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The pregnane X receptor (PXR) is a master receptor in regulating the metabolism and transport of

structurally diverse endogenous compounds. Activation of PXR by xenobiotics potentially induces

adverse effects and disrupts normal physiological states. Therefore, it is essential to filter out PXR

activators despite challenges in the construction of PXR screening models. Herein, we developed a high-

throughput model using machine learning to classify human PXR (hPXR) activators and non-activators.

Molecular descriptors and eight fingerprints were calculated for a diverse dataset retrieved from the

PubChem database. The dimension reduction procedure was adopted to define an optimal subset of

fingerprints and 87 molecular descriptors before the model construction. Five machine learning methods

coupled with molecular descriptors and fingerprints were compared and the XGBoost method combined

with RDKit descriptors yielded the best performance with AUC values of 0.913 and 0.860 for the training

set (4144 chemicals) and external test set (1037 chemicals). The model constructed with the XGBoost

method has high prediction ability as revealed by the applicability domain analysis. Our built machine

learning models are useful for identifying compounds of potential PXR activators and facilitating the

prioritization of contaminants of emerging concern.
Environmental signicance

Pregnane X Receptor (PXR) is a master receptor in regulating the metabolism and transport of structurally diverse endogenous compounds. Activation of PXR by
xenobiotics potentially induce adverse effects and disrupt normal physiological states. Therefore, the identication of PXR activators is signicant for the health
risk assessment. In the present study, we developed machine learning based models to classify human PXR (hPXR) activators and non-activators based on
a diverse dataset retrieved from PubChem database. Five machine learning methods coupled with molecular descriptors and ngerprints are compared to select
optimal combinatorial model based on ve-fold cross validation and external validation. Our model improved robustness and generalization capabilities, which
can be served as a fast and reliable lter tool for early identication of PXR activators, facilitating the risk examination for potential PXR activators.
1. Introduction

Pregnane xenobiotic receptor (PXR), also known as steroid and
xenobiotic receptor (SXR), is a member of the nuclear receptor
ion and Ecological Health, Ministry of
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superfamily of ligand-activated transcription factors.1 It plays
a critical role in the mediation of the metabolism and detoxi-
cation of exogenous compounds involving inammatory
response, cell proliferation, andmigration, where dysregulation
is associated with different disease states.2,3 PXR can be acti-
vated by a wide variety of chemicals, including bile acids,
steroid hormones, dietary vitamins, prescription drugs, and
environmental chemicals.4,5 The altered expression of PXR by
xenobiotics may be involved in bone disorders, hepatic stea-
tosis, inammatory bowel disease, and cancers.6 Thus, the
identication of PXR activators is signicant for health risk
assessment.

Multiple in vitro or in vivo assays have been used to assess
compounds for PXR activation.7 Considering the restrictions of
3R principles (reduction, replacement, and renement) and
cost of experimental testing, computational tools have emerged
as an alternative way for rapid, efficient, and high-throughput
© 2023 The Author(s). Published by the Royal Society of Chemistry
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screening of PXR activators. Ligand-based computational
models employing pharmacophore mapping and quantitative
structure–activity relationships (QSARs) have previously been
developed to discriminate PXR activators from non-
activators.5,8–15 To date, several QSAR models have been built
using machine learning methods, including k-NN, Näıve
Bayesian, probabilistic neural networks, articial neural
networks, and random forest.16–22 The lack of larger PXR data-
sets has restricted the application of PXR classication models
to a large scale of compound screening. Therefore, a compre-
hensive and large dataset is required to develop machine
learning driven models with a broader chemical space and
higher generalization ability.

In this study, we developed predictive models with high
prediction accuracy and stable generalization ability using
diverse datasets retrieved from the PubChem database. Molec-
ular descriptors and eight molecular ngerprints were adopted
to represent chemical structures. Five machine learning
approaches, including Bernoulli Näıve Bayes (BNB), random
forest (RF), support vector machine (SVM), AdaBoost, and
extreme gradient boosting (XGBoost) were evaluated by ve-fold
cross-validation and external validation for robustness and
predictive performances. The applicability domain was further
dened to elaborate on the regulatory acceptance of the estab-
lished models. The model with the best performances can be
used as a screening tool to assess PXR activation potential of
chemicals and prioritize compounds for experimental
validations.
2. Materials and methods
2.1 Data preparation

Chemicals with activity toward PXR were retrieved from the
PubChem BioAssay database (AID 1347033), resulting in
a dataset composed of 9667 chemicals.23 Based on the agonist
potency and efficacy score, chemicals were divided into three
categories: active, inactive, and inconclusive. The entries that
were labeled as “inconclusive” in the activity outcome were
deleted. Organometallics, inorganics, mixtures, and salts were
removed and duplicated compounds were excluded. Aer the
pretreatment, the nal dataset contained 1367 active
compounds and 3814 inactive compounds. To build classica-
tion models, active compounds were labeled as 1 while inactive
compounds were labeled as 0.
2.2 Molecule representation and feature extraction

Molecular descriptors were calculated by RDKit containing
a total of 208 1D/2D molecular descriptors (https://
www.rdkit.org).24 Eight molecular ngerprints, including
MACCS keys (166 bits), PubChem ngerprint (881 bits),
Klekota-Roth ngerprint (4860 bits), Extended ngerprint
(1024 bits), Daylight (1024 bits), CDK GraphOnly (1024 bits),
Morgan (1024 bits) and Morgan (2048 bits) were computed
directly from the SDF les.25 Both molecular descriptors and
eight molecular ngerprints were used to represent molecules.
Molecular descriptors and ngerprint bits with all zero values or
© 2023 The Author(s). Published by the Royal Society of Chemistry
zero variance were deleted to avoid overtting and to enhance
the model generalization. The redundant descriptors or
ngerprint bits with Pearson correlation coefficients higher
than 0.95 in comparison to any descriptors or bits were also
removed. Furthermore, the recursive feature elimination (RFE)
method incorporated with the random forest was used to select
molecular descriptors and ngerprints.26 The subset of features
obtained by the best AUC scores was maintained for later
modeling.

2.3 Models building with machine learning approaches

Before constructing models, the dataset was randomly split into
a training set (80%) and an external test set (20%). Equal
proportions of the active to inactive class ratios in each split
were maintained (stratied splitting). Five machine learning
algorithms, including BNB,27 RF,28 SVM,29 AdaBoost,30 and
XGBoost31 were used to build models. Tuning hyperparameters
searches were conducted through ve-fold stratied cross-
validation on training data for better model performances
(Table S3†).

2.3.1 Bernoulli Näıve Bayes

The BernoulliNB class from the Näıve Bayes module of Scikit-
learn was used to construct the BNB models. The Calibra-
tedClassierCV in Scikit-learn tuned our BNB models through
ve-fold stratied cross-validation based on isotonic regression.
Strategy isotonic calibration could optimize the classier by
calibrating the probability scores, resulting in more reliable
probability estimates.32 Based on these calibrated probabilities,
balanced accuracy, the area under the receiver operating char-
acteristic curve (AUC), and other metrics were computed.

2.3.2 Support vector machine

SVM classication with the libsvm method from Scikit-learn
was used. The grid search with ve-fold stratied cross-
validation using balanced classes was performed for C (1 ×

10−3, 1 × 10−2, 1 × 10−1, 1, 10, 100), gamma values (1 × 10−1, 1
× 10−2, 1 × 10−3) and kernel (rbf, linear, sigmond). The model
with optimal parameters was retrained with a training set and
validated on an external test set.

2.3.3 Random forest

The RandomForestClassier method with balanced class
weights was used to build the model. The ve-fold stratied
cross-validation grid search was performed using 5, 10, 25, 50,
75, 100, and 200 estimators with the AUC as a scoring function.
The optimal number of estimators was kept for model
validation.

2.3.4 AdaBoost

The AdaBoostClassier method of 200 estimators and 0.9
learning rate was used with a decision tree as a base classier.
Similar to BNBmodel construction, the ve-fold stratied cross-
validation based on isotonic regression was applied to tune
AdaBoost models.
Environ. Sci.: Adv., 2023, 2, 304–312 | 305
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Table 1 Statistical description of the training and external test sets

Dataset Activators Non-activators Total number

Training set 1093 3051 4144
External test set 274 763 1037
Total number 1367 3814 5181

Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
D

ec
em

be
r 

20
22

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 4
:3

6:
59

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
2.3.5 XGBoost

The XGBClassier method with balanced class weights was
used to build the model. Five-fold stratied cross-validation was
used in the grid search of learning_rate (0.01, 0.1, 1.0), n_esti-
mators (10, 25, 50, 100), gamma (0, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9,
1.0), max_depth (3, 5, 6, 7, 9, 12, 15, 17, 25) and min_child_-
weight (1, 3, 5, 7). The combination of parameters with the best
performance was retained as the optimal values and saved for
model comparison and prediction.

2.4 Model evaluation

The robustness and predictivity of the developed models were
assessed by internal and external validations. The internal
validation was achieved by the ve-fold stratied cross-
validation for 10 iterations, while the external validation was
testied by the predictions of the test set. All models were
evaluated by balanced accuracy, precision, recall, F1 score, AUC,
Cohen's Kappa (CK), and Matthews correlation coefficient
(MCC) (Text S1†).

2.5 Denition of the applicability domain

The applicability domain (AD) is essential for evaluating reli-
ability regarding model predictions.33 Only predictions for
external compounds that fall inside the applicability domains
are considered valid. Thus, it is essential to develop models with
dened applicability domains. In this study, a similarity-based
applicability domain analysis was adopted with the evaluation
of the distance between a query sample and its k-nearest
neighbors in the training set.34 The Euclidean distance
between any two molecules using MACCS keys was calculated.
The AD threshold, DT, was obtained according to the following
formula:

DT = y�+ Zs

where y is the average Euclidean distance between each
compound in the training set and its nearest neighbors (k = 3),
s is the standard deviation of these Euclidean distances, and Z
is an arbitrary parameter whose default value 0.5 was used in
this study. For each compound in the test set, if the distance of
a query compound, at least one of its nearest neighbors in the
training set is above the threshold DT, the prediction is
considered unreliable. Results within or outside of AD were
compared to assess the functionality of AD.

3. Results and discussion
3.1 Analysis of curated dataset

Aer data collection and curation, a total number of 5181
compounds were obtained and split into a training set (4144
chemicals) and an external test set (1037 chemicals) by stratied
random sampling. The activators and non-activators in each
data set are listed in detail in Table 1. The training set contained
1093 active compounds and 3051 inactive compounds, while
the external test set contained 274 and 763 active and inactive
compounds, respectively. Both datasets maintain equal
306 | Environ. Sci.: Adv., 2023, 2, 304–312
proportions of active and inactive compounds to that of the
original dataset.

To explore the structural diversity of the training set intui-
tively, the Tanimoto similarity index for each pair of the training
molecules was calculated using MACCS ngerprints. Fig. 1A
shows the structural diversity among the training set. The
overall similarity of the training set is low, indicating the
signicantly diverse chemical structures in the training set.
Principal component analysis (PCA) was further used to
compare the chemical space between the training set and the
test set based on seven selected descriptors (molecular weight,
Log P, number of rotatable bonds, number of aromatic rings,
number of rotatable bonds, number of hydrogen bond accep-
tors, and number of hydrogen bond donors).35 The top three
principal components, accounting for 86.18% of the total
descriptor variance, were used to visualize the chemical space of
the training and test sets (Fig. 1B–D). Each molecule in the
three-dimensional (3D) space was projected into the corre-
sponding two-dimensional planes. A similar chemical space
was observed between the training set (grey squares) and the
test set (red circles), providing credibility to evaluate the
generalization ability on the external test set. The diversity and
complexity of our dataset facilitate the construction of machine
learning based prediction models with high generalization
ability.
3.2 Selection of molecular descriptors and ngerprints

Descriptors are symbolic representations that encode chem-
ical information about the structures. By converting the
molecules into numbers, chemical descriptors play a signi-
cant role in in silico QSAR modeling. However, applying a large
number of descriptors for model building may increase the
risk of model overtting. Dimensionality reduction is neces-
sary to develop models with fewer variables while maintaining
the physical meanings of original features.36 Aer feature
ltering for 208 molecular descriptors, in total 174 molecular
descriptors with nonzero variances and low pairwise correla-
tions were applied for feature selection and 87 descriptors
were maintained (Table S1†). Eight ngerprints were ltered
by deleting ngerprint bits with high correlation and zero
variance. The sizes of the nine features, including eight
ngerprints and molecular descriptors, and their selected
ones are summarized in Table S2.†

Aer the feature selection, the remaining 87 descriptors
represented chemical properties related to topological,
constitutional, and physicochemical aspects, consistent with
the previous observations that descriptors associated with
solubility, lipophilic properties, the balance between polarity
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (A) Heat map of Tanimoto similarity for the training set characterized by MACCS fingerprint. Principal component analysis (PCA) of the
dataset with indication of the training and test for chemical space comparison. The top three principal components account for 86.18% of the
total descriptor variance. Plot of the first and second principal component (B), the first and third component (C) and the second and third
component (D).
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and lipophilicity and electrostatic properties have a remark-
able effect on the model performance.15 Descriptors such as
MinAbsPartialCharge, Chiln, Chi2v and MolLogP were
revealed as crucial factors for distinguishing hPXR
molecules.21

3.3 Property distribution for PXR activators and non-
activators

To explore the relevance of chemical properties to hPXR acti-
vators, the distributions of six physicochemical properties,
including molecular weight, log of the octanol/water partition
coefficient (MolLogP), number of hydrogen bond acceptors,
number of hydrogen bond donors, number of rotatable bonds
and topological polar surface area (TPSA) between PXR acti-
vators and non-activators were investigated. Student's t-test
was used to evaluate the signicance of differences between
the means of PXR activators and non-activators for each
property.

As shown in Fig. 2, the six physicochemical properties are
signicantly different between the two classes. The mean
molecular weights for hPXR activators and non-activators are
314 and 214, respectively, suggesting that hPXR activators tend
to obtain larger molecular weights than non-activators. Mol-
LogP is related to the hydrophobicity of a molecule. The mean
© 2023 The Author(s). Published by the Royal Society of Chemistry
values of MolLogP were 3.69 and 1.91 for hPXR activators and
non-activators, respectively. Considering the higher MolLogP
values for hPXR activators, the increase in the hydrophobicity of
the chemicals contributes to the stronger interaction with the
hydrophobic binding sites of PXR, increasing the chance for
activation.8,16,20

The other four properties, the number of hydrogen bond
acceptors, the number of hydrogen bond donors, the number of
rotatable bonds, and the topological polar surface area (TPSA),
represent the electrostatic or hydrogen bonding features of
a molecule. It is observed that hPXR activators have a higher
number of hydrogen bond acceptors than hydrogen bond
donors, in line with the previously reported observations.8,16,19

Similar phenomena can be seen for TPSA and the number of
rotatable bonds that hPXR activators have larger values than
non-activators. The trends observed in these properties showed
that hPXR activators tended to have relatively larger molecular
weights and were more hydrophobic and structurally exible.
Compared with previous studies with the observation of no
signicant differences across all properties, despite the usage of
the same physicochemical properties,19,20 it was indicated that
the larger dataset contributes signicantly to the difference in
these six properties between hPXR activators and non-
activators.
Environ. Sci.: Adv., 2023, 2, 304–312 | 307
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Fig. 2 Distribution of six physicochemical descriptors (molecular weight, log of the octanol/water partition coefficient, number of hydrogen
bond acceptors, number of hydrogen bond donors, number of rotatable bonds and topological polar surface area) for PXR activators and non-
activators. Each bar indicates the number of positive activators (red) and non-activators (blue).
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3.4 Comparison of the classication models through
internal validation

A total of 45models were built by ve machine-learning methods
combined with molecular descriptors and eight molecular
ngerprints. 10 iterations of ve-fold stratied cross-validation
were conducted with the training set to assess the model
robustness (Table S4†). Fig. S1† shows the performances of
different algorithms and features. The BNB models executed the
poorest results with any features across all the metrics compared
with SVM, RF, XGBoost, and AdaBoost. The top 10 combinatorial
classication models for the training set are listed in Table 2.

The comparison of the overall performances of various
classication models showed that the XGBoost algorithms with
molecular descriptors (RDKitMD-XGBoost) are the best combi-
natorial classication model in the internal validations. It has
308 | Environ. Sci.: Adv., 2023, 2, 304–312
the highest AUC value of 0.913 and the highest BA of 0.841,
suggesting its good capability for discriminating hPXR activa-
tors. The random forest algorithm with molecular descriptors
has similar performance with the second highest AUC values of
0.907 and the second highest balanced accuracy of 0.829. The
robustness of the model performance was assessed by calcu-
lating the standard deviations. As shown in Table 2, the stan-
dard deviations of the RDKitMD-XGBoost model are relatively
small (0.01, 0.01 for AUC and BA, respectively), indicating the
statistical robustness of the model to the training set.
3.5 Comparison of the classication models through
external validation

To evaluate the generalization ability, the models constructed
by the training set were validated using the external test set
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Performance of the top ten combinatorial classification models for the training set using different descriptors and modeling methodsa

Methods BA Precision Recall F1 AUC CK MCC

RDKitMD-XGBoost Mean 0.841 0.726 0.788 0.756 0.913 0.663 0.665
s 0.01 0.02 0.02 0.02 0.01 0.03 0.02

RDKitMD-RF Mean 0.829 0.702 0.773 0.735 0.907 0.634 0.636
s 0.01 0.03 0.03 0.02 0.01 0.03 0.03

RDKitMD-AdaBoost Mean 0.797 0.736 0.682 0.708 0.895 0.608 0.610
s 0.02 0.03 0.03 0.02 0.01 0.03 0.03

Pub-XGBoost Mean 0.812 0.663 0.763 0.709 0.891 0.595 0.598
s 0.01 0.02 0.03 0.02 0.01 0.03 0.03

Ext-XGBoost Mean 0.808 0.652 0.762 0.702 0.884 0.584 0.588
s 0.01 0.02 0.02 0.02 0.01 0.03 0.03

Pub-SVM Mean 0.806 0.607 0.797 0.689 0.883 0.556 0.567
s 0.01 0.02 0.02 0.02 0.01 0.03 0.03

Pub-RF Mean 0.795 0.656 0.727 0.689 0.882 0.570 0.572
s 0.01 0.02 0.03 0.02 0.01 0.03 0.03

Ext-SVM Mean 0.811 0.612 0.804 0.694 0.881 0.564 0.575
s 0.01 0.02 0.02 0.02 0.01 0.02 0.02

Day-XGBoost Mean 0.799 0.642 0.747 0.690 0.877 0.568 0.571
s 0.01 0.02 0.03 0.02 0.01 0.02 0.02

MAC-XGBoost Mean 0.800 0.649 0.744 0.693 0.875 0.572 0.575
s 0.01 0.02 0.03 0.02 0.01 0.02 0.02

a XGBoost: extreme gradient boosting. RF: random forest. AdaBoost: adaptive boosting. SVM: support vector machine. RDKitMD: molecular
descriptors calculated by RDKit. Pub: PubChem ngerprints. Ext: extended ngerprints. MAC: MACCS keys. Day: daylight ngerprints. s:
standard error. BA: balanced accuracy. AUC: the area under receiver operating characteristic curve. CK: Cohen's Kappa. MCC: Matthews
correlation coefficient.
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(Table S5†). Most models achieved good performances in the
ve-fold stratied cross-validation and have good predictive
capabilities validated by external validation (Fig. 3). The top 10
combinatorial classication models for the external test set are
listed in Table 3. The RDKitMD-XGBoost model yielded the best
predictive performance, achieving the BA, AUC, precision, and
recall values of 0.860, 0.860, 0.728, and 0.832, respectively. The
F1 score, Cohen's Kappa and Matthews correlation coefficient
are also highest in the external validation, indicating that the
RDKitMD-XGBoost model has a relatively very high generaliza-
tion ability.

The performances of the machine learning models are
affected by both input features and chosen algorithms.
Table 3 Performance of the top ten combinatorial classification mod
methodsa

Methods BA Precision Re

RDKitMD-XGBoost 0.860 0.728 0.8
RDKitMD-RF 0.849 0.691 0.8
Pub-XGBoost 0.845 0.674 0.8
Ext-XGBoost 0.829 0.643 0.8
Day-SVM 0.829 0.611 0.8
Ext-SVM 0.827 0.606 0.8
MAC-RF 0.825 0.682 0.7
Pub-SVM 0.822 0.596 0.8
Ext-RF 0.814 0.628 0.7
RDKitMD – AdaBoost 0.813 0.728 0.7

a XGBoost: extreme gradient boosting. RF: random forest. AdaBoost: ad
descriptors calculated by RDKit. Pub: PubChem ngerprints. Ext: exten
balanced accuracy. AUC: the area under receiver operating characteristic

© 2023 The Author(s). Published by the Royal Society of Chemistry
RDKitMD-XGBoost performed the best in both the ve-fold
stratied cross-validations and external validation. The
XGBoost algorithm was developed by minimizing the loss using
a gradient descent algorithm. It adopts a sparse-aware splitting-
nding approach to train more efficiently on sparse data, which
is benecial when input features are chemical descriptors (most
entries are zero).37 Regularization options were further utilized
to enhance the generalization ability of the model, contributing
to the best performance of XGBoost-related models. A similar
result was observed when comparing XGBoost, RF, and deep
neural networks for toxicity prediction.38 The choice of molec-
ular representation is also crucial to model development. In this
study, RDKit descriptors outperform other ngerprints in most
els for the external test set using different descriptors and modeling

call F1 AUC CK MCC

32 0.777 0.860 0.689 0.692
32 0.755 0.849 0.656 0.661
36 0.746 0.845 0.641 0.648
21 0.721 0.829 0.604 0.613
54 0.712 0.829 0.584 0.602
54 0.709 0.827 0.578 0.587
81 0.728 0.825 0.621 0.624
50 0.701 0.822 0.582 0.588
99 0.703 0.814 0.578 0.587
23 0.725 0.813 0.627 0.627

aptive boosting. SVM: support vector machine. RDKitMD: molecular
ded ngerprints. MAC: MACCS keys. Day: daylight ngerprints. BA:
curve. CK: Cohen's Kappa. MCC: Matthews correlation coefficient.
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Fig. 3 External validation performances of individual models constructed by five machine learning algorithms and nine molecular features. The
sub-figures show the results using ninemolecular features. The y-axis gives the performance values and different metrics are depicted by colors.
Five machine learning algorithms are grouped and labeled at the x-axis. (A) RDKit molecular descriptors (B) MACCS fingerprint (C) PubChem
fingerprint (D) KlekotaRoth fingerprint (E) CDK extended fingerprint (F) Daylight fingerprint (G) CDK graphonly fingerprint (H) Morgan (1024)
fingerprint (I) Morgan (2048) fingerprint.
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cases, which is potentially attributed to their low dimensionality
and sparsity.

3.6 AD analysis

The Euclidean distance-based method was employed to analyze
the applicability domain (Table S6†). According to this deni-
tion, the calculated threshold of AD was 0.22. Chemicals with
a Euclidean distance exceeding 0.22 are considered outside the
domain. The performances of the ten best combinatorial clas-
sication models for compounds within and outside AD are
presented in Table 4. By applying AD, the predictive results for
Table 4 Performance of in domain (ID) and out of domain (OD) chemi
models

Models

ID

BA Precision Recall F1 AUC CK

RDKitMD-XGBoost 0.869 0.758 0.802 0.779 0.869 0.72
RDKitMD-RF 0.852 0.729 0.777 0.752 0.852 0.68
Pub-XGBoost 0.862 0.688 0.818 0.747 0.862 0.67
Ext-XGBoost 0.864 0.680 0.826 0.746 0.864 0.67
Day-SVM 0.852 0.643 0.818 0.720 0.852 0.63
Ext-SVM 0.864 0.650 0.843 0.734 0.864 0.65
MAC-RF 0.864 0.697 0.818 0.753 0.864 0.68
Pub-SVM 0.845 0.628 0.810 0.708 0.845 0.62
Ext-RF 0.838 0.674 0.769 0.718 0.838 0.64
RDKitMD – AdaBoost 0.801 0.741 0.661 0.699 0.801 0.62

310 | Environ. Sci.: Adv., 2023, 2, 304–312
chemicals within AD were improved in comparison with those
outside AD. For example, the metric AUC values for compounds
within the domain were higher than those outside AD in the
corresponding models, indicating that the AD can effectively
isolate poor predictions. It should be noted that the recall for
out-of-domain chemicals are higher than those within the
domain. This can be attributed to the small number of active
compounds in the out-of-domain chemicals. This observation
conrmed that the use of AD succeeded in ruling out prediction
errors, and thus enhanced the predictive performance of
models.39
cals in the external test set for the top ten combinatorial classification

OD

MCC BA Precision Recall F1 AUC CK MCC

2 0.722 0.832 0.708 0.856 0.775 0.832 0.634 0.642
7 0.688 0.819 0.667 0.876 0.757 0.819 0.595 0.611
7 0.681 0.808 0.663 0.850 0.745 0.808 0.578 0.591
4 0.680 0.770 0.616 0.817 0.702 0.770 0.503 0.517
9 0.646 0.775 0.590 0.882 0.707 0.775 0.493 0.525
6 0.665 0.759 0.576 0.863 0.691 0.759 0.466 0.496
4 0.688 0.775 0.669 0.752 0.708 0.775 0.534 0.537
2 0.630 0.764 0.574 0.882 0.696 0.764 0.470 0.506
1 0.644 0.761 0.597 0.824 0.692 0.761 0.480 0.499
8 0.630 0.804 0.720 0.771 0.744 0.804 0.598 0.599

© 2023 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusion

We built high throughput screening models for PXR activators
using ve machine learning algorithms with a combination of
chemical descriptors or ngerprints as the training features.
The classier based on the XGBoost algorithm and RDKit
descriptors showed the best robustness and prediction ability,
achieving AUC values of 0.913 for the training set and 0.860 for
the external test set. Our model showed improved robustness
and generalization capabilities based on a large dataset, which
can be used as a fast and reliable lter tool for the preliminary
identication of PXR activators. Efforts are still needed to
optimize the performances and promote the application
through prospective screenings, further facilitating the risk
assessment for potential PXR activators.
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24 M. Lovrić, J. M. Molero and R. Kern, PySpark and RDKit:
moving towards big data in cheminformatics, Mol. Inf.,
2019, 38(6), e1800082.

25 H. Ji, H. Deng, H. Lu and Z. Zhang, Predicting a molecular
ngerprint from an electron ionization mass spectrum
with deep neural networks, Anal. Chem., 2020, 92(13),
8649–8653.

26 P. M. Granitto, C. Furlanello, F. Biasioli and F. Gasperi,
Recursive feature elimination with random forest for PTR-
MS analysis of agroindustrial products, Chemom. Intell.
Lab. Syst., 2006, 83(2), 83–90.

27 X. Xia, E. G. Maliski, P. Gallant and D. Rogers, Classication
of kinase inhibitors using a Bayesian model, J. Med. Chem.,
2004, 47(18), 4463–4470.

28 V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan
and B. P. Feuston, Random forest: a classication and
regression tool for compound classication and QSAR
modeling, J. Chem. Inf. Comput. Sci., 2003, 43(6), 1947–1958.

29 C. Cortes and V. Vapnik, Support-vector networks, Mach.
Learn., 1995, 20(3), 273–297.

30 Y. Freund and R. E. Schapire, A decision-theoretic
generalization of on-line learning and an application to
boosting, J. Comput. Syst. Sci., 1997, 55(1), 119–139.
312 | Environ. Sci.: Adv., 2023, 2, 304–312
31 T. Chen and C. Guestrin, XGBoost: a scalable tree boosting
system, 22nd ACM SIGKDD Int Conf, 2016, 785–794.

32 B. Zadrozny and C. Elkan, Obtaining calibrated probability
estimates from decision trees and naive Bayesian
classiers, ICML, 2001, 609–616.

33 H. Dragos, M. Gilles and V. Alexandre, Predicting the
predictability: a unied approach to the applicability
domain problem of QSAR models, J. Chem. Inf. Model.,
2009, 49(7), 1762–1776.

34 M. Shen, A. LeTiran, Y. Xiao, A. Golbraikh, H. Kohn and
A. Tropsha, Quantitative structure–activity relationship
analysis of functionalized amino acid anticonvulsant
agents using k nearest neighbor and simulated annealing
PLS methods, J. Med. Chem., 2002, 45(13), 2811–2823.

35 V. O. Gawriljuk, P. P. K. Zin, A. C. Puhl, K. M. Zorn, D. H. Foil,
T. R. Lane, B. Hurst, T. A. Tavella, F. T. M. Costa,
P. Lakshmanane, J. Bernatchez, A. S. Godoy, G. Oliva,
J. L. Siqueira-Neto, P. B. Madrid and S. Ekins, Machine
learning models identify inhibitors of SARS-CoV-2, J. Chem.
Inf. Model., 2021, 61(9), 4224–4235.

36 Danishuddin and A. U. Khan, Descriptors and their selection
methods in QSAR analysis: paradigm for drug design, Drug
Discov. Today, 2016, 21(8), 1291–1302.

37 Z. Wu, M. Zhu, Y. Kang, E. L. Leung, T. Lei, C. Shen, D. Jiang,
Z. Wang, D. Cao and T. Hou, Do we need different machine
learning algorithms for QSAR modeling? A comprehensive
assessment of 16 machine learning algorithms on 14 QSAR
data sets, Brief. Bioinform., 2021, 22(4), bbaa321.

38 R. P. Sheridan, W. M. Wang, A. Liaw, J. Ma and E. M. Gifford,
Extreme gradient boosting as a method for quantitative
structure–activity relationships, J. Chem. Inf. Model., 2016,
56(12), 2353–2360.

39 Z. Wang, J. Chen and H. Hong, Developing QSAR models
with dened applicability domains on PPARg binding
affinity using large data sets and machine learning
algorithms, Environ. Sci. Technol., 2021, 55(10), 6857–6866.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2va00182a

	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...

	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...

	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...
	Machine learning based models for high-throughput classification of human pregnane X receptor activatorsElectronic supplementary information (ESI)...


