discussion
Performance of deep learning model

The integrated deep learning and geographic information
systems approach is accurate and efficient for large-scale land
use mapping. The model identied areas of no interest (i.e.,
background) for images in the test set with a median F1 score of
98.8% (P5 = 95.6%, P95 = 99.9%) (P: Percentile). We obtain
a higher performance in the identication of the actively-used
class, with a median F1 score of 75.6% (P5 = 26.6%, P95 =

91.8%), and a lower performance in identifying the regenerat-
ing class, with a F1 score of 41.5% (P5 = 14%, P95 = 89.4%).
Fig. S2† shows an overview of how each land use class is iden-
tied within both the test set and the validation set, which
indicates the main error is from identifying regenerating pixels
as background pixels, followed by actively-used pixels being
classied as background pixels. These errors are shown in the
resulting images as missing regenerating areas or discontinuity
in the road network (Fig. 2a). The lower performance of iden-
tifying the regenerating class is because of a higher similarity to
the background, especially in areas with a reclamation process.
Environ. Sci.: Adv., 2023, 2, 815–826 | 819
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Fig. 2 (a) Examples of predictions with different performance at an image level. F1 scores for the actively-used class, the regenerating class, and
the facilities class are: 41.9%, 3.5%, and 22.6% for upper image, 81.0%, 40.5%, and 76.1% for middle image, and 69.2%, 2.4%, and 85.0% for the
lower image, respectively. (b) The study scope, the clustering approach, and a comparison of cluster-level land usemapping results compared to
the national land cover data (NLCD). The pink and red pixels in NLCD represent developed areas.
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Additionally, as the actively-used class dominates in land use
(80.2 ± 0.2%) and the regenerating class is relatively small (17.4
± 0.2%), a similar area of misclassication could decrease the
model performance by a larger fraction for the regenerating
class.

The model performance also varies over different land cover
types. Barren land, evergreen forest, and shrub/scrub areas
demonstrate better performance, where the median F1 score is
higher than 99.5%, 82.7%, and 70.0% of the background, the
actively-used, and the regenerating, respectively. The higher
model performance in these land cover types is related to the
higher intensity of gas production activity. More than 75% of all
wells are located in these areas so a larger number of sample
images have been created. Furthermore, the level of diversity of
human activities impacts the model performance. Areas
without housing and agricultural production activities have
higher performance because the circumstance is simpler for
both annotation and prediction.

In total, we processed ∼420 000 images with each image
representing from ∼1.05 km2 (image resolution 1 m) to ∼0.26
km2 (image resolution 0.5 m). The image segmentation speed
using an Nvidia V100 Graphical Process Unit is∼220 images per
minute, and the rest of the processes, including georeferencing,
merging, converting to shapeles, and postprocessing, used
multiple processing and took ∼95 hours in total, which is
a signicant improvement in efficiency compared to the speed
benchmarked by Germaine et al., which is ∼2 hours per
image.32 A cluster of wells can include up to 20 000 wells,
requires processing ∼50 000 images, and covers 19 000 square
kilometers (Fig. S3†), which indicates that our approach is
suitable for large-scale land use mapping for areas with
a intense natural gas production activity (e.g., in the Eagle Ford
820 | Environ. Sci.: Adv., 2023, 2, 815–826
shale play and the Marcellus shale play). Integrating our
spatially explicitly mapping to the NLCD (30meter resolution),49

which was previously used as a proxy of large-scale mapping of
natural gas production,55 could potentially provide both a more
complete and accurate mapping for natural gas production
infrastructure (Fig. 2b) and a large dataset for future land
conversion studies.
Land transformation

The results of statistical analysis of land use throughout the life
cycle stages of gas-red electricity are summarized in Table 1.
For the production stage, we mapped the land use for 100 009
wells located in 75 915 production pads, among which 31 761
are co-located wells (median = 2 wells per pad, mean = 4 wells
per pad). The well co-location occurs either from land reuse or
from multiple-use pad using directional drilling. In non-
agricultural areas, the area of a production site (i.e., the total
area of the production pad and its access road) is mainly
dependent on the type of drilling: sites with vertical-drilled
wells occupy ∼4000 m2 per site less land than sites with hori-
zontal-/directional-drilled wells. Compared to the deep learning
predicted land use, the annotated results only account for ∼1/3
of the total land use of a site, which indicates the necessity of
considering the land use from access roads and reveals the
benets of using deep learning for land use mapping at a large
scale (Fig. S4†). There are 6915 sites located within agricultural
areas, which occupy less than half of the land compared to
those in non-agricultural areas. The real land use by natural gas
production in agricultural areas could be even smaller when
allocating part of the land use to agricultural production.

In the gathering stage, sites with directional-drilled wells on
average require ∼230 meters less pipeline in length than sites
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Land use throughout the life cycle of gas-fired electricity

Stage Unit Average 25th Percentile 50th Percentile 75th Percentile

Production Agricultural Directional m2 per site 9346 3032 7055 12 819
Vertical m2 per site 2100 2096 4301 8336

Non-agricultural Directional m2 per site 18 170 10 104 16 049 24 812
Vertical m2 per site 14 090 7159 12 042 18 808

Transportation by gathering Length Directional m per site 597 253 500 847
Vertical m per site 818 346 613 1044

Area Directional m2 per site 20 157 8349 17 226 28 944
Vertical m2 per site 10 128 4320 7598 12 796

Processingb m2 per (mmcf per day) 4318 751 1984 5762
Transportation by transmissionc m2 per (mmcf per year) 62 0.225 1.127 5.567
Power plant Simple cyclea m2 MW−1 656 272 616 912

Combined cyclea m2 MW−1 497 182 341 689

a A site includes the production pad and its access road. b Based on capacity. c Based on throughput.
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with a vertical-drilled wells, whereas due to the requirement for
larger width of right-of-way (RoW), the extent of land use is
almost doubled for sites with directional-drilled wells. Land
requirements for natural gas processing facilities and natural
gas-red power plants are found to be proportional to their
designed capabilities (Fig. S5 and S6†). The land requirement of
these two life cycle stages is dominated by the surface area for
installing facilities, whereas supporting infrastructure,
including access roads and clearings, can contribute greater
than 60% of the land requirement and exhibit land variability
across the plants (14.9 ± 2.7% and 8.9 ± 3.5% for power plants
and processing plants, respectively). Less supporting infra-
structure was identied for facilities located in developed areas
since the pre-existing infrastructure is utilized (e.g., access
roads).

Overall, the life cycle land transformation of natural gas-red
electricity is 0.203 ± 0.004 m2 MW−1 h−1 (median = 0.124)
based on the result of the Monte-Carlo simulation (Fig. 3).
Production and gathering stages dominate the life cycle land
transformation of gas-red electricity because of their relatively
higher land transformation. Land transformation of production
in an agricultural area is more than one order of magnitude
lower than in non-agricultural due to the utilization of existing
infrastructure (e.g., access roads) and the reuse of cleared land
for agricultural production.

Notably, technological advancements play a signicant role
in decreasing land transformation in the life cycle stages of
production, gathering, and use. Directional drilling technology
enables more than 20 wells to be drilled in a single pad, and
each well could have a comparable amount of lifetime
production (Fig. S7†). As a result, the total amount of produc-
tion per site with directional-drilled wells can be an order of
magnitude higher than the conventional sites with vertical-
drilled wells, which thus dramatically lowered the land trans-
formation for production and gathering (Fig. 3b). Improvement
in the geological exploration to ensure the productivity of a site
and avoiding abandoning production wells could thus also
decrease the land transformation: abandoned wells have
a lower lifetime production (∼0.5 billion cubic feet) than wells
with more than 36 months lifetime (∼3 billion cubic feet).
© 2023 The Author(s). Published by the Royal Society of Chemistry
In the electricity generation stage (i.e., use at the power
plant), the land transformation has improved due to the
adoption of combined-cycle generation technology. For the time
between 2002 and 2018, the generation-weighted mean effi-
ciency stayed more than 42.0% for combined-cycle plants
(mean: 43.2%) but was lower than 32.7% for simple-cycle plants
(mean: 30.5%). The capacity of combined-cycle plants was
comparable to the capacity of simple-cycle plants in the early
2000s but increased to ∼3 times the capacity of simple-cycle
plants. The capacity factor of simple-cycle power plants
decreased quickly aer 2010, which further decreased their
efficiency. The higher efficiency brings less land use from
background life cycle stages for combined cycle plants: their life
cycle land transformation of gas-red electricity is 0.179± 0.003
m2 MW−1 h−1 (median = 0.112), which is only 60% of the land
transformation of electricity from simple cycle plants (0.295 ±

0.004 m2 MW−1 h−1, median = 0.186).
The uncertainty sources of our results are identied as either

scenario uncertainty or parameter uncertainty as summarized
in Table S3.† The scenario uncertainty is mainly from our model
decisions (i.e., system boundary and proxy data usage), and
parameter uncertainties are mainly from facility lifespan and
pipeline width. Our sensitivity analysis shows that adjustment
of the model performance could impact the land trans-
formation stage by up to 40% and the life cycle transformation
by up to 26.3%. The width of gathering pipelines for sites with
vertical-drilled wells is also an impactful parameter, varying
which could lead to about 30% of our life cycle results. A
detailed denition of the parameter range and their impact is
listed in Table S4.†
Temporal and geographical changes in land use

Horizontal drilling technology helps decrease both the land
transformation of newly constructed wells and the total land
use by natural gas production in study area of the temporal and
geographical variation analysis. First, as shown in Fig. 3b,
before 2000, the overall land transformation in the production
stage had been increasing gradually and was almost identical to
the land transformation of sites with a single well. The reason
Environ. Sci.: Adv., 2023, 2, 815–826 | 821
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Fig. 3 (a) Life cycle land transformation by stage (NA: non-agricultural area; A: agricultural area; SC: simple cycle; CC: combined cycle; numbers
above boxes: number of observations or samples). (b) The temporal variation of land transformation by the production stage. Co-location before
2000 indicates that the previously disturbed area has been re-used.
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for the increase in land transformation during this period could
be our method: we used images in the reference year and the
regenerating class of older production pads that has partially/
fully recovered, which resulted in a smaller site area being
identied in the imagery for the reference year. Aer 2000, the
overall land transformation started to decrease continuously
and, for natural gas production sites constructed in the refer-
ence year, the overall land transformation reached more than
an order of magnitude less than the peak value. The co-location
of production wells enabled by horizontal drilling drove this
decrease in land transformation: before 2000, a typical pad
includes only a single well; aer 2000, the co-location of wells
started to increase as the wider application of horizontal dril-
ling, which dramatically increase the amount of lifetime
production per site as previously discussed. Second, the appli-
cation of horizontal drilling helps phase-out sites with a single
well. As a result, the total area occupied by active natural gas
production sites started to decrease aer 2011, although the
total number of active production wells increased by 7.0% from
2010 to 2018 (Fig. 4a). From 2010 to 2018, 5.7% of sites with
a single well were abandoned, leading to a decrease of 5.6% of
active land use by sites with a single well and 1% of total land
use.

Geographically, new natural gas production activities tend to
be located near land that is already disturbed, which may
decrease the overall land use impact. Fig. 4b shows the distance
822 | Environ. Sci.: Adv., 2023, 2, 815–826
of a new pad to the nearest existing pads. The median of such
distances gradually decreases over time, from a median of
>1000 meters before 1960 to a median of <500 meters in the
reference year. The unconventional gas plays for shale and tight
gas production in the WECC tend to overlap the areas that are
already producing conventional natural gas. On the other hand,
when considering only the extent and land fragmentation, the
application of horizontal and directional drilling could intro-
duce more severe land impacts. Not only are the pads larger, the
distance among wells is also smaller, and thus may leave less
unfragmented and available land for other purposes.

Our work provides three valuable contributions for future
studies that quantify land use and leverage information from
infrastructure locations (a point dataset) to map land use (a
polygon dataset) using image processing andmachine learning.
We note that point datasets have been the starting point for
most land use-related studies due to their availability across
a variety of energy infrastructure types (e.g., wind turbine loca-
tions56 and solar power plants57). First, our work supports
improvements in the development of overall workows for such
analyses. We showed that starting with image-level processes
(i.e., training set preparation, machine learning model training,
and image segmentation) and completing with cluster-level
processes (e.g., large-scale land use mapping and post-
processing) is efficient and versatile. Such a workow enables
a exible selection of sample locations, areas of interest, and
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Land use by pad types. Pads are categorized asmain types: “occupied” and “abandoned”. Occupied pads are further sub-categorized as
“single” and “multiple”. The single status can be temporal and can be reused or become co-located. (b) Distance of pads to their nearest existing
pads.
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machine learning framework. Second, we provide ∼6000
annotated images (>6 billion pixels in total) for future studies.
Manual annotation is time and effort intensive so leveraging
our dataset, which covers a heterogeneous ecoregion type, could
facilitate the quantication of land use by not only natural gas
production in other areas but also potentially other energy
infrastructure types, as all types of the human disturbances are
included in our annotation. Last, our framework is broadly
applicable to other infrastructure types that are distributed
across large areas. For example, we showed that the density-
based clustering approach is efficient for creating a representa-
tive sample set for effective deep learning model training. Using
grayscale images can improve the speed of processing and help
reduce error occurrences in geospatial analysis with Python.

This work is also subject to several limitations. First, the
accuracy of the well-level analysis depends on the allocation
method, which is based on the Thiessen polygons generated
from well locations. The postprocessing approach also relies on
the well position to determine if an area is of interest. Second,
our estimation of the land use by the gathering infrastructure is
challenged by the complexity of the pipeline system and a lack
of data availability. The gathering pipeline system is mixed with
ow lines and gathering pipelines, restrained by designing
regulations and depending on the location of existing
gathering/transmission lines.58 We have not differentiated the
potential smaller land use by ow lines and a general gathering
pipeline. The proxy gathering pipeline network is based on the
simplied road network, which may overestimate the land use.
Third, we did not map the land use by transmission stage.
While prior research has noted that it contributes less than 2%
of the life cycle of gas-red power,19 this aspect may be
improved in future studies. Existing publicly accessible data are
with lower resolution compared to the images so they were not
directly used in this study.

It is noteworthy that, for the production stage, we calculated
the land transformation using the area of the directly impacted
© 2023 The Author(s). Published by the Royal Society of Chemistry
surface land. This is comparable to the directly impacted land
quantied for wind energy projects, which includes a turbine
pad area for the installing of wind turbines, access roads,
substations, transmission lines, and others such as temporary
loading zones.59 Both the gas production wells and wind
turbines are distributed within an production area due to
physical limitations (i.e., drainage capability for gas production
and air kinetic energy utilization for wind energy). While wind
energy is recognized for its low land use efficiency, the entire
project area is usually considered (i.e., the wind farm, or “total
impacted land”). The turbines and access roads themselves only
disturb less than 5% of the total project area.60 Few studies have
considered such “total impacted land” when quantifying land
use by natural gas production and its use in power generation.
Importantly, the results presented here for the life cycle of gas-
red electricity are commensurable with the approach that
quanties land associated with the turbines and access roads,
not the total wind farm or project area.

The land use map from our study could act as the rst step to
provide a new but essential basis for future improvements in
regionalized and dynamic analysis of the environmental
impacts of energy systems. Previously, variations from
geographical, temporal, and technological factors have been
identied as the main uncertainty sources in the existing envi-
ronmental assessment frameworks due to a lack of data.61 First,
land use mapping presents regionalized inventory as spatially
explicit or aggregated to political or natural boundaries. For
example, the land transformation data can easily be converted
to land use efficiency, i.e., the ratio of energy production in MJ
to the land use in m2 at its current resolution or regionalizing to
county/state level or natural gas plays level, as shown in Tables
S5 and S6.† The transparency of the dataset, which is a preferred
attribute for spatial inventory,62 is then guaranteed by the maps.
While the spatial resolution for the resulting dataset can
minimize the internal variation and facilitate future use of data,
it still needs to be carefully examined for representativeness in
Environ. Sci.: Adv., 2023, 2, 815–826 | 823
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specic applications. Second, the mapping of land use enables
the integration of broader and regionalized environment
impact categories into the current assessment frameworks.
Spatially explicit data is oen needed for regionalized impact
analysis. As pointed out by Chaplin-Kramer et al.,63 when
considering local environmental impacts (e.g., biodiversity and
ecosystem services) in LCA, high-resolution spatial data and
associated spatially-explicit quantitative tools (e.g., the
InVEST64) are necessary but remain a critical research gap.
Existing studies have used a manual annotation approach and
evaluated the ecosystem services losses either at a small scale65

or using a small sample for a large study area.66 How to use the
large-scale, continuous land use mapping to better quantify
ecosystem services or other regional impacts using a life cycle
perspective analysis requires the development of novel models
using inventories such as the one we present here.

Last, using static land transformation data, aswe have done
in the present LCA framework, could result in an overestimation
in future scenario analyses of land use. We identied how the
land transformation changes over time due to the application of
horizontal drilling and combined-cycle power plants. It can be
estimated that, as the number of directional wells increases, the
land transformation of gas-red electricity will continuously
decrease in the coming few decades when natural gas will keep
its signicant role in the global energy supply. How to properly
quantify the effect of future technological advancement on the
environment also needs investigations on the relationship
between time and technology, especially when technological
renovation happens. Existing frameworks oen only consider
the consistency between inventory and the technology being
used or regard time as a proxy of technological improvement67

while studies that consider technological improvement leading
to a difference in the magnitude of an order or larger are rarely
seen.

Conclusions

In this study, we developed a novel framework for obtaining the
spatially explicit life cycle land use of gas-red electricity at
a large scale with high accuracy and efficiency. The resulting
mapping enables analyses that provide new insights on both the
land use extent and the life cycle land transformation of gas-
red electricity. Our study reveals that, in the last decade,
when natural gas gradually becomes the dominant source of
electricity generation in the WECC, the co-location of produc-
tion wells via directional drilling helps the land transformation
of the new constructed production sites to decrease by an order
of magnitude at the production and gathering stages. The total
area used for actively natural gas production has also decreased
while the total number of wells has been increasing. The wide
application of combined-cycle plants also helps decrease the
land transformation from gas-red electricity by using gas with
higher efficiency.
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