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Microalgae are a source of scientific curiosity and inspiration for their utilization as ‘inoculants’ in agriculture
and the commercial production of high-value products. Their diversity and abundance in the soil
environment highlight the fact that these integral members of the soil microbial community modify the
physical and chemical conditions of soils and interact with other microorganisms and even with higher
plants with varying degrees of association. However, to date, the agronomic benefits of the nitrogen
fixation trait of cyanobacteria have not been fully realized. Thus, the ecological functions of these
organisms in the biological soil crusts should be thoroughly evaluated and widely applied given that
climate change events can increase desertification. Currently, the crop yield increments and pest control
due to these biostimulants and the reclamation of saline and sodic soils by these bioameliorants are
considered economically marginal. Similarly, the carbon capture and storage by eukaryotic microalgae
and cyanobacteria in soils are poorly understood. Limitations in their commercial production for
agricultural use include inadequate technological innovations and the enormous expectation for yield

increments, together with the contemporary monetization of their environmental benefits. Thus, this
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Accepted 13th February 2023 critical review presents the desirable reappraisal of their agronomic benefits and the invigoration of

research and culture collections to utilize these organisms or their metabolites, considering the

DOI: 10.1039/d2va00158f evolutionary consequences and environmental advantages and finally their commercial production for

rsc.li/esadvances widespread application in agriculture.

Environmental significance

Microalgae, which include phylogenetically diverse microscopic organisms of eukaryotic algae (green algae and other microscopic algal forms), and prokaryotic
cyanobacteria are abundant in agricultural soils. These organisms have beneficial traits such as N, and CO, fixation ability, cycling of nutrients, and plant
growth promotion. However, their utilization as inoculants and metabolites requires new research and better understanding of environmental advantages,
ranging from individual field plots to the planetary scale. Thus, the present review provides the recent developments in their agronomic and ecological
assessments and the need for innovations in commercial production and cognizance of their evolutionary significance while promoting them for widespread
applications in agriculture.

1. Introduction

Photosynthetic organisms are essential for life on Earth, the
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oxygenic photosynthesis determine the energetics of all carbon
(C)-based life forms." Almost all the atmospheric oxygen is
derived from oxygenic photosynthetic organisms (autotrophic
plants, algae, and cyanobacteria), which obtain electrons from
light-driven reaction centres (RCs) to fix atmospheric carbon
dioxide (CO,). In addition, oxygenic photosynthetic organisms
are responsible for fixing more than 99% of organic C annually.?
The evolutionary consequences and environmental impact of
microalgae, including cyanobacteria, are significant. Recently,
molecular evidence has provided significant new evolutionarily
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insights into cyanobacteria, which are traditionally considered
strictly oxygenic phototrophs. In the new cyanobacterial line-
ages (4C0d-2 and ML635J-21), ie., metagenome-assembled
genome (MAG) representatives, the absence of genes for
photosynthesis and CO, fixation was demonstrated.>* The
primary endosymbiosis between a cyanobacterium and
a heterotrophic eukaryotic host led to the formation of primary
plastids (e.g., chloroplast organelles) in the first photosynthetic
eukaryotic lineages including green algae (and land plants as
their descendants).® Qiu et al.” suggested that algae (endosym-
bionts) are the vectors of endosymbiotic and horizontal gene
transfer in the evolutionary history of many photosynthetic
lineages. The ‘red carpet hypothesis,” proposed by Ponce-Toledo
et al.® suggests that the mixed heritage of green plastids in
secondary algae is due to many previous red algal gene acqui-
sitions. These evolutionary events and the diversity and abun-
dance of eukaryotic microalgae and cyanobacteria in soils are
significant in achieving success in the present in human agri-
cultural endeavours. Although ‘blue-green algae’ are monerans
(prokaryotes), they were included in one of the nine algal phyla,
i.e.,, ‘Cyanobacteria’, in 2008. Presently, this large and
morphologically diverse group of photoautotrophic prokaryotes
are classified as ‘Cyanobacteria’ in one of the three domains of
life, i.e., ‘Bacteria’, to clearly differentiate them from eukaryotic
algae that belong to the other domain Eukaryota. Alternatively,
microscopic forms of algae (microalgae), which play a major
role in nutrient cycling and fixing atmospheric CO,, are essen-
tially eukaryotic forms. In the present review, the terms
‘microalgae’ and ‘cyanobacteria’ are used to separately repre-
sent two distinct microbial groups, ie., ‘eukaryotes’ and
‘prokaryotes’.

The systematic composition (diversity) and abundance of
cyanobacteria in subaerial and freshwaters of the tropics,
especially from the observations made in Ceylon (Sri Lanka
now) and their presence and likely similarities in other parts of
the world were reported by Fritsch® in 1907. Harrison and
Aiyer' reported the beneficial effects of algal growth in aerating
the upper layers of submerged rice soils. In contrast to the
report by Bouilhac' on the absence of dinitrogen (N,) fixation
in Nostoc species, Molisch*> showed the ability of two strains of
Nostoc to grow well in nitrogen (N)-free solution. In 1939, De*?
demonstrated N, fixation by cyanobacteria isolated from dried
soil samples collected and brought from rice fields in India.
Consequently, the contribution of cyanobacteria to cultivating
rice in the same land for long periods was established.**** These
beginnings have led to the widespread examination and utili-
zation of the potential of cyanobacteria in improving soil
fertility and plant growth promotion (see reviews by Renuka
et al.,** Abinandan et al.,'* Chittora et al.,"” and Santini et al.*®).
However, although the biochemical potential of microalgal
resources has been previously considered by most researchers,
the need for translational research into commercial production,
cognizance of ecological consequences and environmental
impact between farming communities and policy makers
require reappraisal. In the present critical review, we present the
potential contributions of eukaryotic microalgae and cyano-
bacteria to the soil structure and fertility improvements, plant
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stimulatory effects related to nutrition and metabolisms,
reclamation of saline and sodic soils, pest control, and soil C
storage, and perspectives that should be considered for their
commercial production and wide-spread applications in
agriculture.

2. Microalgae and cyanobacteria in
improving soil structure and fertility

Global food production depends on the soil, which acts as
a home to several terrestrial species, thus significantly sup-
porting biodiversity. The soil structure, influenced by the
distribution of soil aggregates (i.e., basic units of soil structure)
and pore spaces, is an indicator of fertility and determines not
only the ability of soil to retain water and nutrients for crop
growth but also the drainage ability, water-holding capacity,
and soil aeration. In this case, although compacted soil can
retain moisture and nutrients better, it is poorly drained, and
the emergence of seedlings and plants becomes difficult. On the
contrary, ‘less compact’ soil cannot retain water and nutrients.
Thus, depending on the soil type, the distribution of solids, air,
and water determines whether it is an ‘ideal’ agricultural soil.
Typically, the ‘ideal’ agricultural soil has about 50% solids
(about 45% minerals and 5% organic matter), 25% air, and 25%
water and has strong relationships with biodiversity and agri-
cultural productivity. Hence, the soil structure determines and
supports the biodiversity of terrestrial species, including plants
and microorganisms, which consequently alter the soil struc-
ture. In agricultural soils, the inter-relationships between crop
plants and microbial communities are complex, where certain
species can improve the soil structure and increase crop yields.
However, agricultural practices, such as use of heavy machinery
and tillage, can damage the soil structure. Thus, management
practices such as reducing or no-tillage become critical to
improving the soil structure. Furthermore, management prac-
tices involving microbial entities can also have long-term
benefits. Cyanobacteria are considered ecological engineers
because of their ability to modulate the ecological processes in
the soil and create habitats for other organisms.* The experi-
mental addition of cyanobacteria under laboratory and field
conditions resulted in a significant improvement in soil struc-
ture and aggregate stability>*> (see Fig. 1).

Chamizo et al.*® inoculated two cyanobacterial species (non-
N,-fixing Phormidium ambiguum Gomont NIES-2121 of the order
Oscillatoriales and the N,-fixing Scytonema javanicum Bornet &
Flahault NIES-1956 of the order Nostocales) in the microcosms
of silt loam, sandy loam, loamy sand, and sandy soil types. After
90 days, the cyanobacterial inoculation led to the formation of
biocrusts, and those by P. ambiguum were characterized by thin
filaments enveloping soil particles, while that by S. javanicum
exhibited thicker filaments as bunches between soil particles.
Interestingly, the total exopolysaccharide content and soil
penetration resistance improved with P. ambiguum, while the
total organic C and N contents increased with S. javanicum with
variable levels in different soil types. The cyanobacterial fila-
ments and extracellular secretions (exopolysaccharides) act as
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Fig. 1

Implications of cyanobacteria in (a) soil structure (based on data from Nichols?4). (b) Aggregate stability by Phormidium ambiguum and

Scytonema javanicum. (c) Maximum penetration resistance of P. ambiguum and S. javanicum in different textured soils (based on data from
Chamizo et al.?®). (d) Albedo properties (400—700 nm range of soil surface reflectance spectra) of three soils (A — Amoladeras, B — El Cautivo, and
C — Gadorquarry) treated with different cyanobacterial inoculants (Nostoc commune, Scytonema hyalinum and Tolypothrix distorta) (based on

data from Roman et al.?).

gluing agents for binding soil particles for the enhanced
formation of soil aggregates.”” ‘Cyanobacterization’ (soil inoc-
ulation with cyanobacteria) is effective for stabilizing burned
soils and restoring post-fire ecosystems.?®*** Recently, Shanta-
kumar et al.** demonstrated that the algalization of acid soils
with acid-tolerant microalgae, i.e., Desmodesmus sp. MAS1 and
Heterochlorella sp. MAS3, resulted in the initial development of
soil algal crust, followed by the release of exopolysaccharides,
which facilitated the stability of the soil aggregates and increase
in soil pH. Importantly, the most suitable species should be
selected for the restoration of poorly structured soils, depend-
ing on the soil type, texture, and mineralogy composition,
which influence the growth of cyanobacteria and exopoly-
saccharide production.”® However, although the ecological and
agronomic potential of micro algalization or cyanobacterization
for restoring degraded lands has been reported, the techno-
logical advances for their widespread application are inade-
quate. Pelletized cyanobacteria facilitated the storage of
inoculum for extended periods, which is a promising techno-
logical innovation for restoring arid lands.>*

588 | Environ. Sci: Adv, 2023, 2, 586-611

Although Metting and Rayburn® and Barclay and Lewin*
suggested the use of microalgal polysaccharides for the condi-
tioning of agricultural soils, the necessity for frequent irrigation
to maintain algal growth or high inoculant rates hinders the
direct application of microalgae for soil conditioning. Eukary-
otic green algae can enrich and enhance nutrient availability
and improve the fertility and quality of soils by the production
of polysaccharides, antimicrobial compounds, plant growth
hormones such as abscisic acid, cytokinin, gibberellins, and
ethylene, and other metabolites that can promote plant
growth.**?** The microalgal polysaccharides are generally het-
eropolymers with different proportions of galactose, xylose, and
glucose linked by glycosidic bonds except for homopolymer
polysaccharides of galactose and B-(-1,3)-glucan by Gyrodinium
impudicum and Chlorella vulgaris. Together with sugars such as
rhamnose, fucose, fructose, and methyl sugars, microalgal
polysaccharides can serve as bio-stimulants for improving the
nutrient uptake, growth performance and physiological status,
and abiotic stress tolerance of crop plants via their mechanistic
actions of enhanced root growth and metal chelation in soils

© 2023 The Author(s). Published by the Royal Society of Chemistry
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and enhanced scavenging of reactive oxygen species, Rubisco
synthesis, photosynthesis and higher PSII activity in the above-
ground parts of the crop plants.*® In a recent study, Rachidi
et al*® applied the crude polysaccharide extracts from three
microalgal strains (Arthrospira platensis MS001, Dunaliella sal-
ina MS002 and Porphyridium sp. MS099) on tomato plants and
observed an increase in the contents of carotenoid, chlorophyll,
and proteins, enhancement in the activities of nitrate reductase
(about 102%) and NAD-glutamate dehydrogenase (about 400%)
and changes in metabolomics related to the synthesis of lipids,
sterols, and alkanes in the leaves. In another study, Mutale-Joan
et al.*” found that the application of microalgal liquid extracts
led to an increase in the accumulation of pyridine-3-
carboxamide (active amide form of vitamin B3) and linolenic
acid (C18:3), which are precursors involved in the jasmonate
pathways in plants. However, it is necessary to standardize and
optimize protocols for applying microalgal extracts for indi-
vidual crop species at different growth and developmental
stages.

Microalgal metabolites belonging to the chemical groups of
phenols, fatty acids, indoles, terpenes, acetogenins, and volatile
halogenated hydrocarbons possess antimicrobial, antiviral, and
antiprotozoal activity. Alsenani et al®*® reported that linoleic
acid, oleic acid, docosahexaenoic acid (DHA), and eicosa-
pentaenoic acid (EPA) in the extracts of three microalgae (Iso-
chrysis galbana, Scenedesmus sp. NT8c, and Chlorella sp. FN1)
are potential candidates for inhibiting the growth of Gram-
positive bacteria. However, only a small percentage of micro-
algal species, about 50 species from the described species of 40
000 to 50 000, has been screened for antimicrobial compounds,
while the global estimate of microalgal species is approximately
10 million.**** Furthermore, the culture collections of micro-
algae are limited, even at the global level, and their commercial
cultivation is restricted to even less. Hence, the agronomic
applications of microalgae-derived antimicrobial compounds
for modulating the soil microbiomes and eukaryotes have not
received sufficient attention to date.

Ancient microalgal species are considered the origin of
modern higher plant phytohormone biosynthesis pathways.**
Accordingly, a better understanding of the evolution, metabo-
lism, and regulatory networks of microalgal phytohormone
systems will provide new avenues for using phylogenetically
divergent microalgal resources as feedstock for phytohormone
production and their agricultural applications. The modulation
of phytohormone systems in higher plants by the introduction,
enhancement, or engineering of beneficial agronomic traits
such as tolerance to high levels of salinity, drought, flooding,
and temperature extremes in crop plants is considered signifi-
cant to successfully realise the ‘Green Revolution’. Interestingly,
the application of phytohormones improves the growth and
accumulation of lipids and metabolites in microalgae.**
Furthermore, the exogenous application of phytohormones can
enhance the biomass of cultivated microalgae, where micro-
algal species can modulate plant growth and development.
However, little has been done beyond the laboratory micro-
cosm- and experiment plot studies to develop microalgal
resources for agronomic applications.*” Because of the
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limitations of the direct applications of microalgae, including
cyanobacteria, for soil structure and fertility improvements,
such as the need for frequent irrigation and high inoculant
rates, only their practical applications as biofertilizers or bio-
stimulants can become popular for the cultivation of crops.

3. Microalgae and cyanobacteria as
biofertilizers: biological potential and
technological constraints

The application of microorganisms for improved plant growth,
especially nodulation in pulse crops, has been known for more
than 125 years. The first US patented microbial inoculant was
‘Nitragin’ in 1896. Commercially, this bacterial fertilizer (a
species of N,-fixing Rhizobium) was sold as a soil inoculator for
legume crops using the Nobbe-Hiltner process. However, the
chemical process of ammonia synthesis, a German patent
granted to Fritz Haber in 1908, led to the production of
synthetic nitrogenous chemical fertilizers worldwide and
eclipsed the utilization of bacterial fertilizers. Meanwhile in
Russia, ‘Phosphobacterin’, a biofertilizer having the spores of
Bacillus megaterium var. Phosphaticum with kaolin rocks for
improving the availability of phosphorus (P) to crops, became
popular in the 1950s. Cyanobacteria represent a dominant
bacterial group, playing significant roles in providing photo-
synthetically fixed C, N, phosphorus, phytohormones and
polysaccharides to promote rice growth and enhance the
fertility of soils. Thus, cyanobacteria have been explored as
biofertilizers in flooded rice paddies, especially in India, where
they form mats on the surface of water and enable an increase
in yield to the extent of 10-24%.'3**-¢

According to their types and guilds of microorganisms and
benefits accrued due to their application, biofertilizers can be
classified as N, fixers, phosphate- and potassium solubilizers,
phosphate mobilizers, zinc- and iron-solubilizers and plant
growth-promoting rhizobacteria or plant stimulants. In general,
the selection of cyanobacteria as biofertilizers is based on their
ability to fix atmospheric nitrogen and plant growth-promoting
activity. Chemical fertilizers or bioinoculants are often applied
to the soil, and their effect on the rhizosphere microbiome is
beginning to be understood.*”** Most soils are deficient in N for
supporting higher crop growth and yields, and the application
of nitrogenous fertilizers is a critical determinant of the
condition of ‘feast or famine’ in many countries. Given that
the N use efficiency associated with synthetic chemical fertil-
izers is often low at about 20-40%, the economic losses and
environmental pollution necessitate intensive efforts in devel-
oping newer biological methods for nutrient management in
agricultural soils. The global biofertilizer market size is esti-
mated to increase from USD 2.6 billion in 2021 to USD 4.5
billion by 2026, with a CAGR of 11.9%"* (see Fig. 2). In the
following section, we present a critical analysis on the potential
of eukaryotic microalgae and cyanobacteria as CO, fixers, N,
fixers, phosphate solubilizers, and plant biostimulants. In fact,
the potential of several species of microalgae, including cya-
nobacteria, as biofertilizers/biostimulants in enhancing the
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yield components and/or yield of certain crop plants has been
well realized (Table 1 and Fig. 3).

3.1. Role as CO, fixers

Terrestrial C cycling processes are critical for plant growth and
development and higher agricultural productivity. ‘Green
carbon’ refers to the C stored in plants and soils of the natural
ecosystems. In this case, forests can accumulate and have large
stocks of C, whereas agricultural croplands have relatively lower
stocks due to their release with the short cycles of plant
production and harvest. About 75% of soils have already been
degraded, resulting in a negative impact on food security and
family farming. Thus, the measures of reforestation and affor-
estation have become necessary to enhance the stocks of ‘green
carbon’. The primary producers, such as plants, algae, and
autotrophic prokaryotes, including cyanobacteria (aerobic) and
anaerobic photosynthetic organisms, assimilate by trans-
forming CO,. In contrast, animals (consumers), microbial
decomposers, and primary producers release CO, through
dissimilatory (chiefly respiratory) processes. The biotic inter-
actions among the primary producers, microbial decomposers,

590 | Environ. Sci. Adv, 2023, 2, 586-611

and consumers determine the rates of the assimilatory and
dissimilatory processes. Higher plants modulate the activity of
microbial decomposition by influencing the microbial avail-
ability of oxygen, nutrients, and labile substrates. Given that
most of humanity depends on terrestrial soils for food, feed,
and fiber, soils without sufficient C will make agricultural
cultivation less profitable and environmentally catastrophic.
Accordingly, nature-based solutions for conserving and
restoring the C content of soils necessitate a shift from chemical
fertilizer-based, modern agriculture to sustainable farming that
can regenerate C-rich soils and reduce the emissions of green-
house gas emissions and minimize the use of energy and inputs
(www.4p1000.0rg).

In agricultural lands, microbial inoculants can improve C
sequestration by capturing CO,, forming carbonates by sedi-
mentation, producing recalcitrant compounds, and enhancing
the soil C stability.®* In algae, the CO,-concentrating mecha-
nism (CCM) involves carbonic anhydrase, which provides CO,
for C fixation by Rubisco. The natural ability and efficiency of
CO, sequestration of several microalgal species are poor.
However, In-na et al.®*® recently used loofah-based microalgal

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Impact of eukaryotic microalgae and cyanobacteria as biofertilizers or biostimulators on selected crop plants
Crop plant Microalgal/cyanobacterial species Effect (increase) References
Rice Calothrix sp. Plant growth 48, 50 and 51
Oscillatoria sp.
Anabaena sp.
Phormidium sp.
Aulosira sp.
Plectonema sp.
Nostoc spongiaeforme Yield components such as tillers per hill, 52
Nostoc commune panicles per hill, length of panicle, straw, and grain yield
Calothrix marchica
Stigonema sp.
Scytonema hofmanii Salt stress tolerance 53
Chlorella vulgaris Seed germination and growth 54 and 55
C. pyrenoidosa
Wheat Nostoc sp. Plant growth 56-58
Calothrix sp. Nutrient content
Anabaena sp. Seed yield
Chlorella sorokiniana Plant growth (length and dry biomass) 59 and 60
Phosphorus acquisition
Maize C. sorokiniana Plant growth (root development) 61
Chlamydomonas reinhardtii Nutrient content
Pseudanabaena sp. Seed germination 62
Phormidium sp.
Geitlerinema sp.
Arthrospira sp.
Oscillatoria sp.
Lettuce; capsicum; tomato Calothrix anomala Plant growth, and nutrient content 36, 63 and 64
Arthrospira platensis
Aphanothece sp.
Dunaliella salina Salt tolerance 36 and 65
Nutrient uptake
Metabolomics profile
Chlorella sp. (in consortium) Plant growth 66

and cyanobacterial biocomposites for enhancing CO, capture.
Also, some attempts have been reported on genetically engi-
neering cyanobacteria for enhanced carbon capture and storage
(CCS) in photobioreactor systems.*® Presently, agricultural
practices do not include the utilization of eukaryotic microalgae
and cyanobacteria as microbial inoculants for biological C
sequestration. However, the ‘soil carbon debt’ due to human
land use suggests that 1200 years of human agriculture has led
to the loss of 133 billion tonnes of C, i.e., about 8% of total
global soil C stocks (estimated at 2400 petagrams of C, PgC) or
equivalent to 65 ppm of atmospheric CO,, from the top two
meters of the soil worldwide.?” The global ‘hotspots’ of C losses
include agricultural lands, which are not equally distributed. In
addition, the annual loss of topsoil is about 75 billion tons, with
an economic loss of approximately US$ 400 billion.*® Moreover,
the functions of plant roots include the absorption of CO, and
carbonate with the B-carboxylation of keto acids and movement
of dicarboxylic acid to leaves.* Thus, the continuing soil C loss
and soil erosion through the loss of top soil due to agriculture,
increasing concentrations of atmospheric CO, as a greenhouse
gas, and the ability of plants to utilize CO, provide incentives to
screen, select and use eukaryotic microalgae and cyanobacterial
species and other autotrophic microorganisms for improved
CO, fixation in soils or rhizospheres. Nevertheless, tracking the

© 2023 The Author(s). Published by the Royal Society of Chemistry

below-ground processes and differentiating the CO, fixers from
soil-derived and plant-derived C-utilizing microorganisms, and
their efficiencies are essential to develop methods for rationally
manipulating plant-soil microorganism systems for promoting
soil C storage. In a recent report, Chen et al.*® showed that the
CO, fertilization effects due to increased land-use management
through croplands were greater in India (82%) than in China
(32%), while it was the opposite for greening through forests
with 42% and 4.40% in China and India, respectively. Inter-
estingly, the net primary productivity of soil algae in croplands
is estimated to be the highest (157 g C m > years ') among the
biomes, equalling about 6% of the net primary production of
terrestrial vegetation® (see Table 2). The CO, fertilization efforts
through soil algae can benefit croplands, not only through plant
growth stimulation but also through improved terrestrial
carbon uptake.

3.2. Dinitrogen fixers

Biological N, fixation by prokaryotic microorganisms is an
ancient process that probably originated in anaerobic metha-
nogens about 1.5 to 2.2 Ga (Giga annum or billions of years).
The distribution of nitrogenase enzyme among biological
organisms is limited to bacteria and archaea. The presence of

Environ. Sci.: Adv., 2023, 2, 586-611 | 591
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Fig. 3 Metabolic potential of microalgae and cyanobacteria. (a) CO, bio-fixation rate (mg L™ day™?) under different cultivation systems (based
on data from Basu et al.,*” Duarte et al.,*® Kumar and Das,®® Nayak et al.,”® Swarnalatha et al.,”* Yeh and Chang,”? and Yun et al.”?). (b) Carbon fixation
efficiency (%) of absorption-microalgae hybrid (based on data from Cardias et al.,”* da Rosa et al.,”® Kim et al.,’® and Kim et al.””) (DEA - dieth-
anolamine; MEA — monoethanolamine; AMP — 2-amino-2-methyl-1-propanol; TEA — triethanolamine). (c) Nitrogen (%, w/w) in Chlorella
vulgaris biomass harvested after 10 days (in the presence of different initial nitrate concentrations) and 7 days (in nitrogen-free medium) from
algal batch culture system (based on data from Farooq et al.’®). (d) Efficiency of nitrogen savings by a microbial consortium containing cya-
nobacteria during crop cultivation (based on data from Prasanna et al.”®=%%). (A, B and C = Anabaena spp. + Nostoc spp.; D = Anabaena torulosa +
Trichoderma viride/A. torulosa + Azotobacter sp.; E = A. torulosa + T. viride/A. torulosa + Pseudomonas sp.; F = A. torulosa + T. viride).

nif gene clusters is limited to a few terrestrial (i.e., Cyanothece
and Synechococcus) and marine (Crocosphaera) cyanobacterial
strains. Besides, the genomes of Firmicutes, Chloroflexi, Chlor-
obi, and Bacteroidetes and the lineages of Actinobacteria and

Proteobacteria have nif gene clusters. Cyanobacteria are the only
diazotrophic lineage capable of fixing N,, while producing
molecular oxygen as their metabolic product. They employ
different mechanisms to protect the oxygen-sensitive

Table 2 Abundance and net primary productivity of soil microalgae and cyanobacteria across different biomes”

Abundance (median

Net primary productivity Contribution to total

Ecosystem value x 10° cells g~* dry soil) (NPP) (g C m ™ years™ ") terrestrial NPP (%)
Croplands 161 157 >30

Drylands 85 <15 <10

Wetlands 1036 <15 <10

Alpine and polar lands 20 <15 <10

Grasslands 410 22.6 <15

Broadleaf and mixed forests 59 28.2 <10

Broadleaf evergreen forests 202 18 >15

Average 550 £ 340 30

“ Data from Jassey et al.”!
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nitrogenase, as follows: (i) up-regulation of N, fixation at night
on a diurnal cycle with reduced oxygen tensions due to
decreased photosynthetic oxygen production, especially in non-
filamentous cyanobacteria and (ii) spatial segregation of nitro-
genase in heterocysts with the involvement of the Mehler
reaction.” Cyanobacteria, with their ‘introvert’ lifestyle of
maintaining C/N homeostasis, tightly interconnect the fixation
of CO, with N-assimilation. The complex network of signal
transduction pathways involves 2-oxoglutarate to sense the
cellular C/N status. The accumulation of carbon or nitrogen
storage polymers in the cells cope with the imbalance in the
homeostatic control.”® Recently, Hirose et al.** sequenced the
genomes of 28 cyanobacterial strains that can form heterocysts,
which are morphologically distinct cells for fixing N, from
a collection of 827 strains in the National Institute for Envi-
ronmental Studies (NIES), Japan.

Cyanobacteria can establish symbiotic relationships with
bryophytes (hornworts and liverworts), algae, Azolla, cycads, fungi
(Geosiphon together with yeasts forming lichens), and Gunnera
because of their ability to differentiate heterocysts (specialized
N,-fixing cells) and hormogonia.®**® Thus, the only angiosperm
species that can form symbiotic relationships with cyanobacteria
is Gunnera. Besides, in higher plants, the symbiotic relationships
with mycorrhizal fungi and N,-fixing bacteria (symbiotic
nitrogen fixation, SNF) began about 540-420 million years ago
(Ma), with the occurrence of the first peak in CO,, and the second
peak occurred about 150-100 Ma.”” Hence the selection of N,-
fixing cyanobacteria as bacterial inoculants for higher plants is
primarily limited to free-living members. Nevertheless, both the
free-living N,-fixing cyanobacterial strains are utilized as bio-
fertilizers, and the symbiotic Azolla-Anabaena system is used as
‘green manure’ in many rice-cultivating countries such as India,
Nepal, Vietnam, China, Thailand, and the Philippines. Although
the application of free-living cyanobacteria can fix about 25-30
kg N ha™' season ', the Azolla-Anabaena system can contribute
about 20-40 kg N ha " to the rice crop in about 25 days.**®
Chittora et al.'’ detailed the steps required to mass-produce
cyanobacterial biofertilizers. They introduced affordable (rural)
technology to economically poorer farmers, with the soil-based
inoculum consisting of Aulosira, Nostoc, Anabaena, and Tolypo-
thrix, is now a commercial enterprise of cyanobacterial bio-
fertilizer technology in India.'** The symbiotic relationships
between eukaryotic microalgae and cyanobacteria, such as that
between various genera of diatoms with the diazotrophic
cyanobacterium Richelia intracellularis still have not been inves-
tigated for their potential for N, fixation and their utilization as
inoculants to date. Interestingly, diazotrophic cyanobacteria with
an alternative nitrogenase (V-nitrogenase, encoded by vnfH,
vnfDGK), in addition to molybdenum nitrogenase have been
reported.’” Thus, it is necessary to prepare comprehensive
genomic data of cyanobacteria to benefit from their nitrogenases
with different metal co-factors.

3.3. Phosphorus cycling by microalgae and cyanobacteria

The P content of most soils is about 0.5% (w/w), while the plant
available form is only 0.10% of the total P content. The P use
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efficiency of phosphatic fertilizers is about 46%, leading to the
environmental problems of groundwater contamination and
eutrophication.’® The P availability in soil is an essential
determinant of global food security. The current global reserves
of phosphate rocks, a non-renewable source for chemical P
fertilizers, may by depleted in the next 50 to 100 years.'** In this
case, soil microorganisms, including eukaryotic microalgae and
cyanobacteria, are capable of phosphate solubilization. The
solubilization of rock phosphate (i.e., Mussoorie rock phos-
phate, MRP) by cyanobacteria was demonstrated by Roy-
choudhury and Kaushik,'” and organic sources by Whitton
et al.'* Yandigeri et al.'”” showed the differential response of
two diazotrophic cyanobacteria, Westiellopsis prolifica and Ana-
baena variabilis, to solubilize extracellular insoluble tricalcium
phosphate (TCP) and MRP. Nevertheless, the mineral phos-
phate solubilizing (mps) phenotype is not common among
cyanobacteria. Microalgae (e.g., Chlorella sp. and Scenedesmus
sp.) and cyanobacteria (e.g., Aphanothece sp., Spirulina sp.,
Arthrospira sp., and Phormidium sp.) are capable of assimilating
P as polyphosphates as linear polymers of orthophosphate
residues linked by phosphoanhydride bonds to mitigate stress
conditions.'” These microalgal and cyanobacterial strains can
be used as biofertilizers for the slow and moderate release of P,
supplying it within the ‘critical value’ for the crop rhizosphere,
thus reducing the probability of excess supply.

Microalgae are acclimated to low-P conditions because of
their capabilities related to the ‘luxury uptake’ of P and storage
as polyphosphate whenever P is available. The expression
patterns of Pi (inorganic orthophosphate) transporters are
a function of the P availability of microalgae."® Mukherjee
et al."* proposed the development of technology to recover P
from waste and effluent (e.g., parboiled rice mill effluent) using
microalgal and cyanobacterial strains capable of sequestering P
as polyphosphate inclusions and recycling these strains as
biofertilizers for the slow and moderate release of P. Golzary
et al.** reported the potential of Azolla filiculoides (Azolla-Ana-
baena system) to remove about 40-44% of P from secondary
effluents.

3.4. Plant biostimulants

Because of phototrophic and aerobic growth requirements,
cyanobacteria are conventionally considered plant bio-
stimulants, although some strains were isolated from rhizo-
spheres. The N,-fixing trait of cyanobacteria is the primary
choice for their screening, selection, and utilization. However,
recent reports suggest that diverse bioactive molecules such as
osmolytes, phenolics, vitamins, phytohormones, and others act
synergistically for plant growth promotion and tolerance to
abiotic stresses® (see Table 1). Singh et al.***> suggested that two
biological processes, i.e., biological fixation of CO, and atmo-
spheric dinitrogen, make them biostimulants, especially in
paddy fields. Ordog et al.'** applied freeze-dried biomass of
Nostoc piscinale after resuspending it in tap water (1.0 g L™ DW)
as a single foliar treatment (400 L ha™") to maize (Zea mays SY
Zephir hybrid) and found that the number of leaves, the
contents of chlorophyll (SPAD value) and grain protein, and
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grain yield (6.50-11.50%) were significantly higher. Seed
priming and soil application of cyanobacterial strains, with or
without other bacterial biofertilizers have shown variable plant
growth-promoting effects in different crops.””'** Since the
1940s, extracts of seaweed (macroalgae) have been applied to
improve the stress tolerance and crop yields due to their elici-
tors and phytohormones."* Similarly, microalgal extracts have
diverse biological activities and are potential agents for miti-
gating stresses and plant growth promotion."”*'"” In fact, Colla
and Rouphael'"” identified the bottlenecks such as high cost of
microalgal production and application, poorly characterized
products with varying performance, lack of knowledge about
the mechanisms, and lack of awareness among farmers in
deriving the benefits from microalgal and cyanobacterial
biostimulants.

4. Microalgae and cyanobacteria in
biological soil crusts: significance in
drylands

Arid and semiarid environments occupy 41% of the global land
area and support more than 38% of the total human pop-
ulation. Desertification affects about 25% of the global land
area due to climatic change, human activities, and other factors,
and more than 40% of the Earth's terrestrial area is in danger of
desertification.'*® The desertification risks are about 13%, 7%
and 9% of the global land area at moderate, high, and very high
levels, respectively.'* The significant features of these dry lands
include the presence of biological soil crusts, which are of two
types, as follows: (i) hypoliths, also referred to as biocrusts,
consisting of microscopic cyanobacteria, algae, fungi, and
bacteria, and (ii) poikilohydric organisms consisting of macro-
scopic lichens, mosses, and microarthropods.** Fossil records
suggest that biocrusts, one of the earliest and dominant types of
community terrestrial life forms, appeared about 2.6 Ga. The
biocrusts determine the structure, surface morphology, capture
and retention, organic matter and other resources, and fertility
of soil by influencing the atmospheric fixation of C and N. In
drylands, the critical zone (described as the ‘heterogeneous,
near-surface environment in which complex interactions
involving rock, soil, water, air, and living organisms regulate the
natural habitat and determine the availability of life-sustaining
resources’) (US National Research Council, 2001) is chiefly
characterized by biocrusts, endoliths, and hypoliths, whereas
sporadically by vascular plant roots at, on or in the top few cm of
the soil surface or rock. This critical zone mediates: (i) the
exchange of all gaseous, nutrients, and water inputs and
outputs; (ii) the deposition, transformation, and availability of
nutrients; (iii) the structuring of the vascular plant community
at the temporal, spatial, and compositional levels; (iv) the direct
delivery of C, nutrients, and water by biocrusts to plants; (v) the
creation of biodiversity hotspots by biocrusts and (vi) the cover
and composition of biocrusts, which can modify the soil
stability, fertility, and hydrology and be used as an index of soil
health.">®
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In 1729, Micheli*** described the thallus of Nostoc, which
occurs in most biocrust communities worldwide. The oldest
fossil record of biological soil crusts of 2.6 Ga presumably had
cyanobacteria. The cyanobacteria associated with biocrusts can
be grouped as follows: (i) filamentous cyanobacteria (e.g,
Microcoleus) stabilizing soils by gluing and forming soil aggre-
gates with extracellular matrix; (ii) either unicellular or fila-
mentous cyanobacteria (e.g., Chroococcidiopsis, Scytonema, and
Stigonema) contributing to C and N cycling, and (iii) stochasti-
cally occurring cyanobacteria (e.g., Chroococcus, Gleocapsa,
Gloeocapsopsis, Cylindrospermum, Phormidium and Tolypothrix).
The molecular clock estimates suggest that the formation of
biocrusts by eukaryotic algae occurred about 600 million years
ago (Ma). The eukaryotic algae are not exclusively found in
biocrusts, with the major functional groups as follows: (i) crust-
forming algae due to filamentous nature and/or mucilage
secretion (e.g., Klebsormidium and Zygogonium), (ii) algae
attached to soil particles and crust-forming algae (e.g., Spon-
giochloris, Neochlorosarcina, and diatoms); (iii) algae that occur
within lichens as symbionts, free-living within the biocrusts and
those living epiphytically (e.g., Myrmecia and Stichococcus), and
(iv) freshwater algae originating from aquatic habitats (e.g:,
Chlorococcum, Chlamydomonas, Scenedesmus and Mychonastes).
Besides cyanobacteria, the members of Proteobacteria (e.g., B-
Proteobacteria - Massilia and Comamonas), Actinobacteria (e.g.,
Streptomyces, Sphaerobacter, Actinomadura, Rubrobacter, Non-
omuraea and mycelia genera), Bacteroidetes (Flexibacter, Spi-
rosoma, Flavobacterium, and Sphingobacterium), and those of
Armatimonadetes, Gemmatimonadetes, Planctomycetes, and
Verrucomicrobia are present in the biological soil crusts. The
fungal diversity, which varies with the age and type of biocrusts,
includes the lineages of the class Dothideomycetes with the
representatives of Pleosporales and the genus Alternaria but with
no arbuscular mycorrhizal fungi.'** Applying molecular,
culture-independent approaches coupled with physiological
and biochemical assessments and their cultured isolates can
improve our understanding of the functioning of individual
constituents of biological soil crusts.

Human activities, even compressed stress due to footsteps or
the use of machinery, and air pollutants from industrial activ-
ities have adverse environmental impacts on biological soil
crusts. The agronomic importance of biological soil crusts in
improving the soil structure and stability, minimizing soil
erosion, and plant growth-promoting effect as biofertilizers and
biostimulants has received significant attention.'” Kheirfam
and Roohi'* examined an inoculation-based technique for
forming biocrusts using the soil profile collected from the dried
region of Lake Urmia. After 120 days, the microbial inoculation
significantly improved the biocrusts indicators such as the
contents of total C (225%) and N (3200%), available P (70%) and
potassium (19%), pH (—1.20%), soil moisture (15.70%), bulk
density (—2.50%), aggregate stability (133%), and surface
roughness (34.80%). Thus, inoculation-based techniques can be
considered for restoring dried-up and degraded lands. Earlier,
Zhou and Zhang" reported the feasibility of artificially culti-
vated biological soil crusts for increasing the runoff efficiency
with less runoff sediment and recommended them as green
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materials for harvesting rainwater. In arid or semiarid envi-
ronments, algae employ diverse survival strategies including the
synthesis of intracellular antioxidants (e.g., carotenoids lutein
in microalgae) and anti-oxidative enzymes, the strengthening of
the cell wall by the secretion of extracellular polymeric
substances (EPSs) and cellular membranes (water stress protein
and trehalose), and the formation of microbial consortia with
fungi and bacteria. These survival strategies have a significant
contribution to the ecological functions of biocrusts.

Together with these strategies, the soil fertility improve-
ments by biocrusts make them excellent agents for practical
applications to control desertification.'*® Recently, De Oliveira
and Maciel-Silva™ compared the Brazilian biocrust communi-
ties with that from different ecosystems and proposed the
utilization of biocrusts as ‘ecosystem engineers’ for colonizing
other ecosystems. The meta-analysis of the biocrusts suggested
that the soil organic carbon (SOC) concentration increased by
70.9% compared to the uncrusted soil, and the random forest
analysis showed that the total N was an essential determinant of
the concentration of SOC, followed by climate (p < 0.01).**®
Because of their ecological advantages, improvements in soil
physical structure and stability, and enhanced concentrations
of soil labile C and microbial C and N, biological soil crusts were
applied (as broken-skin inoculation, moss) as a nature-based
strategy (NbS) in the fields of semiarid rainfed alfalfa (Medi-
cago sativa L.)."”*® The restoration efforts of degraded lands can
significantly benefit from the soil microbiota,"** where biocrusts
can be more effective than individual microbial inoculants.

5. Amelioration of saline and sodic
soils by microalgae and cyanobacteria

Soil salinization has failed many human civilizations, including
the early Mesopotamia from 1200 and 900 BC and now the river
basins of the Indo-Ganges in India, the Murray-Darling in
Australia, the Yellow River in China, and the San Joaquin Valley
in the United States of America. About 23% (0.34 x 10° ha) and
37% (0.56 x 10° ha) of the cultivated lands are saline and sodic
soils, respectively, predominantly located in arid and semi-arid
regions distributed worldwide. These soil environmental
services and agricultural productivities are adversely affected
due to natural causes and human activities such as irrigated
agriculture, when poorly managed with over-irrigation, seepage,
and silting."® The annual cost of land degradation in irrigated
areas due to salinity and sodicity can lead to the lost crop
production of about US$ 27.3 billion worldwide. Cyanobacteria
colonize the habitats of saline soils because of their salinity
sensing-signaling (e.g., activation of K' transport system,
glycosyl glycerol (GG) synthesizing enzyme, histidine protein
kinase (HIK), response-regulator protein (RRE) two-component
signaling system, and salt overly sensitive (SOS) pathway) and
tolerance mechanisms such as active Na" efflux, K" transport
system, phospholipid modifications, osmotically active mole-
cules and activation and deactivation of enzymes although
growth, photosynthesis, plasma membrane composition,
cellular homeostasis, reactive oxygen species (ROS) generation,
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other biochemical pathways, and gene expression and protein
synthesis are adversely affected under high salinity stress.***
Thus, the microbial remediation of saline soils has been
attempted by employing halophilic and halotolerant strains,
consortia, and bacterial enzymes. These approaches are
successful to some extent, but many complex factors such as
their poor adaptability and application methods limit their
widespread acceptance.*

Thomas'? found that the repeated cultivation of Anabaena
torulosa in the saline Kharland soils led to a reduction in
salinity by 12-35%, which was attributed to an active
photosynthesis-linked mechanism for the extrusion of sodium
according to the studies using **Na and *’Na. Kaushik and
Subhasini*** reported that algalization decreased the electrical
conductivity, soil pH, and exchangeable sodium content in
saline soils. On the contrary, Rao and Burns'* found that cya-
nobacteria were ineffective in alleviating highly degraded alkali
soil, with an insignificant increase in the contents of C and N
from the soil column studies, even after 17 weeks. Due to their
inability to mobilize calcium from native soil calcite for
exchanging with sodium in the exchange complex, these
organisms were considered ineffective. Pandey et al.**® reported
that the sequence of appearance of cyanobacteria, the dominant
species in usar soil (alfisol, solonetz, alkaline and widespread in
India) was Nostoc calcicola. Its bicarbonate-resistant mutant
(HCO; &) was better in modifying soil pH compared to the
wildtype in the laboratory incubation study for two years.
Similarly, in another laboratory simulation experiment, Jaiswal
et al.® showed that N. calcicola lowered the pH of usar soil in
a 20% soil extract compared to the basal medium. However, the
bicarbonate mutant (HCO; ~) could grow at a higher percentage
of soil extract (60%). The bicarbonate mutant strain was sug-
gested to be a potential bio-ameliorant after further evaluation
at the field level. Srivastava et al.**® found that Aulosira was more
prevalent than Nostoc in soil samples collected in Eastern Uttar
Pradesh after the denaturing gradient gel electrophoresis
profiling of cyanobacterial communities. In this case, the
selection of salinity-adapted cyanobacterial species specific to
the location to be facilitated is vital for the success of its utili-
zation. Li et al.™*® suggested the potential of co-culture of cya-
nobacteria and bacteria as bio-remediating agents for salt-
affected soils. Likewise, Naorem and Udayana'*® considered
cyanobacteria as add-ons of the beneficial soil microbiota to
remediate salt-affected soils under organic farming. In a recent
report, Brito et al.*** showed that the soil application of a new
terrestrial cyanobacterial species (Oculatella lusitanica LEGE
161147) on lettuce (Lactuca sativa L. cv Marvel of Four Seasons)
had a limited priming effect. However, there were beneficial
effects by mitigating the deleterious salinity stress by eliciting
non-enzymatic antioxidant (i.e., proline, H,0,, and reduced
glutathione) responses. However, the cyanobacterial priming
effect, including the enhanced activity of N metabolism-related
enzymes such as glutamate dehydrogenase, glutamine synthe-
tase, and nitrate reductase, was observed in lettuce plants under
non-stress conditions.

The eukaryotic microalgal forms and cyanobacteria are
beneficial, renewable resources for agriculture, even in saline
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and sodic soils.*> Mutale-joan et al.**> examined the potential of
microalgae-cyanobacterial extracts as stimulators of salt stress
tolerance responses in tomato (Solanum lycopersicum L. JANA
F,). The extract formulations (MEF) of microalgae (Dunaliella
salina MSD 002 and Chlorella ellipsoidea BEA 0337) and cyano-
bacterial species (Aphanothece sp. BEA O¢3sB and Arthrospira
maxima MSSy,) at different levels (MEF1%, MEF5%, and
MEF10%) were applied to tomato plants grown under four NaCl
concentrations (0, 80, 120, and 150 mM) by soil drenching. The
application of MEF5% was found to enhance the vegetative
growth, photosynthetic pigments due to improved osmotic
adjustment and ion homeostasis, proline accumulation, the
activities of CAT and SOD, and absorption of N, P, and K in the
plants grown at 80 and 120 mM NaCl. In contrast, leaf lipid
peroxidation through ROS oxidative stress was significantly
decreased together with a decrease in fatty acid content. The
application of MEF led to the enhanced uptake of K' and
reduced Na'/K' ratio in leaves, suggesting its role in re-
establishing ion homeostasis. Thus, the combined micro-
algal-cyanobacterial formulations can better stimulate the salt
tolerance responses, nutrient uptake, and growth of plants. In
an earlier study, Grzesik et al.'** observed that the foliar appli-
cation (i.e., sprayed three times on leaves at three-week intervals
during vegetation season) with intact cells of Microcystis aeru-
ginosa MKR 0105, Anabaena sp. PCC 7120 and Chlorella sp.
influenced the growth and physiological performance, such as
the stability of cytomembranes, chlorophyll content, intensity
of net photosynthesis, transpiration, and stomatal conductance
of willow plants (Salix viminalis L.), a horticultural plant whose
flexible branchlets are used in basketry. Similar investigations
on the potential of intact or cellular extracts of microalgae—
cyanobacteria in crop plants for improving salinity tolerance are
necessary. Up to 2010, the utilization of microalgal and cyano-
bacterial resources was about 10 000 tons per year, while their
commercial production will increase to 27 500 tons per year
with a market value of US$ 1.10 billion, especially as food, feed,
dietary supplements, cosmetic care products, and biofuels.***'**
Because of their potential to stimulate plant growth and
improve stress tolerance, the biomolecules from these organ-
isms can increase their commercial production and agronomic
applications.

6. Microalgae and cyanobacteria as
biocontrol agents of pathogens and
pests

Pathogens and pests are integral to agricultural ecosystems,
where pathogens including members of fungi, bacteria, viruses,
oomycetes, and Chromista and ‘animal pests’ such as insects,
mites, and weeds cause economic losses of crops at the local,
regional, national, and global levels. The major food crops such
as wheat, rice, maize, potato, and soybean have about 137
pathogens and pests. Their global burden in terms of yield
losses ranges from 17% (potato) to 30% (rice), with more losses
associated with food-deficit regions and frequently with the
emergence or re-emergence of pests and diseases.'*® The annual
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cost of plant diseases is more than US$ 220 billion, which may
increase due to global climate change events, a major threat to
food security and the environment.'*” Evolutionarily, plant-
pathogen or pest interactions help develop defense mecha-
nisms to protect plants, pest host breadths and impacts, and
maintain the ecological balance in the wild and human-
managed systems."*®* However, intensive agriculture with pesti-
cides to control pathogens and pests has caused environmental
disturbance and non-targeted effects, with long-lasting and far-
reaching consequences.*® The theory of ‘trophobiosis’, which
was proposed by Chaboussou,’ suggests that the increased
availability of soluble nutrients in plant tissues and modifica-
tion of morphological and chemical defensive traits due to
intensive use of chemical fertilizers and pesticides can promote
the damage by pathogens and pests in crops. Thus, the vicious
cycle of chemical input applications, either repeated or with
new compounds, becomes undesirable
ecologies.

Presently, almost 50% of all crop production compounds
available are based on natural products (NP), their semi-
synthetic derivatives (NPDs), compounds inspired by NPs (NP
mimics, NPMs), and especially NP synthetic equivalents, which
constitute about 30%."* Pratt'** described the use of the anti-
bacterial substance, chlorellin, against human pathogenic
Gram-positive (Staphylococcus aureus, Streptococcus pyogenes,
and Bacillus subtilis) and Gram-negative bacteria (Bacterium coli
and Pseudomonas pyocyanea) extracted from Chlorella sp. (C.
vulgaris and C. pyrenoidosa), which also could inhibit the further
multiplication of their cells. Shaima et al.**® reported the anti-
bacterial activity of microalgae such as C. sorokiniana (UKM2),
Chlorella sp. (UKMS8), and Scenedesmus sp. (UKM9), which is
attributed to the presence of phenol, hexadecenoic acid, phytol,
9,12-octadecadienoic acid, and bicyclo[3.1.1]heptane. Kulik***
reviewed the potential of cyanobacteria and algae to produce
antibacterial and antifungal compounds against plant patho-
gens for biological control. Fungal pathogens (soil-borne, foliar,
or fruit pathogens) can cause the most plant diseases with
severe economic losses and produce mycotoxins, which are
harmful to humans and livestock (see Dean et al.**® for top 10
fungal pathogens). The data presented in Fig. 4 clearly high-
lights the important role of microalgae and cyanobacteria as
potential biocontrol agents against fungal and bacterial
pathogens.

The extracts prepared with methanol, acetone, diethyl ether,
ethanol, methyl chloride, and other solvents, using Microcystis,
Anabaena, Nostoc, Scytonema, Lyngbya, Oscillatoria, Trichodes-
mium, and Synechococcus were inhibitory to Aspergillus spp.
Fusarium spp. and other pathogens under many in vitro and
some in vivo studies (reviewed by Righini et al'*’). Roberti
et al.*® reported that when a water extract of Anabaena sp.
BEA0300B was applied to cotyledonary leaves (two leaves, with
other cotyledonary and true leaves untreated) of zucchini
(Cucurbita pepo cv. Consul Semencoop, s. r. 1, Italy) and chal-
lenged with a conidial suspension of Podosphaera xanthii, it
resulted in the induction of systemic defense responses
(systemic acquired resistance (SAR) and induced systemic
resistance (ISR)). On 1, 2, and 3 days of treatment, the total

in agricultural

© 2023 The Author(s). Published by the Royal Society of Chemistry
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EPA — Eicosapentaenoic acid and DHA — Docosahexaenoic acid.

chitinase activity increased (15-38%) and the transient
increases of f-1-3-glucanase and peroxidases further increased.
The powdery mildew symptoms were reduced by 25%, while the
water extract had direct antifungal activity by reducing the
pathogen sporulation. Based on the results from this green-
house experiment, Roberti et al.**® suggested the use of micro-
algal extracts, after further evaluation, in environmentally
friendly disease management.

Zhou et al.* reported the biocontrol effect of Nostoc piscinale
SCAU04 and Anabaena variabilis SCAU26 against the sheath
blight pathogen (Rhizoctonia solani Kithn) in rice (cv. Huan-
ghuazhan) under microchamber and micro-area experiments.
Diisooctyl adipate, among other cyanobacterial metabolites,
had the highest inhibitory effect, and the phytohormone
production of salicylic acid, trans-zeatin-riboside, and iso-
pentenyl adenine increased several folds. Thus, the biocontrol
mechanisms of the selected cyanobacteria against the sheath
blight pathogen include the direct inhibitory effect of

© 2023 The Author(s). Published by the Royal Society of Chemistry

biologically active compounds against the fungus, improved
production of phytohormones for plant growth and induction
of disease resistance, and soil nutrients through N,-fixing
ability. In another study, Bao et al.** demonstrated the inhibi-
tory effect of Anabaena variabilis SCAU30 against not only the
rice sheath blight fungal pathogen (R. solani AG-1 1A strain GD-
118 by 62-70%) but also bacterial blight pathogen (Xanthomo-
nas oryzae pv. oryzae CCTCC AB 91122 by 45-50%) in micro-
chamber experiments. In the field experiments (12 m x 8 m
plots with rice variety Yuexiangzhan and 20 m x 5 m plots with
rice variety Gengxiangyou-8), the rice yield increments were
13.90% to 22% due to the combined treatment of A. variabilis
SCAU30 and 50% topdressing fertilizer, respectively. A. varia-
bilis SCAU30 is considered a biofertilizer-biopesticide agent for
‘Green Super Rice variety-Huanghuazhan’ production under
green agriculture and advocated as ‘a resource-saving and
environmentally friendly agriculture system’.'** More impor-
tantly, the field-level evaluation of microalgae or their cellular
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extracts is critical for the widespread acceptance of their
application as an agronomic practice in green agriculture.

The insecticidal properties of several macro- and microalgae
as well as cyanobacteria have been reported and recently
reviewed by Asimakis et al.'®* The crude ethanolic extracts of
a cyanobacterium (Nostoc carneum), green algae (Parachlorella
kessleri, Ulva intestinalis, and Cladophora glomerata), and
stonewort (Chara vulgaris) showed insecticidal activity against
cotton leafworm (Spodoptera littoralis) when treated against the
2nd and 4th instars in the in vitro assay.’® The ethanolic crude
extracts contained an array of saturated and unsaturated fatty
acids (particularly polyunsaturated w-6 linoleic, palmitic, oleic,
myristic, a-linolenic, and 7,10-hexadecadienoic acids), essential
oils, and phytol and other terpene compounds, and their effects
were inhibitory to larval duration, percent pupal formation,
pupal duration and weight, moth emergence (%), fecundity and
longevity of adults, hatching of eggs, sex ratios, and even larval-
pupal-moth malformations. The water- and ethanol-extracts
(diluted with distilled water to prepare concentrations of 3%,
5% and 7%) of Spirulina platensis, which contained phenolic
compounds such as quercetin, kaempferol, resorcinol, and
naphthaline, were found to be toxic to the larvae (newly hatched
2nd and 4th instars) of Spodoptera littoralis.*** Earlier studies
indicated that microalgal and cyanobacterial extracts may
contain toxic metabolites to higher plants.'*>'*® Hence, utilizing
microalgal and cyanobacterial resources needs scrutiny against
individual crop species and at the field levels. However, these
organisms can be a source and inspiration for developing
synthetic pesticides, especially their applications in organic or
green agriculture.

7. Microalgal forms and
cyanobacteria in improving grain yield
and yield components

The trait of N, fixation has attracted attention from researchers
and agronomic utilization of cyanobacterial strains, especially in
rice cultivation. The first report was by Fritsch,” who examined
the abundance and contributions of cyanobacteria to soil fertility
through biological N, fixation in paddy fields. The cyanobacterial
symbiosis with Azolla, a heterosporous pteridophyte, was tradi-
tionally used in rice cultivation in China as early as 540 AD.**”
Shukla and Gupta'® reported that the extract of Phormidium
foveolarum (Mont.) Gomont when treated with rice seeds (type
21) by pre-soaking for 24 h in 0.5%, 1% and 5% water led to an
increase in the total weight of all ears per plant, the weight of
a single ear and weight of 1000 grains. Generally, cyanobacterial
strains and microalgae are utilized as biostimulants, which are
defined as ‘certain substances, mixtures, and microorganisms,
not as inputs of nutrients, that can stimulate the natural nutri-
tion processes in plants. The use of these products is aimed
solely at improving the nutrient use efficiency, tolerance to
abiotic stress, and quality traits of plants or increasing the
availability of confined nutrients in the soil or rhizosphere,
which can act in addition to fertilizers to optimize the efficiency
of fertilizers and reduce the nutrient application rates.'®
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During the developmental stages of crop growth, the
potential of a yield component is determined by environmental
and management conditions and the yield components interact
to achieve a given yield. For example, yield components such as
the number of plant parts (ie., tillers per unit area or the
number of kernels per head) limit yield more than the size of
parts such as kernels. In rice, the grain-yield contributing traits
include tillering ability, panicle length, and spikelet fertility,
when cultivated under dry-direct seeded conditions and those
such as plant height, number of primary branches, secondary
branches and filled grains per panicle, dominant effects for
yield per hill, yield per tiller and 1000 grain weight are associ-
ated with rice under submerged conditions, respectively."”*'”*
Generally, higher grain yields of rice can be achieved with
increasing numbers of tillers and/or panicles per plant and
grain setting rates. In intensive agriculture, applying
chemical N fertilizer is the most common practice to increase
the yields. Generally, biofertilizers and biostimulants are
considered as substitutes for chemical fertilizers. Zhang et al.'”>
reported that the partial substitution of nitrogenous chemical
fertilizers with the N,-fixing cyanobacterium, Anabaena azotica
FACHB-119, at 30% and 50% significantly increased the
number of tillers and panicles per plant compared to higher
substitution rates, where the substitution by 30% sustained the
rice yields.

Organic agriculture offers a multitude of environmental and
soil health benefits. In Brazil, the use of microalgae is allowed
for organic vegetable production. Mogor et al.*”® examined the
potential of lyophilized biomass of Arthrospira platensis (also
known as Spirulina platensis) at 1 and 3 g L™" on the yield gains
of organic red beet (Beta vulgaris) and found significant
increases in hypocotyl diameters and consequent yield gains. In
another study, Geries and Elsadany'’* found that the foliar
spraying of Spirulina platensis 100 and 120 days after trans-
planting (DAT) and seedling inoculation with endophytic-, N,-
fixing Pseudomonas stutzeri (10° CFU mL™") in onion (Allium
cepa L., var. Giza red), even in the presence of different N doses
(100% and 75% of the recommended dose), improved the
marketable yield, total bulb yield, bulb weight and diameter,
lowest cumulative weight loss percentages of bulbs during
storage and reduced the cull weight. On the contrary, Soppelsa
et al.'”® found that the microalgal extract prepared using Spir-
ulina spp. (4.0 g L™') when applied to strawberry (Fragaria
ananassa cv. Elsanta) as foliar spray from the pre-flowering stage
led to lower fruit firmness (—18%).

Faheed et al."’® reported that seeds of lettuce (Lactuca sativa)
after germination in culture medium containing Chlorella vul-
garis and the addition of 2 and 3 g dry microalga kg™ soil
significantly increased both the fresh and dry weight of the
seedlings. The yield potential in maize (Zea mays L.) under the
influence of Spirulina platensis and Chlorella vulgaris was shown
to be significant by Dineshkumar et al'’” (Fig. 5). Garcia-
Gonzalez and Sommerfeld'”® applied the green algal cellular
extracts and dry biomass of Acutodesmus dimorphus as a seed
primer, foliar spray, and biofertilizer to tomato and evaluated
the seed germination, plant growth, and fruit production.
Although the experiment was terminated early, the higher fruit

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Impact of microalgae and cyanobacteria on the yield potential of maize (Zea mays L.) yield potential (based on data from Dineshkumar

et al*). Impact of Spirulina platensis and Chlorella vulgaris on (a) shoot length, (b) number of leaves, (c) fresh weight, and (d) nutrient
composition in maize plant. CD — Cow dung, Sp — S. platensis, and Cv — C. vulgaris.

numbers suggested the likely effectiveness of 100 g biofertilizer
22 days before transplant. Presently, there is renewed interest in
microalgae for improving global food security. Vigani et al.*”®
proposed that the strategies adopted by the European Union
entitled ‘Innovating for Sustainable Growth: A Bioeconomy for
Europe’® and ‘Microalgae-based Products for the Food and
Feed Sector: An Outlook for Europe’,*®* and their scientific and
technological capacity can be employed to prepare novel
microalgae-based products for foreign markets, leading to the
strategic acquisitions of foreign companies. Biotechnological
innovations can improve microalgal productivity and utilize
waste and cheaper substrates to reduce production costs.

8. Microalgae and cyanobacteria in
biosequestration of soil organic carbon
(SOCQ)

C-containing compounds, also present in the complex organic
material of soil, are a critical component of soil organic matter
(SOM). The SOC is primarily from the fixation of atmospheric

© 2023 The Author(s). Published by the Royal Society of Chemistry

CO, by photosynthetic higher plants and microorganisms.
Globally, the stock of SOC in the top 1 m and 3 m soil profiles is
about 1500-2400 Pg C (1 Pg = 1 Gt) and 2300 Pg C, respec-
tively."®> Because of land cultivation (i.e., about 45% of global
soils), arable soils contribute more to agricultural greenhouse
gas emissions than that under permanent crops and pastures.
Given that all living forms are C-based, soil biodiversity is crit-
ical to many ecosystem functions, including C cycling, which
occurs over long- and short-term time scales, ranging from a few
minutes to a few billion years. The SOC, which is captured,
sequestered, and mineralized by microorganisms and an indi-
cator of soil health, significantly contributes to food production,
mitigation, and adaptation to climate change. Intensive land
management and the vast degraded land areas warrant efforts
to improve future C storage, the capacity of soil to buffer against
climate change events, and the resilience of agricultural food
production systems. The most crucial constraint with aggres-
sive targets for soil C sequestration is the requirement of N to
maintain the C:N stoichiometry in soils. In general, agricul-
tural soils have about C : N at the ratio of 10-12. Then, about 100
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million tons of N is required to increase 4 billion tons of CO,
annually.® Any synthetic chemical N fertilizer application will
increase nitrous oxide emissions, another highly potent green-
house gas from soils. Hence, many ‘best management practices’
and ‘frontier technologies’ for which many technological and
economic barriers need to be overcome are being evaluated
worldwide to enhance the soil C sequestration potential in the
long-term. The biological negative emission (BNE) strategies
involving management practices that can regulate the biotic
processes for improved soil C balance in the long-term have
gained significance. In the present context, reducing atmo-
spheric CO, with almost no enhanced emission of nitrous oxide
due to the fertilizer application is desirable.'®*

Among the ‘best management practices’, reduced tillage or
‘no-till’ can improve the soil C capture, sequestration, and
storage, depending on the soil texture, type and the prevailing
climate. Navarro-Noya et al.*®* reported that tillage practice
affected the relative abundance of Actinobacteria, 3-Proteobac-
teria, and a-Proteobacteria more, while that of Bacteroidetes, -
Proteobacteria, Cyanobacteria, and Gemmatimonadetes was

View Article Online
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affected by residue management. Both edaphic cyanobacteria
and microalgae can improve the soil aggregate stability by
producing exopolymeric matrices and enmeshing filamentous
microbiota over aggregates, improving the soil C sequestra-
tion.'® Haiming et al.'*® showed that even short-term tillage
managements influenced the soil autotrophic bacterial
community in the double-cropping rice fields. There have been
several surprises regarding cyanobacterial clades from phylo-
genetic studies although they are the most studied aerobic and
phototrophic microorganisms. Recently, two new clades (i.e.,
4C0d-2 (Melainabacteria) and ML635J-21 (Sericytochromatia))
with chemoheterotrophic and fermentative metabolisms were
proposed.>'®” Cano-Diaz et al'®® showed the environmental
preferences of different cyanobacterial clades from a field
survey and co-occurrence network analysis. The members of the
photosynthetic Oxyphotobacteria-dominated cluster were
abundant in arid and semi-arid areas, while that of non-
photosynthetic ~ Sericytochromatia- and Melainabacteria-
dominated clusters are in hyper-arid oligotrophic and acidic/
humid environments, respectively. Recently, Larsson et al.'®
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(a) Specific growth rates of microalgae (Chlorella vulgaris and Pseudokirchneriella subcapitata) and cyanobacteria (Synechocystis salina

and Microcystis aeruginosa) at different levels of CO, (based on data from Gongalves et al.*%3). (b) Methane degradation rate (Mg CHy4 Ooiomass
day™) by the coculture of an alkaliphilic methanotrophic bacteria consortium (AMB) and green microalga (GM) Scenedesmus obtusiusculus at
different methane concentrations (4% and 8%) (based on data from Ruiz-Ruiz et al.**%). (c) Maximum CO, tolerance by different microalgal
species (based on data from Onyeaka et al.*?). (d) Climate resilience and mitigation by microalgae and cyanobacteria (based on data from

Nichols?4).
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demonstrated the involvement of mixotrophic protists capable
of both phototrophy and phago-heterotrophy in the production
of C-rich ‘mucospheres’ in disproportionally contributing to the
vertical flux in the ocean C cycling. In soils, the mixotrophic and
fermentative metabolisms of cyanobacteria associated with C
cycling have been overlooked to date. Besides the agronomic
application of N,-fixing and plant bio-stimulatory cyanobac-
teria, the utilization of CO,-fixing (photosynthetic) cyanobac-
teria warrants attention and future research to improve the soil
C sequestration.

In arid and semi-arid environments, bacteria, cyanobacteria,
or their combination collected from the biological soil crusts
and inoculated into the soils were found to have higher
potential for C sequestration.” The sequestered C increased
from 0.232 to 0.294 ¢ m~* days ™', and when scaled up, it could
increase from 0.84 to 1.07 ton ha " year ', equivalent to the
atmospheric CO, removal of 3.11 to 3.93 ton ha ' year '. The
addition of biochar is one of the options among the ‘frontier
technologies for soil C sequestration.” The C capture by
photosynthesis in microalgae is more efficient than by higher
plants due to the presence of active bicarbonate pumps, which
can elevate the internal concentrations of CO, and inhibit
photorespiration. Earlier, Sayre**® suggested three strategies for
algal C capture and sequestration, as follows: (i) permanent
burial of total fresh biomass, (ii) permanent burial of algal
lipids, and (iii) soil amendment with algal biochar, each having
some advantages and liabilities as well. Algal biochar can
sequester about 50% of C present in biomass. Many microalgal
species, including Endornia sp., Chlorella sp., Euglena gracilis,
Chlorococcum littorale, Scenedesmus sp., and Cyanidium calda-
rium can tolerate CO, up to the level of 20% to 100% (v/v)."** The
successful implementation of microalgae-based C capture and
sequestration requires many improvements and innovations
and the application of biorefinery principles. Earlier, Beal
et al.*** evaluated the techno-economic and life-cycle assess-
ment of an integrated 2800 ha production facility of algae with
bioenergy carbon capture and storage (ABECCS). They reported
the financial break-even achieved for algal biomass, sold as
fishmeal replacement for US$ 1400 per ton with a $ 68 per ton
carbon credit and as soybean replacement for $ 600 per ton with
a $ 278 per ton C credit. Thus, ABECCS can sustainably reduce
atmospheric CO, with economic, energetic, and environmental
benefits.> In a recent report, Jassey et al.”* showed that soil
algae capture about 3.60 Pg C annually, corresponding to about
6% of the net primary production of terrestrial vegetation (Table
2). Although certain species of eukaryotic microalgae and cya-
nobacteria have been identified as potential agents in soil C
capture, sequestration, and storage (Fig. 6), the biodiversity and
global implications of these organisms demand more research
efforts and the development of technological opportunities.

9. Algalization of soils: successes and
limitations

‘Algalization’ which was referred earlier to the process of cyano-
bacterial application as biofertilizer in rice fields can include

© 2023 The Author(s). Published by the Royal Society of Chemistry
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microalgal species or their products as plant biostimulants.'*
The potential of the microalgae- and cyanobacteria-based prod-
ucts has been evaluated at various levels, more often by
researchers. Recently, Abinandan et al.*** demonstrated that alg-
alization of two acid soils with Desmodesmus sp. MAS1 and Het-
erochlorella sp. MAS3 significantly enriched bacteria belonging to
rhizobacteria and diazotrophs such as Acetobacter, Azospirillum,
Bradyrhizobium, Gluconacetobacter, Nitrobacter, Burkholderia,
Comamonas, Herbaspirillum, Enterobacter, Nitrosococcus, Breviba-
cillus, Enterococcus, Frankia, and Anabaena, which are largely
implicated in promoting soil health and plant growth. Successful
field-scale algalization has been reported in a few states in India
and in other countries such as China, Egypt, Vietham, and the
Philippines.”*'****” Although the agronomic importance of algae
has been known since the 1900s, the commercial production of
algal biofertilizers or biostimulants is in its infancy. Interestingly,
several microalgal species are cultured and produced as human
health food and nutraceuticals, animal/aquaculture feed, and
feed additives in the industries. As human food and animal feed,
Spirulina (Arthrospira platensis) has been collected as the blue-
colored ‘techuitlats’ and as ‘dihe’ and eaten by the Aztecs living
in the valley of Mexico and the Kanembu people along the shore
of Lake Chad, respectively, for centuries.”®*® The industrial
production of this well-known microalgal product only
commenced in man-made ponds in 1978.** Similarly, the first
commercial production of Chlorella, marketed as a health food
product for immune stimulation, reducing blood lipids, and
treating gastric ulcers, wounds, and constipation, was by the
Nihon Chlorella in Taiwan during the 1960s.>** In a recent report,
Beal et al** suggested that the sustainability of global fisheries
and aquaculture can be improved by the commercial production
of microalgal products as a replacement for fishmeal and fish oil.
Their proposed model of establishing and deploying about 100
facilities (based on microalgal production in Hawaii, each of 111
ha with a hybrid system of photobioreactors and raceway ponds
for the cultivation of Desmodesmus sp.) can replace all the
domestic production of fishmeal in Thailand.

Many algal products are produced from low-tech farming
(harvesting from the wild or simple man-made structures of
ponds and tanks, i.e., ‘open’ systems) and high-tech bioprocess
engineering industries (using fermenters and photobioreactors,
i.e., ‘closed’ systems).?*>*** The need for light, relatively slow
growth rate, the requirements for temperature, C, oxygen,
source and supply of nutrients, selection of strains suitable
either for out-door cultivation or in bioreactors, the capital-
intensive bioreactors, and the contaminants and diseases of
both the ‘open’ and ‘closed’ systems continue to be significant
challenges in scaling up and realizing the potential of micro-
algae, especially from laboratory to land applications. Besides
understanding the foundations of good science, skilled and
experienced personnel are required to produce high value bio-
products or biomass of microalgal species. Most commercially
successful companies have chosen high-priced products, either
metabolites or whole cells of microalgae.

The agronomic applications of cyanobacteria as bio-
fertilizers for improved N, fixation and/or microalgae as bio-
stimulants depend largely on their commercial production. In
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the global market, the popular biofertilizers with N,-fixing
ability are Cell-Tech, Nitragin Gold, TagTeam, Mamezo, R-
Processing seeds and Hyper Coating seeds from Novozymes
and Tokachi Federation of Agricultural Cooperatives, respec-
tively, and the popular genera used for production are Bra-
dyrhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium, and
Allorhizobium  (www.mordorintelligence.com). The global
biofertilizers market is predicted to have a CAGR of 12.10%
during the period 2022-2028. In fact, the market projection
exclusively for microalgae during 2020-2028 is expected to
have a CAGR of 5.40%. In addition, the global area under
organic farming will increase to more than 75 million ha
during this period. In this case, increased awareness,
environmental benefits, and government policies can make
the commercial production of biofertilizers and biostimulants
including microalgae more relevant. To date, the regional and
national markets, especially in India, have more rhizobacteria-
based products than phototrophs-based products. The
increases in crop yields due to biofertilization compared to
uninoculated crops remain insufficient to motivate farmers and
industrialists to utilize microalgal resources. According to the
global meta-analysis, Schiitz et al>*** showed that the yield
responses due to biofertilization by microbial inoculants
ranged from 6.10% to 21.70%, with better responses in the
areas under dry climate, followed by that under tropical climate.
The soil P concentration, organic matter content, and pH are
also important determinants of the yield responses due to
microbial inoculation. These limiting factors and inconsis-
tencies due to climate variabilities thwart the efforts of
governments, industries, and farming communities to rely on
biofertilizers and biostimulants for yield increments. However,
the environmental benefits of CO, sequestration by microalgae
can now provide the necessary impetus for their commercial
production. More importantly, the collective benefits from the
metabolism of C, N, and oxygen of phototrophic inoculants, in
addition to their bio-stimulatory effects on crop yields, need
better agronomic- and environmental auditing. Furthermore,
the benefit-to-harm ratio of microalgal applications needs to be
considered, especially during their long-term usage. Compared
to microalgae, certain species of cyanobacteria can produce
toxic metabolites known as cyanotoxins. These cyanotoxins are
hepatotoxins (i.e., microcystins, nodularins and cylin-
drospermopsins) and neurotoxins such as anatoxin-a, saxi-
toxins, and beta-N-methylamino-i-alanine. These toxins, of
which microcystins have been examined the most, can inhibit
germination and plant growth, and accumulate in plants,
adversely affecting other micro- and macroorganisms, and
eventually entering the food web of soils.**® Future studies
should examine the genomic potential for all the traits of
microalgae, including those related to the production of toxins
and antimicrobial compounds.

10.

There are many challenges related to the technological
advances for agricultural applications and environmental
benefits from microalgae and cyanobacteria, beginning with

Future perspectives
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taxonomic identification, evaluation of genomic potential and
functional capabilities, and availability of authentic cultures.
The conventional phenotype-based classification of algae has
several limitations, in addition to modern taxonomy, guided by
the rRNA relationships inferred from the DNA sequences
associated with different subunits. Both Park et al.** and Parks
et al**® proposed the Genome Taxonomy Database (GTDB;
http://gtdb.ecogenomic.org, a normalized genome-based
phylogenetic framework) based on the phylogenetic inferences
from the concatenation of ubiquitous, single-copy proteins
(covering about 254 090 bacterial and 4316 archaeal genomes
and metagenome-assembled or single-cell genomes of uncul-
tured members). In addition, there is a proposal of the suffix
-ota to denote phyla.>” These considerations have led to a new
proposal on cyanobacteria. Presently, the phylum Cyano-
bacteriota encompasses three classes: (i) Cyanobacteria (previ-
ously called Oxyphotobacteria - all oxygenic phototrophs), (ii)
Vampirovibrionia (replacing the Candidatus name Melainabac-
teria) and Candidatus Sericytochromatia.”*® Interestingly, Vam-
pirovibrio chlorellavorus, the first cultured representative of
Candidatus Melainabacteria is an obligate predator of Chlorella
vulgaris.*® Similar to the difficulties associated with the iden-
tification of cyanobacteria, the systematic process for identi-
fying eukaryotic microalgal strains requires curated databases
on the DNA barcodes and repositories.”* These advances in
microalgal taxonomy present a major disadvantage, where all
the described cultures need renaming and revision of their
classification. However, the chief opportunity of polyphasic,
molecular taxonomic methods is the inclusion of uncultured
microalgae (such as the representatives of Metagenome-
Assembled Genomes, MAGs) in our understanding. The
genomic and metagenomic elucidation of culturable and
uncultured cyanobacterial and microalgal lineages will help to
re-evaluate their diversity, distribution, and ecological
functions.

The primary and high-order endosymbiosis and the diver-
sification of many eukaryotic photosynthetic lineages strongly
suggest the global ecological importance of microalgae and
demand greater appreciation for their conservation and avoid-
ing the disruption of the evolution of eukaryotes. Nevertheless,
the benefits of microalgal evolutionary developments are diffi-
cult to account for in monetary terms. Recently, Altman and
Mesoudi*** showed how plant genes (e.g., domestication)
coevolve with human agricultural activities by applying frame-
works and concepts such as Gene-Culture Coevolution (GCC),
Niche Construction (NC), and Cumulative Cultural Evolution
(CCE). Similar investigations are necessary for the soil micro-
biomes of agro ecosystems to gain insights into the potential
and limitations of soil C sequestration, atmospheric N, fixation,
and oxygen cycling in the rhizospheres. Earlier, Thrall et al.**
also proposed the need for applying the evolutionary
approaches to the management of pests and pathogens (biotic
interactions) in agroecosystems.

Microbial culture collections are critical in understanding
the metabolic lifestyles and genome characteristics of indi-
vidual organisms. Globally, the microbial culture collections of
146 centers situated in 51 countries have about 67 812 and 61
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421 plant-associated strains and those of soil origin, respec-
tively (https://gem.wdcm.org). Hirose et al.** noted that there are
only about major 15 culture collections that maintain about
7000 cyanobacterial strains. The British Phycological Society
reported that algal culture collections are necessary to
‘generate solutions to societal challenges by stimulating
interaction between academia and bioindustry’ (https://
brphycsoc.org/algal-culture-collections-in-the-omics-age/).

The transformation of ‘energy to matter’ is important in
living soils, which are central to most agricultural activities.?*®
Recently, Gunina and Kuzyakov*** provided an experiment-
based review on the soil microbial communities using
organics as the source of energy, not as a source of C. Hence, the
plant litter and rhizodeposition are sources of energy, rather
than sources of C, in most soil microbial communities. This
hypothesis strengthens the importance of phototrophic micro-
organisms in the C cycling processes of soils. There is also
a strong need to understand the ecological roles of nitrogenases
present in N,-fixing prokaryotes. Oehlmann and Rebelein**®
reviewed the ‘side reactivities’ of three isozymes of nitrogenases
(Mo-, V- and Fe-only) for the reduction of carbon monoxide
(highest activity by V nitrogenase) and CO, (highest activity by
Fe-only nitrogenase). The cyanobacterial members also possess
genes coding for the structural components of V-nitrogenase.*”
Hence, the nitrogenases and alternative nitrogenases (V- and
Fe-only) of the N,-fixing cyanobacteria warrant future research
on their ecological significance in the soil N and C cycling
processes.

Heterotrophic bacteria can promote the growth of cyano-
bacteria, for example, Pannonibacter sp. and Chryseobacterium
sp. had a positive effect on the growth of Microcystis aeruginosa
FACHB-905.** Earlier, Borowitzka and Vonshak®** suggested
that the microbiome (bacterial flora associated with microalga)
could be the causal agent for the collapse of large-scale
heterotrophic algal cultures under stressed and poorly mixed
systems. Presently, we know that Vampirovibrio chlorellavorus is
a cyanobacterial obligate predator of Chlorella vulgaris.** Thus,
the inadequacies in culture collections, inconsistencies and
changing taxonomic assignments, and limited innovations in
commercial production pose serious challenges to their utili-
zation in agriculture. More importantly, the commercial
production of microalgae for agricultural applications will
remain difficult to achieve if profitability is limited to yield
increments and contemporary monetary gains.

11. Conclusions

Microalgae and cyanobacteria are effective in improving the
nutrient contents, structure, and fertility of soils. Several
microalgal species are selected based on traits, such as the
fixation of carbon dioxide and dinitrogen and phosphorus
cycling, which are beneficial to plants. However, their potential
to ameliorate drylands and saline and sodic soils is yet to gain
widespread acceptance. Similarly, their biocontrol properties
and potential to improve the yield and yield components and
the biosequestration of soil organic carbon demand more
research efforts and technological innovations. The benefit-to-

© 2023 The Author(s). Published by the Royal Society of Chemistry
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harm ratio of microalgal applications needs to be considered
based on their genomic potential, especially during their long-
term application. Nevertheless, the new hope for utilizing
these microalgal resources in agriculture is their abundance,
which is underestimated by the present-day culture-based
methods and improved understanding of their evolutionary
benefits and their ecological services. Future work should
improve their pure-culture collections, understand their meta-
bolic lifestyles, examine their ecological roles, know their
evolutionary significance, advance new knowledge and create
awareness among the farming communities and policymakers.
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