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Achieving food security while mitigating climate change is the foremost challenge for researchers and

policy planners globally. Thus, dual objective approaches/techniques need to be developed, which can

potentially increase food production with zero/negative greenhouse gas (GHG) emissions. The global

agricultural production system generates a huge amount of bio-waste, which threatens agricultural and

environmental sustainability. However, conversion of agricultural waste into biochar can potentially

address the food insecurity and climate change challenges concurrently. Biochar production and

utilization is proposed as an innovative solution for achieving the Sustainable Development Goals (SDGs),

such as zero hunger, poverty, and climate change mitigation, by enhancing farm productivity and

reducing/offsetting anthropogenic CO2 emission. Globally, biochar has the potential to increase crop

productivity by 11% and reduces 12% human-induced GHG emissions annually. Biochar can potentially

sequester ∼0.7–1.8 Gt CO2 (C eq.) y−1 in the soil system. Furthermore, biochar application improves soil

health, which facilitates the plant growth and crop productivity. Biochar application can alters the plant

physiology and makes the plant system more tolerant against biotic and abiotic stresses. Biochar is also

an excellent in situ-sorbent for soil contaminants. However, some inconsistent reports about the utility

of biochar are also available. Hence, an in-depth understanding about the uses and impact of biochar on

the food production, soil health, and climate change mitigation is highly warranted, for framing the

research priorities and policies for developing cleaner and sustainable agricultural production systems.
Environmental signicance

Biochar production and utilization is proposed as an innovative solution for climate change mitigation by reducing/offsetting anthropogenic CO2 emissions.
Biochar is an excellent carbon neutral material; one tonne biochar production can permanently remove ∼2.68 Mg CO2eq. from the atmosphere. Biochar curtails
CO2 emissions through fossil fuel replacement by the production of syngas and bio-oil, in addition to its application and long-term C storage in the soil.
Furthermore, biochar application decreases soil bulk density (rb) and improves soil productive capacity. Carbon sequestration via biochar production is
technically feasible and can be economically viable, approach to address the climate change, and land degredation issues especially with the current devel-
opment of the carbon sink economy.
1. Introduction

The United Nations has setup 17 Sustainable Development
Goals (SDGs) and 269 targets for 2030, out of which 10 SDGs are
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directly linked with agriculture. SDGs 1 and 2 are related to “no
poverty ” and “zero hunger” as crucial for sustainable agricul-
ture. Globally,∼811 million people suffer from hunger, and one
in ten people suffers from chronic hunger.1 This indicates that
gICAR-Indian Institute of Farming Systems Research Modipuram, UP, 250110, India
hICAR Research Complex for NEH Region, Tripura Centre, Tripura, 799210, India
iICAR-Directorate of Groundnut Research, Regional Station, Anantapur, Andhra

Pradesh, 51500, India
jDepartment of Soil Science & Agricultural Chemistry, Sher-e-Kashmir University of

Agricultural Sciences & Technology, Kashmir, 190025, India
kICAR-Indian Institute of Soil Science, Bhopal, Madhya Pradesh 462038, India
lICAR-Central Research Institute for Dryland Agriculture, Hyderabad, Telangana,

500059, India

© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d2va00324d&domain=pdf&date_stamp=2023-07-29
http://orcid.org/0000-0003-4469-0157
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2va00324d
https://pubs.rsc.org/en/journals/journal/VA
https://pubs.rsc.org/en/journals/journal/VA?issueid=VA002008


Critical Review Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 2
:0

5:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the world population is at a critical juncture, and needs tech-
nological attention and legislative support to ensure food
security. Hence, to meet global food security while harmonizing
the dwindling resources and uctuating climate, agricultural
production systems must be more productive and adaptable.2

Globally, anthropogenic activities added ∼16 Pg C (1 Pg = 1
billion metric tonnes) to the environment annually, which
corresponds to 24% net primary productivity.3,4 Human-
induced CO2 emission increases by >3% per annum, which
puts Earth on an irreversible climate change track.5 Agricultural
production systems contribute about 10–14% of the total GHG
emissions,6 which is likely to be increased to 50% by 2030.7

Hence, the implementation of an ambitious climate mitigation
program is highly desirable to achieve environmental sustain-
ability. To control the rising temperature and total GHG emis-
sion, future agricultural production systems must be carbon
neutral or negative.8 The initiative of “4 per 1000” was launched
by the United Nations Framework Convention on Climate
Change9 with the focus on soils for food security and the envi-
ronment to combat the global GHG emission issues (https:/
www.4p1000.org). It aims to increase the annual soil organic
carbon (SOC) sequestration of global agricultural lands to 2–3
Gt (Giga tonnes) carbon (C) in the upper 100 cm soil, which
can effectively offset 20–35% of the global C emission. Hence,
carbon negative high food-producing technologies must be
adopted to address the multiple challenges.

Agricultural-derived biomass is a readily available renewable
energy and nutrient source. However, transportation cost
increases the price of biomass energy. Hence, for energy
generation from biomass, cost effective and robust technologies
are highly warranted.10 Unscientic biomass management
practices like eld burning and open dumping causes envi-
ronmental and human health issues.11 Field re impairs the air
quality, posing health hazards, like skin/eyes irritation, asthma,
bronchitis, emphysema, and cancer.12 Modern technology-lead
biomass valorization can potentially increase the farmer's
income, energy security and environmental and soil quality.13,14

Biomass energy can be cost-effective energy sources in rural
areas. Hence, adequate incentive facilities are warranted to
encourage the use of low-cost biomass energy.15,16 Biochar
applications in agricultural production systems are attaining
immense importance due to its economic and environmental
benets.17 Biochar can potentially be considered an innovative
tool to address the food insecurity and environmental issues by
improving soil health,18 crop productivity,19 curtailing GHG
emissions20 and water pollution.21 The biochar production by
thermal decomposition at elevated temperature in the absence
of oxygen (pyrolysis) has proved to be an alternative strategy for
agri-waste management.22,23 Additionally, modern technology-
lead agri-waste-pyrolysis yielded syngas, bio-oil, and biochar.24

Traditional biochar production methods emit more methane
(CH4), N2O, soot, or volatile organic compounds, which causes
excess C payback time and is also hazardous to health.25,26

Utilizing biomasses as biochar via pyrolysis and hydrothermal
carbonation reported superiority in terms of GHG reduction
over traditional methods.21 Biochar is a solid C-rich pyrolyzed
(250 and 900 °C) biomass material produced under oxygen-free
© 2023 The Author(s). Published by the Royal Society of Chemistry
condition.17 It is a superior C carbon source and has better
nutrient retention capacity over other C sources.27

Biochar helps in two ways to reduce the atmospheric CO2: (1)
by its production and (2) by sequestering atmospheric CO2 in
soil.28–30 It is possible to offset up to 1.8 Pg CO2eq. (Penta gram
carbon dioxide equivalent) per annum through biochar,
compared to 15.4 Pg CO2eq. emitted annually.4 However,
inconsistent reports are also available on the GHG emission
mitigation potential of biochar. For instance, biochar-amended
soil had higher CO2 and N2O emissions due to the carbona-
ceous nature and quality of biochar feedstock.31 Another study
suggested that biochar application did not have any signicant
effect on CO2 emission from paddy and chestnut soils in China.
This was mainly due to the soil and feed stock attributes.32

However, biochar application at the rate of 30 Mg ha−1 reduces
CO2 emission by 31.5% and 7.2% in forest and agricultural
soils, respectively.33 Long-term biochar application decreases
CH4 emission.34 However, short-term applications induced
CH4.35 Biochar application induced CO2 emission by 22.14%
and decreased N2O emission by 30–38%, and did not inuence
the CH4 emission.36,37 The variable effect of biochar on GHG
emission from the soil might be attributed to variations in the
soil, feedstock, climate types, and measurement methods of
GHG emission, application rate, and pyrolysis temperature.38,39

Overall, soil-applied biochar improves agricultural and envi-
ronmental sustainability.40

Biochar application decreases soil bulk density (rb), and
enhances soil productive capacity and plant growth.41,42 Biochar
application modulates the soil health, resulting in higher crop
yields.43–46 Liu et al. (2013)47 screened the 116 published studies
from 21 countries, and summarized that biochar application
increased crop productivity by 11%. But biochar application
ratemust be optimized as at higher doses of biochar application
had the deterimental effect on plant growth.48 Abukari et al.
(2021) showed that application of biochar at the rate of 30 Mg
ha−1 enhanced legume productivity by 30%, vegetable yield by
29%, and cereal yield by 7–8% over no biochar.49 The addition of
recalcitrant C in the soil enhances the soil-water-nutrient
holding capacity, which promotes crop growth.50 An increased
level of non-labile C in the total SOC is important to mitigate
climate change and restore the fertility of the degraded soil.50–52

Continuous biochar application with the rate of 11.25 Mg ha−1

in both crops under a maize-wheat system for ve years xes
182.3 Mg ha−1 CO2 over the control plot.53 Short-term biochar
application at the rate of 7.5 Mg ha−1 also improves SOC by 39%
in maize-wheat systems aer two cropping cycles. Owing to the
priming effect, short-term biochar application increases the
labile C pool. However, long-term biochar application sup-
pressed the SOC mineralization.54,55 Still, the biochar interac-
tion with SOC changes over time, and the negative priming
effect is nullied aer 3–5 years of application.28,53 One tonne
SOC increment in cropland increases crop productivity by 50%
and curtails atmospheric CO2 by 5–15%.28,53 Besides that, bio-
char also has the potential to suppress the plant pathogen by
altering the soil microbiome structure.46,56 Biochar reduces
runoff losses, nutrients erosion, and soil pollutant loads,52 and
improves carbon sequestration. Overall, biochar is a potential
Environ. Sci.: Adv., 2023, 2, 1042–1059 | 1043
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solution to address the global food, energy, and environmental
challenges.57–59 However, this information needs to be brought
together in a comprehensive and analytical way, which may be
more useful to the researchers and policy planners. The present
review is an effort to provide a comprehensive assessment and
insight of the different mechanisms involved in biochar
production, its application and effect on food production, and
environmental sustainability, which may be helpful to formu-
late the biochar-based policy for sustainable and clean agri-
cultural production.
2. Agricultural waste and biochar
production

Conversion of forest land to biomass producing crops or forest
felling for feedstock is not a sustainable practice as land-use
changes lose ∼22 Mg C ha−1, and will result in a carbon
payback time of ∼10 years. Hence, forest trees must not be cut
for the cultivation of biomass-producing crops. Furthermore,
productive land should not be brought under the cultivation of
biomass crops, as it will compromise food security. On the other
hand, crop residue management is challenging to farmers as it
is a labor-consuming and costly affair. The absence of site-
specic residue management technologies further makes it
tedious.11 Crop residue, poultry litter, dairy manure, sugarcane
trash, cotton trash green wastage of various crops, animal
manures, and other forests' unused wood material are potential
substrates for biochar production.60,61 Weed biomass can be
pyrolyzed in an oxygen-free condition to produce biochar.
Lignin-rich agro-waste is more efficient for biochar production,
as it yielded more char as compared to cellulose and
hemicellulose-rich materials. Pyrolysis temperature also plays
a key role in biochar production. Lignin-rich biomass pyrolyzed
at a wider temperature range (160–900 °C) while hemicellulose
and cellulose-rich residues were pyrolyzed at a temperature of
220–315 °C and 315–400 °C, respectively. Low-temperature/
high-pressure (hydrothermal carbonization) and slow pyrolysis
are two effective methods of biochar production from different
feedstock. Biochar properties mainly depend on the type of
feedstock and pyrolysis temperatures. Biochar produced at
a higher temperature (>550 °C) has more surface area and
sorption capacity, as compared to those produced at a lower
temperature. Pyrolysis completely avoided the immediate decay
of residue inputs, and halted the CO2 and CH4 emissions.

Pyrolysis converts cellulosic carbons into more stable
aromatic carbons, which can subsequently be customized for
diverse agricultural uses.62 Biochar production from crop
biomass is performed by the dry pyrolysis process in the
absence of oxygen at high temperatures.41 Thermochemical
conversion techniques, including gasication, pyrolysis,
hydrothermal carbonization, and torrefaction, are the most
commonly used practices for biochar production.47,63 Pyrolysis
is the most commonly used technique for biochar production.64

The process of conversion of crop residue into nal biochar
production depends on the nature of the crop, stage of crop
residue, size, shape, and composition concerning organic
1044 | Environ. Sci.: Adv., 2023, 2, 1042–1059
material, viz., cellulose, hemicellulose, lignin, etc.65,66 Biochar
production at higher temperatures is reported to have a higher
surface area and pore volume than those produced at a lower
temperature.67 The wet pyrolysis process of biochar production
is associated with the hydrothermal carbonization (HTC)
process, in which biochar is produced at low temperature and
pressure in an aqueous solution. This process is more useful in
residues containing more lignin, cellulose, and hemi-
cellulose.68,69 The temperature requirement in this process for
converting biomass into biochar is comparatively lower than
pyrolysis.70 Biochar produced through HTC has less surface area
and is not ideal for agricultural use as compared to biochar
produced by pyrolysis.71 However, the HTC is an energy-efficient
process and operates at lower temperatures with higher biochar
recovery.72 Biochar produced through pyrolysis has higher
surface areas than that produced through hydrothermal
carbonation. Liquid biofuels and syngas, such as CH4, C2H6,
CO, CH4, and H2, are the co-biochar products resulting from
pyrolysis and hydrothermal carbonation.71,73–75
3. Effect of biochar on crop
productivity

Biochar application in agriculture improves crop yield by
altering soil properties and enhancing the SOC content.76,77

Improvement in soil quality and tolerance in plants against
biotic and abiotic stresses due to biochar application is
responsible for improvements in agricultural production.78 The
increased crop yields from biochar application are linked to
improved soil quality.79 Biochar improves carbon sequestration,
soil quality, and crop growth signicantly.80 Biochar application
in nutrient-decient and degraded soils increases agricultural
productivity.81 Application of eucalyptus-based biochar at the
rate of 50 Mg ha−1 increases maize productivity by 48–50% in
acidic soils of humid tropical condition.82 Yield improvements
in different crops due to biochar application under various
ecologies were reported by several researchers (Table 1). Biochar
improves soil structure and carbon content, as well as nutrient
availability, and microbial population, which improve crop
yields.83 The delayed production of an organic layer on the
biochar surface during aging helps to retain nutrients, and may
account for the higher yield.84,85 Biochar increases soil structure,
fertility, nutrients use efficiency (NUE), and crop yields.86,87

Biochar application enhances agricultural productivity via
improvement soil health, decrease in crop biotic and abiotic
stresses, and modulation of plant physiological processes.
4. Effect of biochar on stress
tolerance in crops

Biochar has various benets in agriculture, including the allevi-
ation of various kinds of abiotic stress, such as salt and
drought.88,89 Biochar application at a rate of 20 Mg ha−1 increased
nutrient uptake and chlorophyll concentrations in pumpkin
plants.90 Biochar improved tomato leaf water usage efficiency,
stomatal conductance, chlorophyll concentration,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Biochar modulates soil condition and plant physiology.
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photosynthesis, and relative water content in dry conditions.91

The high adsorption capacity of salt makes biochar an excellent
ameliorant for the reclamation of the degraded salt-affected
region.92 Biochar has a high salt adsorption capability due to its
vast surface area and cation exchange capacity. As a result, bio-
char can be used to reduce plant sodium intake, and thereby
mitigate the negative effects of salt stress. Biochar application
increases agricultural output in acidic soils by allowing plants to
tolerate salt.82 Biochar facilitates the absorption of an array of soil
contaminants owing to its high surface area, porosity, and
adsorption ability.93 The plants' physiological and biochemical
properties were altered due to biochar application, which helps to
combat the multiple stresses.94 Biochar modulates the different
plant physiological and soil properties, which helps the plants
develop the resistance mechanism against biotic and abiotic
stresses (Fig. 1). Biochar application increases plant photosyn-
thesis, chlorophyll content, and transpiration rate in different
crops under various growing media.87,94 It also enhances the gas
exchange ability of crop leaves and reduces oxidative stress.95

Differential crop responses to various kinds of biochar are re-
ported by various research across the eco-regions of the world
(Table 2). Biochar has been shown to boost plant performance,
and lessen the severity of both air and soil-borne pathogen when
used as a soil amendment. Biochar has the potential to have both
direct and indirect antagonistic effects on pathogens, such as
generating systemic resistance in plants, as pathogens and bio-
char both reside in the soil.96 The biochar application geared the
acquired and induced systemic resistance pathways, giving the
soil a broad-spectrum disease-controlling potential.97 Biochar
generated from green waste and wood waste was used to reduce
early blight growth in tomatoes.91 Biochar has a positive impact
on favorable microorganisms that actively defend against
diseases causing soil pathogens by producing complex chemicals.
Some plant-based products with insecticidal qualities, such as
neem cake, can be used to make biochar, and their effect on
insect-pest tolerance in plants can be studied. The nature of raw
1046 | Environ. Sci.: Adv., 2023, 2, 1042–1059
material and the application rate of biochar inuence the
management of insect pests and nematodes.98 Moreover, plant
tolerance to biotic and abiotic stresses due to biochar is linked
with improvements in benecial soil microorganisms in the soil,
soil amelioration, modulation in plant biochemical constituents,
and morpho-physiological characteristics.

5. Effect of biochar on soil health

Most tropical and subtropical soils suffer from severe soil
fertility depletion due to excess nutrient mining and soil
organic matter reduction, resulting in poor agricultural
productivity.99,100 Hence, the application of an innovative
product like biochar is highly warranted to address the complex
issue of soil quality and agricultural productivity.2,101 Biochar
addition modulates the soil biology, chemistry, and physical
properties.10 During the last two decades, even though biochar
as an amendment has been widely researched, the impact of its
application was mixed due to the complex nature of biochar,
soils, and crops.2,102 The effects of the biochar is variable; it
works efficiently in acidic, but deteriorated coarse textures
soils.103 The optimum application of biochar has the potential
to improve soil conditions and reduce GHG emissions, and also
immobilize toxic metals and other organic pollutants.86,101

However, contrary to these, some adverse effects of biochar at
higher doses have also been documented.104

5.1 Effect of biochar on soil physical properties

Biochar application has shown a differential effect on soil
physical properties like bulk density (rb), porosity, hydraulic
conductivity, and soil color under diverse soil and climate
types.104,105 The rb is an important physical soil parameter that
controls nutrient availability, porosity, and compactness of the
soil. Biochar is a porous material having less rb (0.3 to 0.6 Mg
m−3) than the common agricultural soils. The temperature
during pyrolysis and the nature of the feedstock used for
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2va00324d


T
ab

le
2

T
h
e
e
ff
e
ct
s
o
f
b
io
ch

ar
o
n
cr
o
p
st
re
ss

to
le
ra
n
ce

Lo
ca
ti
on

C
ro
p

B
io
ch

ar
ap

pl
ic
at
io
n

T
yp

e
of

st
re
ss

to
le
ra
n
ce

R
ef
er
en

ce
s

C
er
ea
ls

C
h
an

gs
h
a,

C
h
in
a

R
ic
e

R
ap

es
ee
d
st
ov
er

bi
oc
h
ar

40
g
kg

−1
so
il

R
ed

uc
ed

h
ea
t
st
re
ss

by
al
te
ri
n
g
ro
ot

zo
n
e
so
il
an

d
re
gu

la
ti
n
g
h
ea
t
sh

oc
k

pr
ot
ei
n
in

ro
ot
s
an

d
le
av
es

16
7

B
ah

aw
al
pu

r,
Pa

ki
st
an

W
h
ea
t

W
h
ea
t
st
ra
w
bi
oc
h
ar

(3
7.
18

g
kg

−1
so
il
)

D
ro
ug

h
t
st
re
ss

re
si
st
an

ce
by

in
cr
ea
si
n
g
w
at
er

us
e
effi

ci
en

cy
by

19
.3
0%

ov
er

co
n
tr
ol

18
1

R
aw

al
pi
n
di
,

Pa
ki
st
an

B
io
ch

ar
(2
%
)

M
it
ig
at
in
g
sa
lt
st
re
ss

by
de

cr
ea
si
n
g
pr
ol
in
e
an

d
so
lu
bl
e
su

ga
r
co
n
te
n
ts

by
51

%
an

d
27

%
,r
es
pe

ct
iv
el
y,

an
d
in
cr
ea
si
n
g
le
af

w
at
er

by
16

%
an

d
os
m
ot
ic

po
te
n
ti
al
s
by

10
%

18
2

M
at
at
ir
th
a,

N
ep

al
M
ai
ze

Eu
pa

to
ri
um

ad
en
op

ho
ru
m

bi
oc
h
ar

(2
%
)

In
cr
ea
se
d
n
ut
ri
en

t
av
ai
la
bi
li
ty

in
ac
id
ic

so
il
s
in

n
ut
ri
en

t-
st
re
ss
ed

co
n
di
ti
on

17
4

E
l-G

h
ar
bi
a,

E
gy
pt

B
ar
le
y

B
io
ch

ar
(2
0
M
g
h
a−

1
)

R
ed

uc
ed

el
ec
tr
ol
yt
e
le
ak

ag
e,

li
pi
d
pe

ro
xi
da

ti
on

,a
n
d
pr
ol
in
e
le
ve
ls

re
du

ce
dr
ou

gh
t
st
re
ss

18
3

Pu
ls
es

H
en

an
,C

h
in
a

So
yb

ea
n

W
h
ea
t
st
ra
w
bi
oc
h
ar

(1
0
g
kg

−1
so
il
)

Si
gn

i
ca
n
tl
y
in
cr
ea
se
d
w
at
er

us
e
effi

ci
en

cy
by

27
.5
%

ov
er

co
n
tr
ol

41
G
az
ip
ur
,

B
an

gl
ad

es
h

Po
u
lt
ry

li
tt
er

bi
oc
h
ar

(5
0
M
g
h
a−

1
)

E
n
h
an

ce
d
dr
ou

gh
tr
es
is
ta
n
ce

du
e
to

in
cr
ea
se

in
w
at
er

co
n
te
n
ti
n
pl
an

ts
an

d
re
du

ct
io
n
in

ch
lo
ro
ph

yl
l
br
ea
kd

ow
n
in

le
av
es

18
4

G
az
ip
ur
,

B
an

gl
ad

es
h

Pe
a

Sa
w
du

st
an

d
ri
ce

h
us

k
bi
oc
h
ar

R
ed

uc
es

ox
id
at
iv
e
an

d
os
m
ot
ic

st
re
ss

95

G
er
m
an

y
Lu

pi
n

B
io
ch

ar
ch

ar
fr
om

m
ai
ze

an
d
w
oo

d
In
oc
ul
at
ed

ba
ct
er
ia

Ps
eu
do

m
on

as
pu

ti
da

an
d
St
en
ot
ro
ph

om
on

as
pa

va
ni
i

su
rv
iv
ed

be
tt
er

in
th
e
rh
iz
os
ph

er
e

18
5

V
eg
et
ab

le
s

R
is
h
on

Le
zi
on

,
Is
ra
el

T
om

at
o

Pe
pp

er
pl
an

t
w
as
te

bi
oc
h
ar

(3
%
)

E
n
h
an

ce
d
re
si
st
an

ce
ag

ai
n
st

Fu
sa
ri
um

ox
ys
po

ru
m

f.
sp

.r
ad

ic
is
ly
co
pe
rs
ic
i

96

G
ua

n
gd

on
g,

C
h
in
a

Pe
an

ut
sh

el
l
an

d
w
h
ea
t
st
ra
w
bi
oc
h
ar

(2
%
)
of

ea
ch

T
h
e
ba

ct
er
ia
l
w
il
t
di
se
as
e
in
de

x
w
as

re
du

ce
d
by

28
.6
%

an
d
65

.7
%
,

re
sp

ec
ti
ve
ly

47

Lu
bb

oc
k,

U
n
it
ed

St
at
es

B
ri
n
ja
l

O
ak

an
d
pi
n
e
bi
oc
h
ar

(1
2.
5
kg

)
In
cr
ea
se
d
st
om

at
al

co
n
du

ct
an

ce
an

d
ph

ot
os
yn

th
et
ic
ra
te
,a
s
w
el
la

s
re
du

ce
d

le
af

te
m
pe

ra
tu
re

an
d
el
ec
tr
ol
yt
e
le
ak

ag
e,

to
re
du

ce
sa
li
n
it
y
st
re
ss

in
pl
an

ts
18

6

N
ew

D
el
h
i,
In
di
a

Sp
in
ac
h

W
oo

d
bi
oc
h
ar

In
cr
ea
se
d
ch

lo
ro
ph

yl
l,
ca
ro
te
n
oi
d,

an
d
re
la
ti
ve

w
at
er

of
th
e
le
af

18
7

Fo
ra
ge

Y
an

gz
h
ou

,C
h
in
a

Fo
ra
ge

so
rg
h
um

W
h
ea
t
st
ra
w
bi
oc
h
ar

(2
.5
%
)

M
it
ig
at
e
th
e
n
eg
at
iv
e
eff

ec
ts

of
sa
li
n
it
y
on

an
ti
ox
id
an

t
en

zy
m
es

18
8

A
m
h
ar
a
R
eg
io
n
,

E
th
io
pi
a

T
eff

E
u
ca
ly
pt
us

bi
oc
h
ar

(1
2
M
g
h
a−

1
)

Lo
w
er
in
g
ex
ch

an
ge
ab

le
so
il
ac
id
it
y
re
du

ce
d
th
e
n
eg
at
iv
e
eff

ec
ts

of
so
il

ac
id
it
y
on

pl
an

ts
18

9

O
th
er
s

M
ul
ta
n
,P

ak
is
ta
n

M
in
t

Fr
ui
t
an

d
ve
ge
ta
bl
e
w
as
te

an
d
co
m
po

st
bi
oc
h
ar

(1
:1
)

T
h
e
le
av
es
'l
ea
d
up

ta
ke

w
as

re
du

ce
d
by

13
.5
%

ov
er

n
on

-t
re
at
ed

pl
an

ts
19

0

M
er
el
be

ke
,B

el
gi
um

St
ra
w
be

rr
y

B
io
ch

ar
(3
%
)

O
n
bo

th
le
av
es

an
d
fr
ui
ts
,t
h
er
e
is

a
de

cr
ea
se
d
se
n
si
ti
vi
ty

to
th
e
fu
n
ga

l
di
se
as
e
B
ot
ry
ti
s
ci
ne
re
a

19
1

© 2023 The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Adv., 2023, 2, 1042–1059 | 1047

Critical Review Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 2
:0

5:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2va00324d


Environmental Science: Advances Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 2
:0

5:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
biochar production inuence the rb of the biochar. Hence, the
reduction in rb is entirely driven by soil condition, the dose, and
the properties of biochar applied. Application of woodchip
biochar decreases the rb of planosol by 5.1% over the control.2

The response of the biochar on rb is more effective in light soil
than in heavy soils.106,107 Biochar addition promotes soil fungal
growth, as well as microbial activities, resulting in soil
agglomeration, along with profuse root development, subse-
quently reducing rb.108 The positive effect of biochar on soil
porosity and hydraulic conductivity have also been reported by
many researchers.66,109 The aggregate formation and stability
index of silty loam, sandy loam, silty clay, and clay soils had
been improved with biochar application,110while no change was
reported in sandy loam soil.34 The biochar application can
change the size and distribution of soil pores to a relatively
smaller pore size, which positively impacts crop growth and
development.111 Biochar application reduces the rb, which
alters soil porosity and nutrient availability, resulting in higher
above and below-ground biomass.112 Hydraulic conductivity of
the soil is crucial for available soil water movement within the
soil, and also for the water holding capacity. Biochar applica-
tion had more impact on sandy soil as compared to clay soil.2,113

The feedstock used for biochar preparations also had a varied
response for WHC; woody feedstock had higher WHC than
lignocellulosic and herbaceous feedstock due to the greater
pore space.114 In sandy soil, the application of biochar signi-
cantly reduced the saturated hydraulic conductivity due to more
water retention in a single layer.115
5.2 Effect of biochar on soil chemical properties

The soil chemical properties are very crucial sustainability
indicators of crop production, which is entirely dependent on
soil nutrient status and crop acquisition pattern.116 The post-
green revolution era created a multi-nutrient deciency in soil
due to the global continuous overuse of straight fertilizers.117 A
healthy soil environment plays a pivotal role not only in good
plant growth, but also in higher productivity.6 Hence, innovative
nutrient management options, viz., application of biochar
produced from different feedstocks over a long period to the soil
can increase the soil nutrient effectiveness and their use effi-
ciency compared to the control.105 Over a long term (>5 years),
biochar additions enhanced the soil organic matter (46%),
which is the basis for the nutrients mineralization process.118

The necessary mineral nutrients contained in the biochar keep
helping the plants by providing continuous ow from soil to the
plants.105 Furthermore, biochar application increases the cation
exchange capacity, which resulted in improved K, Ca, Mg, Zn,
Mn, and Cu availability. All such positive effects of biochar have
been reported to enhance plant growth and crop yield.119 All
these plant nutrients are pH-dependent, which is very much
affected by the application of biochar as its nature is alkaline
(pH 6–12).100 Biochar application reduces the concentration of
Al3+ and H+ in the ions in acidic soils.120

A large variation in biochar applications ranging from 10 to
150 Mg ha−1 in soil has been reported in many studies.
However, the economic feasibility was mostly observed in the
1048 | Environ. Sci.: Adv., 2023, 2, 1042–1059
range between 20 and 30 Mg ha−1.32 In many studies, the bio-
char application increased the C, N, and P content in the soils,
and promoted soil aggregation and stimulation of microor-
ganism activities.18,121,122 The improvement of soil chemical
properties was witnessed with the increase in organic matter.
Furthermore, similar positive results of improvement of elec-
trical conductivity and pH were observed in contaminated soil
with the application of biochar.123 The availability of essential
plant nutrients is largely dependent on the soil pH. The nutrient
supplying ability of biochar applied to the soil is mainly
dependent on the feedstock used for its preparation. The
increased availability of the nutrient with the addition of bio-
char is mainly due to changes in circulation, retention, and
conversion to plant-available form.124 The higher CEC of bio-
char adsorbed NH4

+ on the surface and was reused.
Therefore, N utilization and its loss were minimized by the
adsorption of NH3.125 The soil microbial nitrogen content
increased with increasing biochar addition into the soil as
microorganisms absorbed NO3 N in R-NH2, which is easily
adsorbed by biochar and soil minerals. Biochar can detoxify
heavy metals in contaminated soil,126 as well as other sources of
toxic effluents.101 The biochar with a large specic surface area
and diverse negatively charged anions suitably immobilized the
inorganic pollutants in soil.127 The mobility of heavy metals in
soil is reduced due to adsorption, ion exchange, and stabiliza-
tion with the formation of organometallic compounds.128 The
combined application of biochar along with compost help in
the immobilization of toxic materials in heavy metal polluted
soils.123,129 Rodŕıguez-Vila et al. (2016)124 reported a reduced
concentration of Al, Cu, Fe, Mn, Ni, Zn, Co, and Mg in soil water
and increased potential immobilization of toxic elements,
thereby reducing the contamination risk with oak wood bio-
char. The combined application of biochar with compost is
reported to reduce potentially toxic metals, improve soil
fertility, and thus have a synergistic effect on soil remediation,
as well as higher crop productivity.18,130 Maize biochar-based
fertilizer can be used as a remedial measure for cadmium
(Cd)-polluted soil, as its presence caused rigorous health issues
in humans via induction into the food chain.123 Furthermore,
due to the nutrients chelating properties, biochar application
reduces the nutrient leaching in the soil system.10
5.3 Effect of biochar on soil biological health

The soil biological properties play a crucial role in nutrients
mineralization, which is the basis for plant nutrients avail-
ability.129 Soil microbial diversity is directly related to the soil's
physicochemical properties.33 The biochar itself, having
a porous and aromatic structure with stretched surface,
becomes a harbor for soil microbial organisms and provides
nutrients for their multiplication.18,131 Biochar is helpful in
bacterial decomposition, as it contained decomposed C and N
on its surface. The enhanced microbial biomass carbon (MBC)
and microbial biomass nitrogen (MBN) contents have accom-
panied the corresponding decrease in dissolved organic C
concentration, and have a stronger microbial diversity.132 The
biochar surface adsorbed the bacteria, making them less
© 2023 The Author(s). Published by the Royal Society of Chemistry
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susceptible to leaching, and thus increased the population of
bacteria in the soil. The biochar application increased the
nitrogen xation capacity by increasing the number of N-xing
bacteria.133 Biochar application signicantly enhanced the soil
MBC and MBN.126 Biochar alters the soil enzymatic reaction;
however, the intensity of the soil enzymatic alterations depends
upon the feedstock nature from which biochar has been
developed.134 The addition of biochar developed from pine-
woods and grass as feedstock has decreased the b-glucosidase
and phosphate activities in soil.135 In contrast, Oladele et al.
(2019)19 reported that the activities of alkaline phosphatase,
urease, invertase, and catalase have been increased with the
addition of rice husk biochar (12 Mg ha−1).
6. Biochar for climate change
mitigation
6.1 Carbon sequestration potential of biochar

The global carbon cycle is largely linked to climate change and
CO2 emission from fossil fuel usage and land-use change.99 Soil
carbon sequestration is the trapping of CO2 from the atmo-
sphere, and storing it in the soil in more stable forms.136,137 As
a climate change extenuation approach, carbon sequestration is
a simple and robust technique to track national carbon
accounting.138,139 Furthermore, carbon sequestration facilitates
the conversion of biomass into the recalcitrant soil C pool and
lowers the CO2 levels in the atmosphere. Thus, the production
of biochar from crop residue and its application into the soil
have demonstrated a signicant potential for carbon seques-
tration and extenuation of the harmful impacts of climate
change.29,136 Biochar is an excellent carbon neutral material. A
total of 2.879 Mg CO2eq. is embodied in a tonne of biochar (dry
basis), and one tonne biochar production can permanently
remove ∼2.68 Mg CO2eq. from the atmosphere.140 However, the
carbon removal capacity of the biochar depends on the quality
of the raw material and biochar production temperature.
Conversion of one tonne agricultural residues into biochar
removes ∼0.92 Mg CO2eq. from the atmosphere,141 while
conversion of one tonne forestry residue sequesters 2.74 Mg
CO2eq.142 Furthermore, it has been estimated that by 2050, the
carbon removal potential of biochar will be about 0.3–2 Gt CO2

y−1.143 It has been predicted that the use of biochar can offset
anthropogenic CO2 emissions by up to 12%.4 Some studies re-
ported that biochar can sequester carbon by up to 2.27 Pg C y−1

in the soil at the global level. Due to the inherently xed carbon
in the biomass materials, which would otherwise break down
into GHG and remain buried in the soil for a longer time, bio-
char has the potential to avert climate change.

Biochar has been recognized as an important approach for
climate change mitigation by sequestering CO2 in soils, and
thereby reducing excess CO2 from the atmosphere.27 As a result,
it may be a viable alternative strategy for sequestering more CO2

from crop wastes than traditional agricultural practices, which
result in rapid carbon mineralization and increased CO2 release
into the atmosphere.144 The carbon sequestration potential of
biochar lies between 0.7 and 1.8 Gt CO2eq. y−1.51,145 The
© 2023 The Author(s). Published by the Royal Society of Chemistry
environmental stability of biochar-C is extremely high as
compared to other C sources, which facilitate the changes of the
short-term atmospheric C cycle to the long-term geological C
cycle when applied to soil.146 However, the C content of biochar
mainly depends on the types of processing (heating tempera-
ture of pyrolysis) and types of feedstock used.145,147 The C
content of biochar tends to rise as the production temperature
rises. However, the biochar produced at 500 °C hadmaximum C
sequestration ability, even though the biochar produced at
higher temperature contains more C in the recalcitrant form
than the biochar produced at a lower temperature.148 Biochar
made from wheat straw at 500 °C had a higher carbon content
(662 g kg−1) than biochar made at 300 and 400 °C.149 With an
increase in product temperature from 350 to 500 °C, there was
a greater organic C content of 13.98% to 20.57% and 16.45% to
26.91% in coffee husk biochar and corn cob biochar, respec-
tively.150 Biochar's carbon sequestration capacity can be poten-
tially increased by increasing the proportion of stable carbon
content. This is usually performed by the pyrolysis process,
which reduces the solids production, while increasing the C
release as a gas, leading to the increased CO2 emissions when
burned.146,151

The carbon sequestration mechanism through biochar in
soil is complicated and not thoroughly understood. However,
the C sequestration mechanism of biochar mainly depends on
feedstock types, pyrolysis temperature, and soil texture. Biochar
put into the soil interacts with the environment's precipitation
and temperature to determine how long biochar carbon is kept
in the soil. The trapping of the labile pool in biochar pores and
the protection of soil C in organo-mineral fractions physically
might lead to a negative priming effect.150 However, the organo-
mineral complex formation is the main mechanism of C
stabilization in the soil aer biochar application.53 The size of
the biochar particles, stability, and interaction with soil parti-
cles and environments determine the C residence time in the
soil.8,151 Biochar adds more carbon to the passive pool of stable
or inert carbon, which is less prone to degradation.152 The CO2

collected by biochar may bond due to interactions between clay
minerals and functional groups on the surface (Fig. 2). As
a result of its interactions with soil particles, biochar becomes
stable in the soil. Owing to the larger surface area, clay particles
stabilize biochar more effectively than the sand particles.99

Biochar sequester more carbon in C-starved soil than in soils
with higher carbon content. The C content in the soil and rate of
soil organic carbon (SOC) breakdown are inversely related; thus,
biochar application reduces the C degradation and hence
improves the SOC status. Biochar additions in soil restricted the
gasses' losses of nitrogen by arresting/reducing the nitrication
and denitrication processes, in addition to increasing the soil
CH4 uptake.133,153 Irrespective of the feedstock types used in
biochar preparation, biochar loses the C content over the period
due to the aging effect. Biochar prepared frommaize stover had
less carbon mineralization ability as compared to the biochar
prepared from pulses and other cereal residue.154,155 Likewise,
Eucalyptus saligna pyrolysis at 550 °C resulted in lower SOC
mineralization by 5.5% over the control.156 Application of bio-
char at the rate of 4.2 Mg ha−1 y−1 increases the soil C storage of
Environ. Sci.: Adv., 2023, 2, 1042–1059 | 1049
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Fig. 2 Possible mechanism of carbon sequestration by biochar inside the soil.
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2.35± 0.4 Mg C ha−1 y−1 in sugarcane elds across the different
regions of Brazil.157 In maize crops, biochar produced from corn
residue increased the SOC sequestration by 12–37% in the
furrow slice (15 cm soil depth).158
7. Biochar and GHG emission
mitigation

Crop residue burning generates a huge amount of greenhouse
gases (GHG), especially CO2, CO, and CH4. The burning of one
tonne rice straw produces ∼3 kg of particulate organic matter
(POM), 1460 kg of CO2, 60 kg of CO, 199 kg of ash, and 2 kg of
SO2.152 The composition of the atmosphere is altered due to
crop residue burning, resulting in an imbalance of radiation.
Due to increased GHG emissions, the stratospheric ozone layer
has been depleted. The long-term application of recalcitrant C-
rich biochar has been shown to be an effective technique for
mitigating climate change,159 but the effect of biochar on GHG
emission mitigation is variable (Table 3). Priyadarshani and
Prabhune (2009)160 suggested that biochar could help to reduce
greenhouse gas emissions by 2–4% out of the 1900 million
tonnes of CO2 in India. Biochar curtails CO2 emissions through
fossil fuel replacement by the production of syngas and bio-oil,
in addition to its application and long-term C storage in the
soil.161 The benecial impacts of biochar application in terms of
1050 | Environ. Sci.: Adv., 2023, 2, 1042–1059
GHG emission reduction were previously reported by several
researchers.137,152 In contrast, He et al. (2018)36 found that
incorporation of biochar enhanced soil CO2 uxes by 22.14%,
but lowered N2O uxes by 30.92% and had no effect on CH4

uxes. Biochar reduces the capacity of the soil to produce N2O
by causing microbial immobilization of the available nitrogen
in the soil.162 Biochar reduced the cumulative N2O by 52–84%
and NO by 47–67% emissions, as compared to those of chemical
fertilization.163 Biochar can thus be used in conjunction with
mineral fertilizers to reduce N2O emissions, while not inter-
fering with mineralization or nitrication processes. Further-
more, at high pyrolysis temperatures, N2O emissions were
shown to be lower than at low pyrolysis temperatures. Under the
controlled condition, the conjoint application of Miscanthus
biochar at the rate of 30 Mg ha−1 (pyrolyzed at 600 °C) and
nitrogen-rich litter reduces N2O emissions by 42% over the
control.164 Biochar application increases soil pH, restrains
nitrate reductase activity, and reduces N2O emission.32 Accord-
ing to Yanai et al. (2007),165 biochar application reduces N2O
emissions by 85% over the control. Application of biochar at the
rate of 20 and 40 Mg ha−1 in rice-wheat systems reduced N2O
emissions by 19.55% and 26.35%, respectively, over the
control.126 However, a lower dose of biochar with the rate of 20
Mg ha−1 resulted in an 8.89% higher N2O emission than the
control, whereas increasing the biochar dose from 20 Mg ha−1
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Impact of biochar application on greenhouse gases emissiona

Biochar material Tested crops
Pyrolysis
temperature (°C)

Rate of biochar
application (Mg ha−1)

Impact on greenhouse gases
(percent) reduction (−) or increase
(+) over control

ReferenceN2O CO2 CH4

Wheat straw Maize 450 20 +5.60 −2.43 +21.67 115
40 +4.76 −12.57 +23.33

Maize straw Maize 450–500 15 +58.15 +22.08 −87.27 158
30 +79.15 +21.53 −103
45 +76.49 +30.97 −74.54

Wheat straw Wheat 500 20 +19.55 — +11.19 126
40 +26.35 — +17.45

Wheat straw Wheat — 3.75 +0.99 — +32.65 21
7.50 +6.40 — +25.85

Rice straw Rice 600 20 −8.89 — +23.83 158
40 +26.06 — +12.54

Rice straw Rice 500 AWD* + 6.65 +30.93 — +56.19 192
CF** + 6.65 +38.64 — +60.34

a *AWD-alternate wetting and drying; **CF-continuous ooding.
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to 40 Mg ha−1 led to 26.06% lower N2O emission.158 The amount
of biochar incorporated also has a tenacious impact on soil N2O
emissions. Biochar promotes N2O emission at lower rates of
application, while it lowers N2O emission at larger dosage.158

Soil supplemented with biochar as an organic amendment is
reported to reduce CH4 emissions.115,158 Biochar improves soil
aeration, reduces denitrication, and increases CH4 sink
capacity,152 thereby retarding the CH4 emission. The near-
complete suppression of CH4 emissions was noticed in
soybean crops supplemented with biochar in acidic soil of
Eastern Colombian Plains.166 Biochar application at the rate of
20 and 40 Mg ha−1 in rice-wheat systems reduced the CH4

emission in rice by 11.19–17.45% over the control.126 Moreover,
biochar can potentially reduce the GHG emissions. However,
the GHG emission mitigation potential of biochar is controlled
by several factors like the biochar substrate, application dose,
preparation methods, soil and crop management techniques,
and the reaction of biochar with soil constitutes and other
applied inputs, like manure and fertilizers, etc.158
8. Biochar certification for
marketability

In general, carbon sequestration via biochar production is
technically feasible and can be economically viable, especially
with the current development of the carbon sink economy.
Carbon removal services via biochar offered through market-
places require appropriate certication and monitoring for
building the credential and authenticity. Biochar eligibility is
highly dependent on the type of feedstock utilized and pro-
cessing conditions employed. Biochar includes technical feasi-
bility, scalability potential, costs, carbon permanence,
verication and monitoring, as well as application benets
concerning various potential carbon reservoirs.140 Process
optimization is imperative to produce an end product that
© 2023 The Author(s). Published by the Royal Society of Chemistry
meets the basic requirement for achieving the stability in
carbon sequestration. Certication is envisioned for sustain-
able biochar production. Presently, the European Biochar
Certicate (EBC) is a well-recognized voluntary industry stan-
dard in Europe. In Switzerland, the EBC certicate is mandatory
for selling biochar. Based on the uses, the EBC promoted four
types of biochar, viz., EBC-Feed, EBC-AgroBio, EBC-Agro and
EBC-Material.143 The EBC certication encompasses a complete
assessment of feedstocks and production process eligibilities,
health and safety norms, sampling procedures, labeling and
quality management protocols, and biochar properties. EBC has
given the standard analytic procedures for the estimation of
biochar properties. Hence, properties must meet the threshold
criteria of the prescribed classes. Fawzy et al. (2021)143

summarized a declaration requirement and threshold of spec-
ied biochar properties for the particular classes. The EBC is the
rst system to provide the methodology for biochar carbon sink
potential certication. Hence, the biochar incorporated in the
feedstock, manures, slurry, or any other substrate in the carbon
sink potential may be converted into the carbon sink certi-
cates. The carbon sink potential is the summation of all form of
emission arising from the production of biochar (factory gate to
production site). Carbon sink potential certicates enable the
produce to sell the carbon sink potential on the online market
place. Only carbon-neutral feedstocks like residual biomass and
crops that do not reduce the total C stock are allowed to be used
for the certication of biochar-based carbon sinks. Biomass
obtained via the destruction of forests and other natural carbon
sinks are not permitted. International biochar initiative (IBI) is
also a volunteer biochar certication agency in the USA. Like
EBC, the IBI also set its standard for biochar certication, but
IBI does not prescribe the biochar production process for
certication. Hence, EBC is the only organization that provides
the biochar production certications.143 Currently, puro and
carbon future are two marketplaces that provide carbon
removal through biochar. Production process certication from
Environ. Sci.: Adv., 2023, 2, 1042–1059 | 1051
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the EBC or any other similar organization is mandatory for
trading the biochar via these marketplaces. However, each
marketplace has its own C removal quantication process based
on the certain parameters.143
9. Conclusions and future
perspectives

The available literature indicates that biochar production and
application in cropland not only reduces GHG emission, but
also improves soil health, crop productivity, and economic
returns. Hence, it can be summarized that the sustainable
production and utilization of biochar can help in achieving
several SDGs. Although a lot of literature is available on biochar
production and application in agriculture, there are major
issues that remain unsolved, like biomass characterization for
biochar production and its interaction with soil environments.
Hence, a comprehensive understanding of the carbon dynamic
controlling and GHG regulating mechanism of biochar under
different ecosystems need to be properly examined. Further-
more, there is a need of a robust study about the impact
assessment of biochar on the microbial structure in soil
systems. Furthermore, the biochar impact on the non-targeted
organism and its interaction with other components of
ecosystemsmust be evaluated for a proper understanding about
the biochar interaction with the soil-plant-human-animal
health continuum. Despite the various claimed benets of
biochar in the agricultural and environmental sustainability, its
eld level uses are very low. Hence, the availability of feedstock,
permanency of biochar application, economic feasibility, and
demand and supply of biochar need to be evaluated for large-
scale adoption. The farm-level economic and social feasibility
of the production and application of biochar must be system-
atically studied, which may give a clear-cut idea in the future
propagation of biochar technology. Field level extension func-
tionaries need to be trained about the biochar production.
Similarly, there must be awareness among the ultimate clients.
In this regard, the government can play a crucial role by
providing nancial assistance and subsidies to the farmers for
the development of community-level low energy requiring
preferably renewable energy-based biochar production units,
especially in south Asia and other resource-poor countries.
Data availability

All the data supported the statements given in the manuscript.
Author contributions

Subhash Babu: conceptualization; methodology; writing orig-
inal dra; Raghavendra Singh: formal analysis; writing – orig-
inal dra; Sanjeev Kumar: writing – review & editing; Sanjay
Singh Rathore: resources; supervision; writing – review & edit-
ing; Devideen Yadav: writing – review & editing; Sanjay Kumar
Yadav: writing – review & editing; Vivek Yadav: writing – review &
editing; Meraj Alam Ansari: writing reviewing & editing; Anup
1052 | Environ. Sci.: Adv., 2023, 2, 1042–1059
Das: soware; writing – review & editing; Gandhamanagenahalli
Adireddy Rajanna: resources; writing – review & editing; Owais
Ali Wani: soware; writing – review & editing; Rishi Raj: writing
– original dra; Dinesh Kumar Yadav: writing – original dra;
Vinod Kumar Singh: writing – review & editing.

Conflicts of interest

The authors declare that they have no known competing
nancial interests or personal relationships that could have
appeared to inuence the work reported in this paper.

Acknowledgements

The authors greatly acknowledge the immense contribution of
Dr Gulab Singh Yadav (Research Team Member), who concep-
tualized the idea and reviewed the rst dra. Unfortunately, he
is no longer with us, as he succumbed to COVID-19 on
19.05.2021.

References

1 Food and Agriculture Organization (FAO) of the United
Nations, International Fund for Agricultural Development,
United Nations Children's Fund, World Food Programme,
and World Health Organization, The State of Food Security
and Nutrition in the World 2017: Building Resilience for
Peace and Food Security, 2017.

2 L. D. Burrell, F. Zehetner, N. Rampazzo, B. Wimmer and
G. Soja, Long-term effects of biochar on soil physical
properties, Geoderma, 2016, 282, 96–102.

3 H. Haberl, K. H. Erb, F. Krausmann, V. Gaube, A. Bondeau,
C. Plutzar, S. Gingrich, W. Lucht and M. Fischer-Kowalski,
Quantifying and mapping the human appropriation of net
primary production in earth's terrestrial ecosystems, Proc.
Natl. Acad. Sci. U. S. A., 2007, 104, 12942–12947.

4 D. Woolf, J. E. Amonette, F. A. Street-Perrott, J. Lehmann
and S. Joseph, Sustainable biochar to mitigate global
climate change, Nat. Commun., 2010, 1, 1–9.

5 S. Solomon, G. K. Plattner, R. Knutti and P. Friedlingstein,
Irreversible climate change due to carbon dioxide
emissions, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 1704–
1709.

6 S. Babu, R. Singh, R. Avasthe, G. S. Yadav, K. Mohapatra,
T. Selvan, A. Das, V. K. Singh, D. Valente and I. Petrosillo,
Soil carbon dynamics in Indian Himalayan intensied
organic rice-based cropping sequences, Ecol. Indic., 2020,
114, 106292.

7 M. Boko, I. Niang, A. Nyong, A. Vogel, A. Githeko,
M. Medany, B. Osman-Elasha, R. Tabo and P. Z. Yanda,
Africa Climate Change 2007: Impacts, Adaptation and
Vulnerability: Contribution of Working Group II to the Fourth
Assessment Report of the Intergovernmental Panel on Climate
Change, 2007.

8 A. N. Yadav, Benecial plant-microbe interactions for
agricultural sustainability, J. Appl. Biol. Biotechnol., 2021,
9, 1–4.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d2va00324d


Critical Review Environmental Science: Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

1 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/3
0/

20
26

 2
:0

5:
40

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
9 D. Roberts, A global roadmap for climate change action:
From COP17 in Durban to COP21 in Paris, S. Afr. J. Sci.,
2016, 112, 1–3.

10 A. I. Osman, S. Fawzy, M. Farghali, M. El-Azazy,
A. M. Elgarah, R. A. Fahim, M. A. Maksoud, A. A. Ajlan,
M. Yousry, Y. Saleem and D. W. Rooney, Biochar for
agronomy, animal farming, anaerobic digestion,
composting, water treatment, soil remediation,
construction, energy storage, and carbon sequestration:
a review, Environ. Chem. Lett., 2022, 20, 2385–2485.

11 P. Chawala and H. Sandhu, Stubble burn area estimation
and its impact on ambient air quality of Patiala &
Ludhiana district, Punjab, India, Heliyon, 2020, 6, e03095.

12 M. I. Abdurrahman, S. Chaki and G. Saini, Stubble burning:
Effects on health & environment, regulations and
management practices, Environ. Adv., 2020, 2, 100011.

13 S. Babu, S. S. Rathore, R. Singh, S. Kumar, V. K. Singh,
S. K. Yadav, V. Yadav, R. Raj, D. D. Yadav, K. Shekhawat
and O. A. Wani, Exploring agricultural waste biomass for
energy, food and feed production and pollution
mitigation: A review, Bioresour. Technol., 2022, 360, 127566.

14 G. S. Yadav, M. Datta, S. Babu, C. Debnath and P. K. Sarkar,
Growth and productivity of lowland rice (Oryza sativa) as
inuenced by substitution of nitrogen fertilizer by organic
sources, Indian J. Agric. Sci., 2013, 83, 1–038.

15 S. Babu, A. Das, R. Singh, K. P. Mohapatra, S. Kumar,
S. S. Rathore, S. K. Yadav, P. Yadav, M. A. Ansari,
A. S. Panwar and O. A. Wani, Designing an energy
efficient, economically feasible, and environmentally
robust integrated farming system model for sustainable
food production in the Indian Himalayas, Sustain, Food
Technol., 2023, 1, 126–142.

16 A. I. Osman, L. Chen, M. Yang, G. Msigwa, M. Farghali,
S. Fawzy, D. W. Rooney and P. S. Yap, Cost,
environmental impact, and resilience of renewable energy
under a changing climate: a review, Environ. Chem. Lett.,
2023, 21, 741–764.

17 S. Khan, C. Chao, M. Waqas, H. P. H. Arp and Y.-G. Zhu,
Sewage sludge biochar inuence upon rice (Oryza sativa
L) yield, metal bioaccumulation and greenhouse gas
emissions from acidic paddy soil, Environ. Sci. Technol.,
2013, 47, 8624–8632.

18 S. Ye, G. Zeng, H. Wu, J. Liang, C. Zhang, J. Dai, W. Xiong,
B. Song, S. Wu and J. Yu, The effects of activated biochar
addition on remediation efficiency of co-composting with
contaminated wetland soil, Resour., Conserv. Recycl., 2019,
140, 278–285.

19 S. Oladele, A. Adeyemo and M. Awodun, Inuence of rice
husk biochar and inorganic fertilizer on soil nutrients
availability and rain-fed rice yield in two contrasting soils,
Geoderma, 2019, 336, 1–11.

20 C. M. Roberts, The Dissertation Journey: A Practical and
Comprehensive Guide to Planning, Writing, and Defending
Your Dissertation, Corwin. Press., 2010.

21 L. Xiang-Hong, H. Feng-Peng and Z. Xing-Chang, Effect of
biochar on soil aggregates in the Loess Plateau: results
from incubation experiments, Int. J. Agric. Biol., 2012, 14.
© 2023 The Author(s). Published by the Royal Society of Chemistry
22 S. Das, P. Ngene, P. Norby, T. Vegge, P. E. De Jongh and
D. Blanchard, All-solid-state lithium-sulfur battery based
on a nanoconned LiBH4 electrolyte, J. Electrochem. Soc.,
2016, 163, A2029.

23 K. Zazai, O. Wani, A. Ali andM. Devi, Phytoremediation and
carbon sequestration potential of agroforestry systems: A
review, Int. J. Curr. Microbiol. Appl. Sci., 2018, 7, 2447–2457.

24 S. Mau, I. Pletikosa and J. Wagner, Forecasting the next
likely purchase events of insurance customers: A case
study on the value of data-rich multichannel
environments, Int. J. Bank Mark., 2018, 36, 1125–1144.

25 L. Dunnigan, B. J. Morton, P. J. Ashman, X. Zhang and
C. W. Kwong, Emission characteristics of a pyrolysis-
combustion system for the co-production of biochar and
bioenergy from agricultural wastes, Waste Manage., 2018,
77, 59–66.

26 Q. Yang, O. Masek, L. Zhao, H. Nan, S. Yu, J. Yin, Z. Li and
X. Cao, Country-level potential of carbon sequestration and
environmental benets by utilizing crop residues for
biochar implementation, Appl. Energy, 2021, 282, 116275.

27 J. Lehmann, M. C. Rillig, J. Thies, C. A. Masiello,
W. C. Hockaday and D. Crowley, Biochar effects on soil
biota–a review, Soil Biol. Biochem., 2011, 43, 1812–1836.

28 R. Lal, Soil carbon sequestration impacts on global climate
change and food security, Sci, 2004, 304, 1623–1627.

29 R. Lal, Managing soils and ecosystems for mitigating
anthropogenic carbon emissions and advancing global
food security, Bio. Sci., 2010, 60, 708–721.

30 J. Lehmann, A handful of carbon, Nature, 2007, 447, 143–
144.

31 I. Hawthorne, M. S. Johnson, R. S. Jassal, T. A. Black,
N. J. Grant and S. M. Smukler, Application of biochar and
nitrogen inuences uxes of CO2, CH4 and N2O in
a forest soil, J. Environ. Manage., 2017, 192, 203–214.

32 Z. Wang, Y. Li, S. X. Chang, J. Zhang, P. Jiang, G. Zhou and
Z. Shen, Contrasting effects of bamboo leaf and its biochar
on soil CO2 efflux and labile organic carbon in an
intensively managed Chinese chestnut plantation, Biol.
Fertil. Soils, 2014, 50, 1109–1119.

33 H. Sun, W. Shi, M. Zhou, X. Ma and H. Zhang, Effect of
biochar on nitrogen use efficiency, grain yield and amino
acid content of wheat cultivated on saline soil, Plant, Soil
Environ., 2019, 65, 83–89.

34 Y. Liu, M. Yang, Y. Wu, H. Wang, Y. Chen and W. Wu,
Reducing CH4 and CO2 emissions from waterlogged
paddy soil with biochar, J. Soils Sediments, 2011, 11, 930–
939.

35 K. Karhu, T. Mattila, I. Bergström and K. Regina, Biochar
addition to agricultural soil increased CH4 uptake and
water holding capacity–Results from a short-term pilot
eld study, Agric., Ecosyst. Environ., 2011, 140, 309–313.

36 S. He, L. Ding, X. Wang, Y. Pan, H. Hu, K. Li and H. Ren,
Biochar carrier application for nitrogen removal of
domestic WWTPs in winter: challenges and opportunities,
Appl. Microbiol. Biotechnol., 2018, 102, 9411–9418.

37 N. Borchard, M. Schirrmann, M. L. Cayuela, C. Kammann,
N. Wrage-Mönnig, J. M. Estavillo, T. Fuertes-Mendizábal,
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